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OCEANOGRAPHIC CONDITIONS ON THE NORTHERN BERING SEA SHELF:
1984-1985

S. Salol, R.D. Muenchz, and J.D. Schumacher!

1. INTRODUCTION

Data presented in this Technical Memorandum were amassed as part of an experiment
entitled the Arctic Polynya Experiment (APEX 85). The purpose of the experiment was to study
mesoscale processes associated with ice formation in the polynya south of St. Lawrence Island,
in the northern Bering Sea. Data were obtained from nine moorings containing seventeen current
meters which were deployed near the island and in Bering Strait during October and November,
1984 (Table 1). The records from these instruments were analyzed, and their statistical
properties, spectra, and time series comparisons among the records are presented in this memo.
In addition, data are compared to time-series of local winds derived from surface level pressure
fields.

1.1 Regional Geographical and Oceanographic Setting

St. Lawrence Island is located about 300 km south of Bering Strait in the northern Bering
Sea (Fig. 1). It is separated from mainland Alaska by Shpanberg Strait, which is about 190 km
wide and is shallower than 30 m over much of its width. Isobaths in Shpanberg Strait are aligned
toward the north or northwest. Anadyr Strait, to the west of the island, is about 75 km wide and
deepens to greater than 50 m within about 20 km of St. Lawrence Island. Its bathymetric axes
trend toward the northeast. Bering Strait is approximately 85 km wide and 40-60 m deep, with
generally north-south trending isobaths. The region just south of St. Lawrence Island where
most of the moorings were clustered is less than 40 m deep. Isobaths are roughly parallel to the
island except at 8401, the southernmost mooring.

Coachman et al. (1975) described three water masses in the Bering Sea north of 62°N.
Furthest west and most saline is Anadyr Water. Its high salinity is probably a result of salt
excluded from ice formed during the winter on the Anadyr shelf. To the east of this water is
Bering Sea Water. The region near the Alaskan coast is occupied by Alaskan Coastal Water.
Because of river input this water mass is the least saline of the three. Schumacher et al. (1983)
also reported on these water masses.

Tides are predominantly diurnal on the outer Bering Sea shelf, but become weaker and
more semidiurnal toward the north (Pearson et al., 1981; Mofjeld, 1984). Tidal currents are
decreased when ice is present, although it is unclear whether the measured changes are real or
reflect the decrease in rotor pumping by surface waves. Tidal variance represents 2-64% of the
total current variance during the winter at various sites in and near the area of the present study
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(Salo et al., 1983). Tidal currents contribute the smallest fraction of total variance at Bering
Strait, Anadyr Strait, and sites just south and southwest of St. Lawrence Island. They comprise
the largest percentage of the total current on the open shelf south of Shpanberg Strait.

Long-term mean currents over the northern Bering shelf are north-setting, although south-
ward flow events may persist for days or weeks. This pattern is due to a sea level which slopes
down toward the north and to winds which are usually from the north and northeast, especially
during the winter. Mean transport through Bering Strait was estimated to be roughly 0.8 Sv
toward the north by Coachman and Aagaard (1981). Aagaard e al. (1985) used wind records
from 1946-1982 and the fact that the meridional component of the wind was well-correlated to
existing current records and transport to determine a mean transport of 0.6 Sv. The prevalence of
strong northerly winds in winter creates a strong seasonal cycle in transport with summer
transport roughly 50% greater than winter transport. Daily transport through Bering Strait varies
considerably in response to forcing by the wind. Coachman and Aagaard (1981) reported values
ranging from 5 Sv southward to 3.1 Sv northward.

The vector mean directions and the axes of greatest variance of currents in the Bering Sea
are usually close to the direction of the isobaths. This is especially true in the three straits, where
more than 90% of the current variance is aligned with the bathymetric axis (Salo et al., 1983).
Mean winter scalar speeds on the order of 25 cm/s were reported in Bering Strait by Aagaard et
al. (1985) and Salo et al. (1983). Salo et al. also determined scalar speeds of 15-20 cm/s in
Anadyr and Shpanberg Straits. Vector mean speeds were on the order of 15 cm/s in Bering and
Anadyr Straits, and 5 cm/s in Shpanberg Strait. The smaller ratios of vector mean/scalar mean
speed in Shpanberg and Bering Straits suggest that more reversals occur there than in Anadyr
Strait. Just south of St. Lawrence Island, 63-88% of the total variance occurred on the axis of
greatest variance. Scalar and vector mean speeds were lower than in the straits; scalar speeds
varied from 5-9 cm/s while vector speeds ranged from 1-3 cm/s and were often not significant.

