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Physical Environment of the Eastern Bering Sea
March 1979*

by
S. A. Salo, C. H. Pease, and R. W. Lindsay

Pacific Marine Environmental Laboratory
3711 - 15th Ave. NE, Seattle, WA 98105

ABSTRACT. This report includes two analyses of data collected
by the NOAA ship Surveyor in the southeastern Bering Sea during
March, 1979. The first section presents CTD's and data on sea
surface temperature and salinity and on surface winds and air
temperature. The data indicate that ice was advected south to
the ice edge by northerly winds, and that net melting occurred
at the ice edge. The second section describes two cases when
cold continental air moved from the ice over the water at the
edge. An estimate is made of the resulting surface heat flux.

1. INTRODUCTION

During the first two weeks of March 1979, the NOAA ship SURVEYOR
(frontispiece) collected data along the ice edge in the southeastern
Bering Sea. The region of the cruise and the ship's cruise track are
shown in Figures 1 and 2. The ice edge was at approximately 58° to 60°
latitude, 3° of latitude north of the shelf break in water less than 100 m
deep. The position of the ice as surveyed by joint NOAA-Navy ice recon-
naissance overflights on March 2 and March 8 is shown in Figure 3.

This paper presents all the field data and two preliminary interpre-
tations of the data set; a discussion of the manifestations of melting
ice at the ice edge; and a report on the atmospheric boundary layer
thermal structure near the ice edge during two outbreaks of cold air.

*Contribution No. 467 from the NOAA/ERL Pacific Marine Environmental Laboratory.



2. OCEANOGRAPHY AND METEOROLOGY AT THE ICE EDGE
2.1 Data

Forty-one CTD casts and twenty-three airsondes were taken at loca-
tions shown in Figures 4 and 5; Table 1 summarizes information about
the CTD casts. Individual CTD casts in Table 2, casts 1-41, were
plotted wusing PMEL graphics program R2D2 (Pearson et al., 1979).
Isotherms, isohalines, and isopycnals were drawn by hand for the vertical
sections of Figures 7 and 8, at locations shown on Figure 6. Dynamic
depth anomaly at 35 m, the greatest common depth, was calculated using
R2D2 and plotted in Figure 9.

CTD's were taken with a model 9040 conductivity/temperature/depth
sensor manufactured by Plessey Environmental Systems. The standard
deviation of error for the CTD when calibrated in January 1979 was:
conductivity, 0.017 m-Sieman/cm; temperature, 0.006°C; pressure, 0.73
PSI.

The atmosphere sounding system used was that of the Atmospheric
Instrumentation Research Co. It consists of 100-g helium inflated
balloons, an expendable aerodynamically shaped instrument package
(the "airsonde"), a receiving antenna, a receiver and data processing
unit, and a cassette tape recorder for data logging. The instrument
package transmits pressure and wet and dry bulb temperatures. No in-
formation on wind was obtained. The data rate is one frame (time, dry
bulb temperature, wet bulb temperature, and pressure) every 6 sec. The
ascent rate is about 2.5 ms-l; there are about 15 m between samples.
The precision in the wet and dry bulb temperatures is #0.5°C and in the

pressure it is 3 mb.

During the first 2 days at the ice edge, sea surface temperature was
measured every half hour as a bucket temperature with a thermometer
calibrated to 0.1°C. Dry bulb air temperature readings were made
throughout the cruise. The salinity of bucket samples taken every 2
hr was determined using a Guildline 8400 salinometer precise to +.001
ppt. Air temperature and pressure during the cruise are plotted on
Figure 10. Figures 11 and 12 exhibit sea surface isotherms and isoha-
lines.



Relative wind magnitude and direction were continuously monitored
with a Bendix 120 wind velocity and direction transmitter accurate to
+0.1¥ for velocity and +3° for direction. Relative wind data were digi-
tized over 10-min intervals. The ship's course recorder chart was
digitized over the same time intervals, and the ship's velocity was
approximated from positions logged every 15-30 min. The true wind
magnitude and direction shown in Figure 13 were calculated from this
information.

