NOAA - NOAA Acronym spelled out
NOAA logo PMEL - A leader in developing ocean observing systems
About us Research Publications Data Theme pages Infrastructure

 

FY 2009

Cirene: Air-sea interactions in the Seychelles-Chagos thermocline ridge region

Vialard, J., J.P. Duvel, M. McPhaden, P. Bouruet-Aubertot, B. Ward, E. Key, D. Bourras, R. Weller, P. Minnett, A. Weill, C. Cassou, L. Eymard, T. Fristedt, C. Basdevant, Y. Dandonneau, O. Duteil, T. Izumo, C. de Boyer Montégut, S. Masson, F. Marsac, C. Menkes, and S. Kennan

Bull. Am. Meteorol. Soc., 90(1), 45–61 (2009)


The Vasco—Cirene program ex-plores how strong air—sea inter-actions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in Jan-uary—February 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.



Contact Ryan Layne Whitney |
Acronyms | Outstanding PMEL Publications

About us | Research | Publications | Data | Theme pages | Infrastructure

US Department of Commerce | NOAA | OAR | PMEL
Pacific Marine Environmental Laboratory
NOAA /R/PMEL
7600 Sand Point Way NE
Seattle, WA 98115
  Phone: (206) 526-6239
Fax: (206) 526-6815
Contacts
Privacy Policy | Disclaimer | Accessibility Statement |
oar.pmel.webmaster@noaa.gov