Schumacher et al. (1983) hypothesized that the current in Anadyr Strait is a continuation of
northward flow across the mouth of the Gulf of Anadyr. Kinder et al. (1986) called this flow a
western boundary current. Schumacher et al. also noted a weak mean flow of 3.5 cm/s directed
toward the east just south of St. Lawrence Island. This suggests that a part of the current from
the Gulf of Anadyr continues eastward south of St. Lawrence Island.

Kinder et al. (1986) proposed that the water reaching Bering Strait crosses the Bering Sea
shelf via two paths. A laboratory and a barotropic numerical model (which did not include
atmospheric forcing) predicted that a low-salinity current flowing through Shpanberg Strait
carries roughly 15% of the flow. A high-salinity western boundary current transports the remain-
ing 85% of the Bering Strait flow. The western boundary current was predicted to be about
50 km wide with currents speeds of 10-20 cm/s. A barotropic numerical model presented by
Overland and Roach (1987) predicted that Anadyr Strait water comprises 72% of the Bering
Strait flow in the absence of northerly winds. Under normal winter wind stress, the model
predicted southward mean currents in Shpanberg Strait but northward flow in Anadyr and Bering
Straits. The result is a recirculation of water north of St. Lawrence Island.



2. METHODS

Nine APEX moorings were deployed near St. Lawrence Island inOctober 1984 from the
R/V Alpha Helix. The Bering Strait mooring was deployed by helicopter in November 1984
(Fig. 1, Table 1). All moorings were taut-wire moorings and contained from one to three current
meters.

Statistical parameters, correlation coefficients, spectra, and coherences were calculated
using a program package called R2D2 (Pearson, 1981). This package was also used to display
current roses and summary vectors. Eight bins, each 45° wide, were used in the current roses.
Two different Lanczos cosine-squared tapered filters with half-power points of 2.86 hours and 35
hours were used on the records. The 2.86 hr filter was used when spectral bands were examined;
the low pass filter was used in describing statistical characteristics of the currents.

The percent variance of one record coherent with another record was calculated from
output from the R2D2 coherence output. Output from the R2D2 spectra routines was used to
calculate the spectral variance in the following bands: periods greater than 10 days, periods from
2-5 days, periods from 2-10 days, and diurnal and semidiurnal tidal periods. Although the effects
of low latitude storms are generally felt in the 2-5 day period, the 2-10 day band has often been
considered in previous Bering Sea studies to examine meteorological forcing. Therefore,
variance was calculated for both the 2-5 day and 2-10 day bands.

To examine seasonal variability of the currents, we split the records into three ninety-day
periods. One lasted from mid-October to early January, one from early January to early April,
and the third from early April to early July. We will refer to these periods as fall, winter and
spring. Most stations were ice-free during much of the first period, ice-covered throughout the
second period, and covered by melting ice during the latter part of the third period. It was
impossible to compare equal-length ice-free and ice-covered records. Ice was already present at
the site when the Bering Strait mooring was deployed (Table 1). Most of the other sites were
ice-covered by 11 December, though 8402 and 8401 were ice ice-free until 1 and 15 January,
respectively. Ice remained over the region until mid-June.

A program package called METLIB (Overland ez al., 1980; Macklin et al., 1984) was used
to generate surface winds from surface pressure fields obtained from the Fleet Numerical
Oceanographic Center (FNOC). The gradient wind was calculated from the pressure fields; it
was then rotated 30° toward lower pressure, and its magnitude was multiplied by 0.8.

3. RESULTS
3.1 Low-Frequency Currents

At Bering Strait, the current flowed strongly and consistently toward the north. Almost
98% of the variance occurred on the principal variance axis (Table 2; Figs. 2a,b). This axis
coincided with the bathymetric axis, and was within 15° of the direction of the net current. The
vector mean speed, 26.8 cm/s, was 78% of the scalar mean speed, further attesting to the steady
northward flow. The current roses of Fig. 3 show that 74% of the flow was within 22.5° of due
north with an average speed of about 40 cm/s. Six percent of the flow was toward the south at



roughly the same average speed as the northward flow, and the remaining 20% was weak and
directed to the SE-NE quadrant. Reversals to southerly flow occurred primarily in February and
March, when there were three reversals each lasting roughly one week (Fig. 3a,b).

In Anadyr Strait, the vector mean current was directed toward the northeast, within 10° of
the principal variance axis. The current was highly rectified, with more than 85% of its variance
on the principal axis, which was 20°-40° to the right of the bathymetric axis (Table 2). The
vector mean speed was greater than 20 cm/s and was 85% of the scalar speed; reversals were
even less frequent here than at Bering Strait. Between 83% and 85% of the flow was directed
toward 45-90°, with average speeds greater than 30 m/s at the top meter and 20-25 cm/s at the
bottom meter (Figs. 2a,b). Episodes of southerly flow coincided with the February and March
Bering Strait reversals, although they were weaker and of shorter duration (Figs. 3a,b).