Surface analyses for the Bering Sea region at 00Z and 12Z of March
1-March 31 were obtained from the National Weather Service Forecast
Office in Anchorage and digitized for temperature and pressure. The
isotherms thus derived are in Appendix A. The surface winds shown in
Appendix B were computed from the pressure field by rotating the calcu-
lated gradient wind 20° toward lower pressure and decreasing its magni-
tude by 20% using METLIB (Overland et al., 1980), a software package
for meteorological fields. In regions with 1little bias due to
topography, calculated winds agree well with observed winds. In Figure
14 observed and calculated winds at St. Paul and the ship agree in
magnitude, but the angle of rotation of calculated wind is slightly too
large. This error may be due in part to the fact that the wind vector
at St. Paul is the average of three readings, and the ship's wind
vectors are derived from 6-hr averages of data digitized over 10-min
intervals, while the calculated winds are derived from the instant-
aneous pressure field.

2.2 Discussion

Winds over the eastern Bering Sea were generally from the northeast
during March 1979. This is in accord with usual winter wind patterns
(Brower et al., 1977).

Under the influence of persistent northerly winds, ice formed in
the shallow northern regions of the Bering Sea would be consistently
advected southward (Muench and Ahlnds, 1976), ultimately reaching the
edge. Southward motion of the ice edge itself over most of the region
can be seen in Figure 4. A comparison of CTD descriptions in Table 2
with positions in Figure 5 also illustrates motion of the ice edge.



For example, CTD casts 7 and 38, roughly 40 km apart, were both taken in
the zone of decaying ice at the edge on March 3 and 13, respectively.

As the ice advected south, it was subject to increased air temperatures
(Appendix B). Air temperature at the ice edge was typically -10° to
+59C.

Water at the ice edge had a salinity of about 32 ppt (Fig. 14). Thus
its freezing point would be about -1.75°C. Virtually no sea surface
temperatures this cold were measured; the ice edge was not an ice-forming
region. Since the salinity of the ice is about 15 ppt, its melting point is
about -0.8°C. It can be seen in both Appendix A and Figure 11 that water
warmer than -0.8°C was common at the ice edge.

Ice at the edge was melting, as shown most readily by the CTD's.
CTD's from ice-free areas south of the ice edge illustrated well-mixed water
(for example Appendix A, Numbers 5, 11). CTD's from within or at the ice
edge generally exhibited a surface layer, 15 to 25 m deep, of relatively
cold and fresh meltwater (see Appendix A, Numbers 33, 39-41). The change
from well-mixed to two-layer water occurred across a transition zone over
which short ice advances and consequent melting had apparently occurred.

Figure 7 presents a cross section of an ice edge surface lens of
meltwater; the position of this vertical section is shown in Figure 6.
The CTD section in Figure 8 illustrates the presence of a front near the
ice edge; CTD casts 1-5 used for this section were taken during the
coldest air temperatures seen on the cruise, on the only day grease ice
formation was observed. They are also the shallowest CTD casts made;
this transect therefore represents an anomaly to the more representative
transect of Figure 7.

Due to melting at the advancing ice edge, the colder isotherms and
fresher 1isohalines were moved to the south during the 2 weeks of the
cruise, although the isolines further from the ice edge were relatively
stationary. In Figures 11 and 12, the -1.0°C and 31.8 ppt isolines moved
about 40 km to the south in the 13 days which elapsed between the
first and final readings near the eastern end of the cruise track.



The dynamic topography shown in Figure 9 indicates a current to the
northwest along the ice edge. This agrees with the currents obtained by
Charnell, Schumacher, Coachman, and Kinder (1979). The density distribu-
tion near the ice edge 1is changing faster than geostrophic currents
could adjust, due to ice movement and melting. However, the dynamic
method offers an ofder-of—magnitude calculation for currents near the
ice edge. The CTD transect shown in Figure 7 suggests a narrow current
of 1-2 cm sec"1 and the transect in Figure 8 a current with a maximum
velocity of about 6 cm sec'1 at the front. Thus, currents at the ice
edge are transporting water parallel to the edge and it is unlikely that
they would cause the isoline motion seen in Figures 11 and 12.

An estimate was made of the amount of ice which had melted to
create the temperature profile of the lens in Figure 7, using:
. C AT m
m. = _p Lw W,
where Cp is the specific heat, ATw is the change in water temperature,
L is the latent heat of freezing and m, and m, are the masses of ice and
water per unit area, respectively.