At both sites in Shpanberg Strait, more than 95% of the variance occurred on the principal
variance axis, which was about 5° from the bathymetric axis (Table 2). The vector mean current
was 5-8 cm/s northward at less than 10° from the principal axes. The vector mean magnitude
was respectively 32% and 52% of the scalar mean speed, which was itself lower than in the other
two straits. Only 54-61% of the flow was directed toward the north or northwest, and 27-37%
was directed toward the south and southeast (Fig. 2b). In particular, currents were weak and
often southerly during February-April (Fig. 3b).

Currents at most sites south of St. Lawrence Island were weaker and more variable than in
the straits. Between 69% and 74% of the variance occurred on the principal variance axes.
Although these axes were less than 20° from the bathymetric axes, there was as much as 100°
between the vector mean current direction and the principal axis. Net flow was eastward except
at 8404’s bottom meter, where it was south-southwestward and at 8401, where it was northward
(Table 2). Scalar speeds at most sites were only about a third of scalar speeds in the straits.
Vector mean speeds were 9-38% of scalar speeds, although they were significant at all moorings
except 8404. Currents were stronger and more highly rectified at the SW and SE corners of the
island. The scalar speed at 8406 was between speeds measured at Shpanberg and Anadyr Straits.
The current rose at 8406 exhibits a strong east-west axis on which 76% of the flow occurred;
48% to the east and 28% to the west. Flow in the bight south of the island was also eastward
more often than westward, though none of the meters had more than 39% of the flow on any one
axis (Figs. 2a,b).

3.2 Mean and Net Wind

The surface wind was regionally homogeneous (Fig. 3c). Winds were predominantly from
the north or northeast, with occasional periods of up to ten days when winds blew from the south.
However, there were some consistent trends to the data (Table 2). The principal axis was
oriented toward the NNW in Shpanberg Strait, and clocked steadily around to the NNE at
stations further west. The vector mean wind was more northerly at western moorings and at
Bering Strait than at eastern sites. The scalar and vector mean speeds and the percent variance
occurring on the principal axes increased toward the north and west, although the differences in
the vector mean speed were smaller than the RMS error.



3.3 Current Spectra
The highest total variances measured were at the SW corner of St. Lawrence Island and at
Bering Strait (Figs. 4a-h). The lowest variances were in the bight south of St. Lawrence Island.

The average total spectral variance at the moorings in the three straits was 542.4 cm/s®. South of

St. Lawrence Island, the average was 428.6 cm/s?; 284.6 cmy/s? if the atypical record from 8406
at the SW corner of the island is excluded. It is unclear which of the two southern straits was
more energetic. Total variance measured at the two Shpanberg moorings was between the
variance at the two meters on the Anadyr mooring. Total variance decreased with depth at all
moorings with more than one meter, and the depths of the Shpanberg moorings were inter-
mediate between the depths of the Anadyr meters.

Variance on the minor axis was generally a factor of ten less than variance on the principal
axis. The only case where variance on the minor axis surpassed variance on the principal axis
was in the semidiurnal tidal band at 8401. Current spectra at all meters were red except for peaks
at tidal periods (Figs. 4a-h). In the three straits and at 8406, more variance was in the >10-day
band than in any other, while at every other site variance was greatest in the tidal band. Records
of stations in the first region contained 37-63% of their variance in periods >10 days and 2-26%
of their variance at tidal periods. The other stations had 10-15% of their variance in the >10-day
band and 37-65% of their variance at tidal periods. At moorings with more than one meter the
percent variance at periods >10 days increased with depth, and the percent at tidal periods
decreased with depth.

There was less regional difference of the percent variation at 2-10 day and 2-5 day periods
than for the bands discussed above. South of St. Lawrence Island, 19-33% of the variance was in
the 2-10 day band and 13-20% was at 2-5 day periods. In the straits and at 8406, 26-35% of the
variance was at 2-10 day periods and 14-19% at 2-5 day periods. Like long-period variance, the
percent variance in the 2-10 day and 2-5 day bands increased with depth.

3.4 Wind Spectra

Like the current spectra, wind spectra were red. As would be expected from the fact that
only 55-68% of the winds’ variance occurred on their principal axes (Table 2), variance on the
principal and orthogonal axes were of approximately the same magnitude. There was less than a
10% difference between the highest total wind variance (at Bering and Shpanberg Straits) and the
lowest (at the westernmost moorings). At all moorings, 54-62% of the total wind variance was at
periods greater than 10 days, about 35% was at periods of 2-10 days, and about 20% was at 2-5
days.