This formula was used to estimate the heat removed from 'cores' of
water of unit surface area for every kilometer along the transect. The
heat removed from each core was assumed to be a centered average of the
heat per area about the core. It was assumed that the temperature was
originally +0.1°C, (see CTD cast 39, Appendix A), and that density was
constant at 1.03 g cm3. Cp was set at 0.94 cal gnldeg—1 (The Oceans,
1942). It was assumed in the equation that all the heat extracted was
used to melt ice, that the ice was already at the melting point, and that
the salinity of the ice was 15 ppt so that the latent heat was 16 cal g-1

(Neumann and Pierson, 1966).

This calculation indicates that enough heat was extracted from the
lens to melt a 60-km strip of ice averaging 50 cm thick. Lower initial
water temperature or salinity of the ice gives lower values, as would
the inclusion of cooling of the Tens due to off-ice winds. Martin and
Kauffman (1979), who took cores along transects into the ice pack, found
that the pack was generally 30 cm thick except in the outer couple of kilometers,



where rafting increased thickness to more than 1 m. Thus the 50-cm estimate
for ice thickness may be too large, which would lead to an underestimate of
lateral ice melting of almost one-third.

Further discussion of marginal ice zone physics during March 1979
can be found in Pease (1980), McNutt (1980), Bauer and Martin (1980),
and Squire and Moore (1980).

2.3 Conclusion

Data taken along the ice edge in the southeastern Bering Sea in
March 1979 are consonant with the advance of the ice edge due to norther-
ly winds, but retarded and limited by the melting of ice due to advection
to warmer water. Ice formation at the edge was only observed on one
occasion, during the coldest air temperatures and in the shallowest
water of the cruise in the lee of Nunivak Island.

3. BOUNDARY LAYER OBSERVATIONS NEAR THE ICE EDGE
3.1 Measurements

At many times during the cruise there were cold air outbreaks
in which continental air passed from the ice to the water with
a consequent large increase in surface heat flux. Because of other
demands on the ship's time, only two cases were documented: Case A on
March 5 and Case B on March 15. Case B also benefitted from simultaneous
overflights by the NASA C-130 aircraft. The location of Case A and B is
shown in Figure 15.

A total of 23 airsonde flights were made. They are summarized in
Table 2. The potential temperature for each sounding is plotted to
2000 m in Figure 16. In all of the soundings we see a mixed layer
capped by a sharp inversion at 400 to 1000 meters. We noted a warming
and deepening of the mixed layer and a cooling of the inversion layer as
observations were taken at increasing distances from the ice edge. This
is shown clearly in Figure 17 where potential temperature is plotted
for the four soundings of Case A. Note that the superadiabatic Tlayer
near the surface may be amplified by thermal contamination from the
ship's stack. The warming of the mixed layer was clearly a result of
heat flux from the warm ocean, while cooling of the inversion layer can



be attributed to entrainment of cold air from the underlying mixed
layer. This entrainment produced a net downward heat flux, adding to
the warming of the mixed layer and cooling the inversion layer. The
inversion was further cooled by radiation from the cloud layer that
developed soon after the air passed over the water, a product of the
greatly increased moisture flux.

An additional mechanism that may contribute to the deepening of the
mixed layer is found in the increased stress due to buoyant mixing.
This 1increased stress slows the air in the mixed layer and creates a
low level convergence that results in a positive vertical velocity
at the inversion. With potential temperature conserved the adiabats
rise, as in Figures 21 and 25.

3.2 Case A

At the time of Case A, ~ 0300Z 5 March, there was a small Tlow
pressure system about 180 km southeast of the ship (see the surface and
850 mb analyses, Figure 18, and the National Weather Service soundings for
four nearby stations, Figure 19). The geostrophic flow was from the
east, with most of Alaska dominated by this zonal flow. The wind at the
ship was 9 to 13 ms-1 at 020° to 040°. As shown in Figure 20 the ship
steamed downwind 70 km to the southwest and four balloons were launched
at 1-hr intervals (02437 to 0634Z, 5 March). A cross section of the
potential temperature of the four soundings is presented in Figure 21, in
which we see the warming and deepening of the mixed layer as a function
of distance from the ice. Note also the rising of the -4 and -6°C
adiabats indicating the cooling of the inversion. The interpretation of
this figure is limited by two major difficulties. The first is the
nonsynoptic nature of the observations. The 850-mb maps (1100 m)
indicate a 6°C warming from 00Z to 12Z 5 March and a shifting of the 7
to 10 ms_1 winds from 030° to 090° as the low to the south developed.
Second, the distance the air travels over the water may be different
than the distance the ship traveled since ice was last observed, due
to the irregular nature of the ice edge. Nevertheless the warming and
deepening of the boundary 1layer and the cooling of the inversion are
clear.