3.5 Correlation and Coherence

All correlation coefficients computed from records of meters on the same mooring were
0.9 or greater and were highest at 0 lag (Table 3). Meters on the same mooring were coherent at
all periods (Fig. 5a). Most of the cross-variance for these comparisons was at periods greater
than 7.5 days (9.1 days at 8401), although records from meters south of St. Lawrence Island



exhibited little cross-variance at 11.7 days, and all three comparisons showed energy at one or
more periods near 4 days.

Bering Strait currents were better correlated with Shpanberg Strait currents than with those
at Anadyr Strait (Table 3). Correlation coefficients between Bering Strait and Anadyr Strait
moorings were about 0.53. Bering Strait flow was coherent with current at Anadyr Strait in three
bands: from 16-26 days, at 6.4 days, and at 4-5 days (Table 5b). Most cross-variance was found
in the 16-26 day band. Correlation coefficients with Shpanberg Strait moorings 8410 and 8411
were 0.77 and 0.66. Although currents at both sites in Shpanberg Strait were highly coherent
(Fig. 5a), Bering Strait flow was more coherent with 8410 than 8411. There were only four
periods, all at 2.5-4.4 days, where Bering Strait flow was not coherent with flow at 8410. The
cross-variance was highest at periods greater than 9 days. The only significant lag was at 3.96
days, where 8411 led Bering Strait by 8 hours. 8411 also led 8410 at this period (Fig. 5a).

Current fluctuations in Anadyr Strait were not correlated to those in Shpanberg Strait; none
of the correlation coefficients were significant (Table 3). Less than 3% of flow at Anadyr Strait
was coherent with Shpanberg Strait currents, while 3-4% of 8410’s current and 8-9% of 8411°s
current were coherent with Anadyr Strait flow (Table 4). Flow in the two straits was coherent
only at 3.62 and 3.96 days, and there was little cross-variance at these periods.

Flow at all moorings south of St. Lawrence Island except 8404 was better correlated with
Shpanberg Strait than with Anadyr Strait flow (Table 3). Except for 8401, all correlations with
Shpanberg Strait were negative, and correlations with Anadyr Strait were positive. This indicates
that northward flow in Shpanberg Strait was correlated to westward flow south of St. Lawrence
Island (or southward flow in Shpanberg Strait was associated with eastward flow south of the
island). Northward flow in Anadyr Strait was associated with eastward flow south of St.
Lawrence Island. Correlations were improved when the strait’s record lagged the record south of
St. Lawrence Island by 6-12 hours. Seven to 17% of 8404’s current was coherent with Shpan-
berg current and 30-33% with Anadyr flow (Table 4). At the other sites, 0-7% of the current was
coherent with Anadyr flow and 11-80% with Shpanberg currents.

Currents at 8404 were most coherent with Anadyr Strait at 3.6-9.1 days, with the greatest
cross-variance at 4.4 and 70 days. Current fluctuations at 8404 were discontinuously coherent
with current at 8410 in Shpanberg Strait from 2.9 to 6.4 days, though there was energy only at
3.96 and 6.4 days. It was less coherent with 8411. All significant coherences with Shpanberg
Strait currents were lagged and in all unambiguous lags Shpanberg current fluctuations led those
at 8404,

Correlation coefficients for comparisons between records from any two southern meters
were significant. The largest coefficient was .73, between 8406-8404 and 8406-8401. The
smallest coefficient was -.37 in the 8403-8401 comparison; current fluctuations at 8403 were
highly correlated only to flow at 8404. Correlations among currents at 8406, 8403, and 8404
were all positive, but correlations of any of these with 8401, like correlations with Shpanberg
Strait, were negative (Table 3). Only one set of coherences for this region is displayed in Fig. 5c.
Current at 8404 was coherent with flow at 8403 at most periods, and the cross-variance was
fairly evenly distributed through the spectrum. Four lags were significant; 8403 led 8404 by 4 to



52 hours. Flow at meters 8403 and 8406 were less coherent than 8403-8404. Their coherence
was predominantly at 2.9-6.4 days, and only four of the coherent periods had more than 5% of
the total cross-variance. At 6.4, 4.9, 3.3, and 3.1 days 8404 led 8406 by 9-14 hours. 8404 was
coherent with 8401 at only five scattered periods, from 70 days to 2.5 days. All peaks except the
3.3 day peak contained energy, and all lags were indistinguishable from +180° except the 5.5-day
peak, where 8404 lagged 8401 by 51 hours.

A major problem in correlating currents to winds was the choice of a wind axis, especially
since at most sites only 55-60% of the wind variance was on the principal axis. Thus, correla-
tions and coherences are presented for two wind axes: the wind’s principal axis and the axis (to
the nearest 10°) with which the greatest percent of the current variance was coherent. We will
refer to this second axis as the associated axis. The winds’ principal axes, to the nearest 10°,
were 170-200° (Tables 2, 5). In the straits, the associated axes were 20-50° anti-clockwise of the
principal axes of the wind and 100-170° from the principal axes of the currents. The two wind
axes were separated by 40-90° in the region south of St. Lawrence Island. The wind variance on
the associated axis was 71-96% of the variance on the principal axis in the straits. It was 65-85%
of the principal axis variance south of St. Lawrence Island.

Currents in Bering and Shpanberg Straits were better correlated and more coherent to the
wind than was current in Anadyr Strait. In Bering and Shpanberg Straits, correlation coefficients
between the currents and wind respectively on its principal and associated axes were about -.7
and -.8 (Table 3). From 36-50% of the variance in these straits was coherent with the wind on its
principal axes, while 64-74% of the current was coherent with the wind on its associated axes. In
Anadyr Strait, the coefficients were -.53 and -.55. Only 20% and 41% of the variance of Anadyr
Strait’s upper meter was coherent with wind on the two axes. All the correlation coefficients
were obtained when the current lagged the wind by 6-12 hours.

Most of the cross-variance for wind-current coherences in the three straits was at periods
greater than 9 days, although at 8411 in Shpanberg Strait the "high-energy"” band extended down
to 4 days (Fig. 5d). Bering Strait current was coherent with wind on either axis at most periods.
In Shpanberg Strait, although the magnitude of the coherences was similar to those in Bering
Strait, there were more periods where the currents and winds were not coherent. Anadyr Strait
current was coherent with the wind only in isolated peaks. A peak at 26.2 days dominates the
coherence spectra, especially in the comparisons involving the wind on its principal axes.
Greater than 30% of the cross-variance in Bering and Anadyr Straits, and 10-30% of the cross-
variance in Shpanberg Strait was found at that period.

Currents in the region south of St. Lawrence Island were less correlated to the wind than
were the currents in the Bering and Shpanberg Straits. Except at 8401, they were also less
coherent with the wind, especially at long periods (Fig. 5e). The variance in the cross-spectra
was shifted toward shorter periods; the spectra contain a greater percent of their cross-variance at
periods of 3.5 to 5.5 days than spectra in the straits except 8411. Currents were more coherent
with the wind at 8406 and especially 8401 (which resembled 8411) than in the bight of the
island. The wind’s principal axis was sometimes perpendicular to the principal axis of the
current in this region; current was especially poorly correlated to wind on this axis. From 0-13%



of the currents was coherent with winds on their principal axes, and from 8-47% was explained
by winds on their associated axes.

4. SEASONAL VARIABILITY
4.1 Total Current Variance and Partitioning of Variance

Total current variance was highest at all meters during autumn (Table 6; Figs. 6a-f).
Winter variance at most sites was 70-88% of fall variance, although at 8403 it fell to 53%. At 8
out of 12 meters, variance further decreased to 30-40% of fall variance during the spring. Other
meters showed less of a decrease. At Bering Strait, variance during the spring was 28% of
winter variance.

The decreases in variance were not uniformly distributed in the spectrum, leading to shifts
in the relative importance of different bands. One shift which occurred in Anadyr Strait and at
most southern moorings was that the percentage of the total variance at periods greater or equal
to 2 days increased in the winter and then decreased in the spring. For example, at the top meter
in Anadyr Strait respectively 77%, 82% and 49% of the total variance was in these bands during
the three seasons. This pattern did not occur in Shpanberg Strait and at 8401. There, the
variance at 2-5 days increased to up to 182% of autumn values. However, the variance at 2-10
days decreased sharply enough that the percent of the total variance at greater or equal to 2 days
decreased during the winter.

4.2 Wind Variance

There was relatively little change in total wind variance from autumn to winter, but
variances decreased greatly during spring. Although regional differences in the changes may not
be significant, they showed an east-west trend. Total wind variance in Bering and Shpanberg
Straits increased during winter to 102-120% of autumn variance. At other moorings, winter
variance was 85-96% of autumn variance, with greater decreases at the western sites. Spring
variances were 31-55% of fall variances. Again, decreases were greater in the west than the east.
Thus, wind at Anadyr Strait had the greatest autumn variance, but the lowest spring variance.

In winter, wind variance at periods >10 days increased to 108-139% of autumn variance in
this band at all sites except Anadyr Strait and 8406. Winter variance at periods >10 days ac-
counted for more than 62% of the total variance at all moorings. Variance in this band decreased
in spring to 24-57% of fall values, with the largest decreases occurring in the west.