3.3 Case B

Case B was characterized by a weak and nearly stationary low pressure
center 250 n mi south of the ship with an occluded front to its southwest
(see the surface and 850-mb analyses, Fig. 22, and the upper air soundings,
Fig. 23.) The geostrophic wind was from the northeast at the ship's
position and there was a very weak flow off of the Alaskan land mass.
The 850-mb maps (1300 m) indicate a shift in the wind from 045°/3
ms™! at 12Z 15 March to 330°/3 ms !

steady to within 1°C.

at 127 15 March. The temperature was

Again we see a warming and deepening of the mixed layer as the ship
steamed to the south. Figure 24 is a cross section of potential temper-
ature as the ship made a 180-km transit south from the ice edge. Figure
25 is a map of the ice edge with the winds and temperatures measured by
the bridge plotted for the time of each airsonde launch, and wind and
temperature observations by the NASA C-130 aircraft plotted on three
legs at 100 m, 350 m, and 680 m.

The airplane data indicate the same general shape to the profile
but the temperatures are up to 5°C warmer than those measured by the
airsonde. The airsonde data are supported by two independent sources:
the temperature measured by the airsonde before launch matched that of
the bridge to within 0.5°C, and the temperature of the wet bulb while it
froze rose to -0.6°C (for pure water it should have been 0°C), indicating
that the temperature circuit was functioning reasonably well. The
variance of the temperature as measured by the airplane was substantially
larger at the 650-m level than at lower levels. This level was near the
height of the maximum temperature as indicated by the airsonde sounding.
Large temperature fluctuations would be expected in this region as the
airplane passed in and out of plumes of cold air from below or warm air
from above. These fluctuations are further evidence of active entrainment
near the inversion.

Also evident in the airplane data plotted in Figure 25 is a slight
counterclockwise backing of the wind with height. Ekman turning of the
wind normally veers in a clockwise sense and the backing is indicative
of cold air advection. (The thermal wind component normal to the ship's



1 km.1 from a mean horizontal temperature

1 km-l

track for Case A was 12 ms
gradient of 0.03°C km 1.) For Case B it was 18 ms_
of 0.05°C km .

from a gradient

There were high level altostratus and cirrus moving into the area
from the south and a well developed layer of stratocumulus clouds within
a few Kkilometers south of the ice edge. This layer of saturated
air was observed in the airsonde surroundings, but unfortunately the
thickness of the cloud layer could qpt be determined because the wet bulb
wick was in the process of freezing for most of the soundings during this
critical time.

3.4 Surface Heat Fluxes

A very rough estimate of the surface heat flux may be obtained by the
bulk aerodynamic method in which the wind speed at 10 m, U10’ and the air
sea temperature difference, AT, are used to find the surface heat flux:

FH = pcp U10 AT Ch R

where Ch is the bulk heat transfer coefficient (approximately 1.2 x 10-3,
Kraus, 1972), cp (1004 J deg-lkg_l) is the heat capacity and p(=1.3 kg m-3)
is the density of the air. For Case A (U10 = 10 ms-l, AT = 10°C) the heat
flux is about 120 Wm-z and for Case B (U10 =5 ms-l, AT = 5°C) it is about

30 Wn 2.

We can also find the difference in heat content between two columns
of air of depth Z by integrating the expression

MH(Z) = ¢ S5 p (T, = Tp) dz , ()

in which T1 and T2 are the temperatures of the two air columns. The
heat flux into the air column can then be approximated from

_ UaH
FH = d [ (2)

where U is the mean wind speed in the air column and d is the distance
between the soundings. We must assume steady state conditions and that
the second sounding is directly downwind from the first.