Wind variance in the 2-5 day band increased slightly during winter at Bering and Anadyr
Straits, but decreased at other sites to 84-94% of fall variances. Variance in the 2-10 day band
decreased everywhere to 58-91% of autumn values. The largest decreases occurred at southern
meters. Spring variances in both bands were respectively 36-46% and 41-65% of fall values,
with the largest decreases in the west.

4.3 Scalar and Vector Mean Currents
Variation in the current’s scalar means resembled that of the total variance at all sites
except at the bottom meter at 8404, but the net current magnitude showed a different pattern. In



both Anadyr and Shpanberg Straits, the vector mean magnitude was weakest during winter. In
Bering Strait, winter magnitude was the weaker of the two seasons sampled. Vector mean
magnitudes were similar in Anadyr and Shpanberg Straits in the fall. The winter vector mean
magnitude in Anadyr Strait was 84-85% of its autumn value while at Shpanberg Strait winter
magnitude dropped to 21-32% of the autumn value. The magnitude at 8411 was not significant.
In Anadyr Strait, the highest vector mean magnitude and smallest RMS error occurred in the
spring, but Shpanberg Strait net current remained near the winter values, although the RMS error
decreased. South of St. Lawrence Island, all autumn vector mean magnitudes were significant,
but only 2 of 5 winter magnitudes and 4 of 6 spring magnitudes were. Net magnitude at three of
the 6 full-time records decreased throughout the three seasons.

In Shpanberg and probably Bering Straits, winter currents were southward during a greater
percentage of time than during the other two seasons (Figs. 3a,b; Figs. 6a-f). In Anadyr Strait,
the maximum duration of reversed (toward the southwest) flow occurred in autumn. Currents
were northward about 80% of the time during autumn in Shpanberg Strait, and were toward the
N-E quadrant 80-85% of the time in Anadyr Strait. In winter, currents were northward about
55% of the time in Shpanberg Strait and 73% of the time in Bering Strait. In Anadyr Strait,
currents were toward the N-E quadrant 85-90% of the time although 13% of flow at the surface
meter was directed across the strait toward St. Lawrence Island. A greater percentage of flow
was eastward than during autumn at both meters. During spring, currents were northward only
64-75% of the time in Shpanberg Strait. Currents in Bering and Anadyr Straits were respectively
toward the north and N-E quadrant 99% of the time. The percent of flow at Anadyr Strait’s
surface meter directed toward the east continued to increase; from 43% in the winter to 66% in
the spring.

During all three seasons, a greater percentage of the currents at most moorings just south of
St. Lawrence Island was toward the NE-SE quadrant (at 8406 and 8402) and the E-S quadrant (at
8403 and 8404) than in the reverse sense. There was too much scatter in the data from moorings
in the bight of the island to allow definition of seasonal trends, but at the mooring near the
southwest corner of the island the percentage of eastward currents was lowest in the autumn and
highest in the spring.

4.4 Scalar and Net Mean Winds

Scalar and vector mean magnitudes of winds at almost all moorings were greatest during
winter and lowest during spring. Autumn and winter magnitudes were similar (vector mean
magnitudes were not significantly different), but spring magnitudes were substantially lower.
The vector mean wind was from the northeast during the autumn and veered toward northerly
during the winter and spring (Table 6; Figs. 6a-f).

4.5 Correlations

Correlation coefficients between current fluctuations in the straits varied seasonally.
Currents at Anadyr Strait were best correlated with Bering Strait flow during the winter
(Table 7a-c). During the spring the correlation coefficient for the two records was not sig-




nificant. Currents in Bering and Shpanberg Straits were well correlated during both winter and
spring. Currents at Anadyr Strait were not well-correlated with Shpanberg Strait flow during fall
or winter, but were correlated with currents at 8411 (and 8401, just south of Shpanberg Strait)
during spring. The correlation coefficient for these comparisons was negative and increased
when Anadyr Strait current lagged that at 8411 or 8401 by 6-12 hours.

Current fluctuations in Shpanberg Strait were correlated to those at southern moorings
except 8403 during all three seasons. Shpanberg Strait flow was not significantly correlated to
flow at 8403 during winter (Table 7a-c). Correlation coefficients were highest during autumn in
7 of 12 comparisons, but there was no consistent geographical pattern to the seasonal trends. In
contrast, current at Anadyr Strait was correlated to flow only at 8404 during all three seasons. It
was correlated to flow at 8403 and 8401 only during spring, and to flow at 8406 only during
winter and spring. The signs of the correlation coefficients of comparisons between a record
from one of the straits and a record from south of St. Lawrence Island was the same as the signs
of the full-length correlations. In nearly all comparisons, the current at the straits lagged current
at the stations south of St. Lawrence Island.