If no heat were transferred through the inversion (Z=h) the air
above would remain unchanged from the first sounding to the second. AH
would then be constant for z>h and would represent the total heat flux



from the surface into the mixed layer. Equation (1) is plotted for
Cases A and B in Figures 26 and 27. In Case A we see that this con-
stant is about 1.5 x 106 Jm-z at Z=1000 m, and using (2) we obtain

210 Wm—2 for the heat flux into the column (vs 120 Wm_2
bulk aerodynamic method). For Case B we find no hint of a constant
AH; the fact that AH 1is negative above 800 m could reflect a bias

in one of the temperature sensors or a violation of the assumptions

from the

of steady state, downwind profiles.

This method of calculating heat fluxes places extreme requirements
on the accuracy of the temperature profiles, for with a precision of
0.5°C the expected error in the heat flux calculated with Z=1000 m,
d=50 km, and U=10 ms © is 140 wWm 2.

of 0.5°C 1is plotted for each case in Figures 26 and 27. Clearly

The expected error for a precision

the error is very large and quickly overwhelms the value of AH as we
integrate upward. If we could be certain that at some high level the
temperatures of the two profiles were the same, any bias in the tempera-
ture sensors could be adjusted for, and the expected error would be
much smaller. Unfortunately, the nonsynoptic nature of the observations
precluded any such certainty.

3.5 Conclusion

There are many questions that remain about the air modification that
occurs at the ice edge. Of most interest is the nature of the three-
dimensional wind field near the 1ice edge that reflects different
values of the surface stress and heat flux at the up- and downwind sides.
It would also be very useful to accurately determine the heat and moisture
fluxes as a function of distance from the ice edge. Accurate field
observations could be used to verify the results obtained with various
air modification models or to substantiate working assumptions of ocean
or ice circulation models. This study represents a first and somewhat
cloudy look at an intriguing phenomena.
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TABLE 1. CTD OPERATIONS SUMMARY
Cast # LATITUDE(N) LONGITUDE(W) ICE CONDITIONS DEPTH(M) DAY TIME
1 58° 26.8' 165° 57.0' Loose pancakes 40.9 062 0009
and grease ice :
2 58° 21.7' 165° 58.9' Same 37.5 062 0652
3 58° 16.9' 165° 59.2' Same 38.4 062 0909
4 58° 14.3' 165° 59.6' Adjacent Edge 41.4 062 1035
of Loose Cakes
5 58° 11.2° 166° 00.2' Clear of Ice 43.6 062 1152
Open Water
6 58° 15.0' 167° 18.8' Condensed 55.8 063 2246
Pancakes
7 58° 13.8' 167° 21.3' Adjacent Edge 56.7 064 0013
of Condensed Cakes
8 58° 11.9' 167° 21.9' Near-By Lead 57.0 064 0213
Open Water
9 57° 41.4' 168° 00.8' Clear of Ice 63.1 064 0614
Open Water
10 58° 13.8' 167° 44.0' Adjacent Ice 55.3 065 0511
Edge
11 58° 13.6' 167° 49.8' Clear of Ice 56.2 065 0554
Open Water
12 58° 29.8' 167° 56.1' Adjacent Ice 50.6 066 0406
Edge Moving North
13 58° 45.9' 168° 45.1' 8 NM into Loose 47.3 066 1636
Pack Ice
14 58° 45.1' 168° 47.8' Inside Ice Pack, 49.6 067 0403
Floes Compacting
15 58° 38.7' 169° 05.2' Clear of Ice 58.5 067 0805
Open Water
16 59° 02.2' 170° 01.2' Adjacent Ice 63.5 067 1635
Edge, Cakes Rotting
17 58° 58.1' 170° 12.0' Slightly Away 66.6 068 0340
From Ice Edge
18 58° 57.2' 170° 45.6'  Same 67.2 068 0804
19 59° 22.2' 170° 59.2' Adjacent Rotting 67.2 068 1635

Pack Ice Edge
13 |



(TABLE 1 Contin.)

Cast # LATITUDE(N) LONGITUDE(W) ICE CONDITIONS DEPTH(M) DAY TIME
20 59° 16.6" 171° 04.5'  Same 69.5 069 0212
21 59° 11.2' 172° 22.0' Same 83.6 069 0807
22 59° 37.1' 172° 40.0' Adjacent Rotting 82.7 069 1625
Pack Ice Edge

23 59° 30.8' 172° 36.4' 83.4 069 2129

24 59° 22.8' 172° 19.7° 81.8 070 0000

25 59° 17.7' 172° 02.4' 78.1 070 0136

26 59° 13.2' 171° 45.3' Decaying Cakes 77.0 070 0316
and Rubble

27 59° 07.9' 171° 28.5' 75.7 070 0440

28 59° 02.4' 171° 10.8' 72.0 070 0614

29 58° 58.4' 170° 57.6' 69.5 070 0736

30 58° 53.7' 170° 40.8' 69.8 070 0928

31 58° 49.2' 170° 23.3' 68.0 070 1117

32 58° 44.,2' 170° 07.2' Decaying Ice, 65.9 070 1316
Rubble Field

33 58° 56.5' 170° 06.8' Adjacent Ice 63.4 070 1639
Edge, Rotting Floes ~

34 58° 53.8' 170° 13.9' Rubble Field, 65.4 071 0439
CTD Hung Up

35 58° 52.6' 170° 17.9' Decaying Rubble 67.1 071 0822

36 58° 46.9' 170° 25.3' Adjacent Ice 70.2 071 1636
Edge, Rotting Floes

37 57° 58.5' 168° 21.1' Clear of Ice, 67.1 072 0438
Open Water

38 57° 45.2!' 167° 37.7' Open Water in 61.0 072 0812
Lead, Compact Floes

39 58° 01.6' 166° 14.9'  Same 54.9 073 0436

40 58° 00.5' 166° 14.7'  Same 54.0 073 0809

41 58° 00.2' 166° 14.4'  Same 56.4 073 1632

< indicate gaps

of more than 12 hours
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Figure 1. Cruise region in the Bering Sea, March 1979.
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Figure 7a. CTD transect showing a surface lens of meltwater. Numbers on the
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pleths are labeled.

23



. o o _
_z_; —~ oJ o
nw v ™M ™M M
© o ™M -
© 9 \
o ©
® O .
0 ~ ]
4 E
X
{o
q-- v
D)
To)
> M
=
=z
_
<{
wn
N
- oJ
M M
=z =
o M
O 0
I
o O
@
To) W ]
™~ %
1 I ] T 1
@) Te) O Te) O Te)
— M < © N

Figure 7b. CTD transect showing a surface lens of meltwater. Numbers on the
horizontal axis are CTD stations. 1Isotherms, isohalines and iso-
- pleths are labeled.
24



33

N~/

58°56.5'N
170°06.8'W
25.

34
258

SIGMA T
35
IOkm

31
—_ 1

58°46.9'N
170°25.3'W
5

60

L
)
N~

Figure 7c. CTD transect showing a surface lens of meltwater. Numbers on the
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pleths are labeled.
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Figure 8b. CTD transect taken at the beginning of the cruise, showing a front.
This is the only time during the cruise such a feature was seen.
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Figure 8c. CTD transect taken at the beginning of the cruise, showing a front.
This is the only time during the cruise such a feature was seen.
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abscissa is different for each sounding.
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Figure 16b.

Potential temperature for all soundings.
abscissa is different for each sounding.
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Figure 16d. Potential temperature for all soundings.
abscissa is different for each sounding.
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850mb HEIGHT AND TEMPERATURE

THE SYNOPTIC PICTURE FOR CASE A, 00Z 5 MARCH 1979

SURFACE PRESSURE

Figure 18. Surface pressure and 850-mb maps for Case A, 00Z 5 March 1979.
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850mb HEIGHT AND TEMPERATURE

THE SYNOPTIC PICTURE FOR CASE B, 00Z 15 MARCH 1979

SURFACE PRESSURE

Figure 22. Surface pressure and 850-mb maps for Case B, 00Z 15 March
1979.
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Figure 23. Upper air soundings from the National Weather Service, 00Z
15 March. The dots indicate the 850-mb level.
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Figure 25. Map of the locations of the soundings for Case B with wind and
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and 680 m.
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