Seven of the eleven correlations of records in the region south of St. Lawrence Island were
highest in autumn (Table 7a-c). Winter decreases in correlation were especially drastic in the
comparisons of 8403 with 8406 or 8401. In most cases the signs and phase lags remained
constant, as described in the full-time correlation section above.

4.6 Seasonal Wind Correlation

Current fluctuations in the straits were best correlated to wind on its associated axis during
the winter, while currents at the southern moorings were best correlated to this wind component
during autumn (Table 7a-c). Seasonal variation in the coefficients was greatest in Anadyr Strait
and at 8404. Current fluctuations were correlated to wind on either the associated or principal
axis except at 8404, where they were not correlated to wind on its principal axis.

5. DISCUSSION

Currents in Anadyr and Bering Straits reflect global-scale forcing (Kinder et al., 1987), but
flow in Shpanberg Strait is more affected by regional-scale processes. During the winter of
1984-1985, the current in Anadyr Strait was more steadily northward-setting than current in
either Shpanberg or Bering Straits. Its fluctuations were uncorrelated to fluctuations in Shpan-
berg Strait, and during the spring were even uncorrelated to those in Bering Strait. Current
fluctuations in Anadyr Strait were also less correlated with winds than were currents in the other
two straits.

During winter, the predominant northerly wind opposes the northward flow of current in
the straits. Shpanberg Strait flow is particularly affected by this wind and may reverse for long
periods. Currents in Bering and Anadyr Straits are less likely to reverse. However, flow in
Anadyr Strait may become more easterly during periods of increased southward flow in Shpan-
berg Strait. This suggests that eastward recirculation of water may occur north and south of St.
Lawrence Island. Recirculation was also suggested in 1986 by the trajectory of two ARGOS
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buoys deployed by Carol Pease off the northwest corner of St. Lawrence Island. Despite easterly
and northeasterly winds these buoys drifted eastward and then south through Shpanberg Strait
(personal communication).

Flow south of St. Lawrence Island is complex. The current fluctuations of records from
the bight of the island were well correlated among themselves and were generally better-
correlated to fluctuations in Shpanberg Strait than those in Anadyr Strait. This suggests that flow
in Shpanberg Strait and south of St. Lawrence Island are affected by the same regional-scale
forcing.

6. SUMMARY

Long-term mean currents in Bering, Anadyr, and Shpanberg Straits were north-setting and
highly rectified. From 85-98% of the variance occurred on the principal axes, which nearly
coincided with the local bathymetric axes in Bering and Shpanberg Straits and were 20-40°
eastward from the bathymetric axis in Anadyr Strait. Scalar and vector mean magnitudes were
greater in Bering and Anadyr Straits than in Shpanberg Strait. Currents in the region south of St.
Lawrence Island were weaker and less rectified than currents in the straits, although most vector
mean magnitudes were significant. The vector-mean flow was eastward or southeastward at
most moorings.

The data suggest that eastward recirculation of water from Anadyr Strait north and south of
St. Lawrence Island occurred during winter. During autumn, the mean magnitudes of the cur-
rents in Anadyr and Shpanberg Straits were similar. During winter, the scalar mean magnitudes
decreased slightly in both of these straits. Due to frequent flow reversals in Shpanberg Strait, the
vector mean magnitude there dropped sharply to 21-32% of its autumn value. Flow reversals in
Bering Strait during winter coincided with most reversals in Shpanberg Strait, though they were
generally weaker and of shorter duration. The vector mean magnitude in Anadyr Strait showed
only a small decrease during this period, since flow reversals there were less frequent and of
shorter duration than in the other two straits. The percentage of east-directed currents in Anadyr
Strait did increase during winter, so that the vector mean direction was 10-15° east of its autumn
direction. This suggests that water from Anadyr Strait was being recirculated north of St.
Lawrence Island. Eastward flow south of the the island during decreased flow in Anadyr Strait
suggests recirculation also occurred south of the island. During spring, the scalar mean magni-
tude decreased further in Shpanberg Strait but increased in Bering and Anadyr Straits, as did the
vector mean magnitudes.

There was little geographic difference in winds over the study region. Winds were
predominantly from the north and northeast. The vector mean wind, directed toward the south-
west at all moorings during autumn, became progressively more south-directed during winter and
spring. Scalar mean magnitudes were similar during autumn and winter but were much lower in
spring. Vector mean magnitudes were highest during winter and lowest during spring, although
the differences between autumn and winter magnitudes were less than the RMS errors. The
increase was especially small in Shpanberg Strait. Total wind variance was greatest during
autumn at all locations except Bering and Shpanberg Straits. In Anadyr and Bering Straits the
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total wind variance during winter was respectively 85% and 120% of its autumn value, but there
was little difference between the two seasons in Shpanberg Strait and other eastern moorings.
Total wind variance was substantially lower during spring at all sites. Given the relatively stable
wind conditions in Shpanberg Strait, it is unlikely that the sharp drop in the vector mean current
magnitude which occurred in the strait during winter to local wind forcing, although the change
in wind direction made the wind more effective in countering the current. The wind at Bering
Strait would appear to be more important, as in Aagaard et al. (1985).

Bering Strait current fluctuations were better correlated to (and coherent with) current
fluctuations in Shpanberg Strait than those in Anadyr Strait. Most of the cross-variance of the
coherence spectra was at long periods. Fluctuations in the latter two straits were virtually
uncorrelated except during spring. During that season, flow in Anadyr Strait was uncorrelated to
currents in Bering Strait, but was correlated to flow at the station in the center of Shpanberg
Strait. Flow in the region south of St. Lawrence Island was generally better correlated to flow in
Shpanberg Strait than in Anadyr Strait. Eastward fluctuations in the southern region were
correlated to southward flow in Shpanberg Strait and to northward flow in Anadyr Strait.
Current fluctuations in the southern region were correlated among themselves, although flow at
8403 nearest the shore in the bight of the island was highly correlated only to flow at 8404 just
offshore from it.

The currents in the straits were better correlated to wind on axes directed toward the south
or southeast than to winds on the principal axes themselves. Currents in Shpanberg and Bering
Straits were more coherent with the wind than were currents in Anadyr Strait. Most of the
cross-variance of the coherences was at periods greater than 9 days. South of St. Lawrence
Island, winds were less coherent with the wind than winds in Bering or Anadyr Strait.
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Table 5. Percent Variance of Currents Associated with the Wind. Data presented are the percent variance of the
current (on its principal axis) associated with the wind, the wind axis for the comparison, and the wind
variance on the axis given. Data are shown for two wind axes: the principal axis of the wind (to the nearest
10°), and the axis on which the greatest associated variance occurred. Note that it isn’t possible to distin-
guish between an axis and the axis with the same direction but the opposite sense. That is, for example, a
wind axis listed as 120° could actually be 300°. The first part of the table is for the pre-filtered period

84336-85184. The second part of the table presents seasonal data for selected meters.

Axis of Greatest
Wind Variance

Highest % Variance
Assoc. with the wind

8408 at 40 m 41.28% at 190° (51.87) 63.52% at 160° (44.52)
8407 at 18 m 20.48% at 200° (41.57) 40.62% at 160° (34.88)
8407 at 48 m 19.67% at 200° (41.57) 36.63% at 180° (39.94)
8410 at 37 m 36.20% at 170° (43.16) 73.57% at 120° (30.85)
8411 at33 m 50.43% at 170° (44.29) 68.40% at 130" (36.50)
8406 at 15 m 2.35% at 200° (39.72) 36.82% at 270° (25.93)
8403 at 18 m 0.00% at 190° (39.91) 8.45% at 120° (26.74)
8404 at 20 m 3.92% at 190° (39.66) 19.64% at 230° (33.54)
8404 at 30 m 6.78% at 190° (39.66) 18.01% at 240° (30.99)
8401 at 20 m 13.36% at 180° (39.44) 47.35% at 120° (29.20)
8401 at35m 5.96% at 180° (39.44) 27.22% at 270° (25.88)
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8408 at 40 m

280-004 0 e

004-094 64.18% at 190°(72.63) 79.89% at 150°(47.35)
094-184 71.73% at 170°(28.10) 75.59% at 140°(23.95)
8407 at 18 m

280-004 46.98% at 150°(54.17) 52.53% at 170°(53.31)
004-094 56.70% at 200°(58.58) 57.16% at 190°(57.89)
094-184 12.55% at 160°(16.77) 30.49% at 190°(15.90)
8410 at 37 m

280-004 78.28% at 120°(43.43) 79.77% at 110°(43.17)
004-094 18.82% at 180°(54.90) 69.65% at 120°(28.96)
094-184 76.26% at 150°(26.91) 78.58% at 130°(24.59)
8404 at 20 m

280-004 0.00% at 140°(48.62) 30.54% at 230°(39.37)
004-094 7.71% at 200°(54.46) 25.20% at 250°(31.44)
094-184 14.49% at 150°(18.05) 17.59% at 110°(14.99)
8401 at 20 m

280-004 70.04% at 120°(43.64) 72.41% at 110°(43.49)
004-094 4.57% at 190°(49.91) 38.35% at 120°(26.16)
094-184 18.66% at 150°(22.66) 29.93% at 130°(21.49)
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