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Abstract

Two data sets can be examined for closeness by considering them as field

maps and pretending that one is trying to forecast the other. This is done by

applying some recently devised forecast verification techniques to the pair of

data sets. The technique we apply for the purpose is the tercile (or

Trinomial Stochaster) technique wherein, over a given set of points in space,

the two fields have their a-class, I-class and 2-class errors tallied, and

examined for statistical significance. These class errors can be used to

gauge the closeness of the three main attributes of the data sets: their

locations (akin to averages), spreads (akin to variances), and (spatial or

temporal) patterns. In illustration, the tercile technique is applied three

times: to show how to gauge the effects of different objective analysis

methods on the same raw data set; to examine the self-predictability (and

hence noise or information content) of a data set; and to devise a new

principal-component selection rule using the concept of self-predictability.
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Data Intercomparison Theory

IV. Tercile Tests for Location,Spread and Pattern Differences

Rudolph W. Preisendorfer

Curtis D. Mobley

L Introduction

The approaches to the problem of data intercomparison are manifold, as we

have begun to see in the first three reports of the present series on Data

Intercomparison Theory. In the present note we introduce still another

approach to the data intercomparison problem, namely that based on the tercile

classification of the range of values of a physical field. The present method

draws out the thread of ideas that began to form in the closing section of

DIT(III)*, wherein we developed the method of r-tile classification, and

indicated its applications to intercomparing principal vectors (EOF's),

principal components, and other objects derivable from the principal

decomposition of data sets. In the present note we specifically set r =3 and

therefore work with one of the simplest r-tile classifications, namely

terciles. Moreover, we shall work directly with observed field values rather

than their principal parts. These two choices result in an easily interpreted

set of tests for the differences in spatial or temporal aspects of location,

spread, and pattern of two data sets. The reference distributions, by which

we can decide on the significances of the differences of these various

attributes between two data sets, can be generated under suitable conditions

* A complete list of titles in the present series of reports is given in
§7, below.
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by anyone of the five general procedures (IOP,EOP,APP,PPP,CIP) defined and

illustrated in DIT(II).

We shall illustrate by means of three examples the use of the tercile

method of data intercomparison, using a combination of lOP and CIP, i.e., a

combination of the Ideal Observation Procedure and Classical Intercomparison

Procedure. The first example shows how the method can be used to detect

whether significant differences exist in the locations, spreads, and patterns

of three equatorial temperature fields arising from three different objective

analysis schemes applied to a common set of raw data. The second example

applies the Tercile Method to the self-prediction property of one of the

three equatorial temperature data sets in the first example. The

self-prediction property is the one that gives a measure of the non

randomness (or information content) of a data set. The self-prediction

property is one facet in the solution of the general climate predictability

problem. Finally, the Tercile Method will be used to suggest a new form of

principal-component selection rule based on the self-prediction idea.
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2. S-Synoptic Tests

We shall consider two main developments of the Tercile Method. The

present development takes place in the spatial-synoptic (or S-Synoptic)

setting wherein we shall test whether two given data sets ~' ={d'(t,x):

t = l,···,n; x = l,···,p} and~' = {m'(t,x): t = l,···,n; x = l,···,p} have

significant differences in spatial location, spatial spread and spatial

pattern. In §3 we shall summarize the dual development for temporal

differences, resulting in the T-Synoptic Tests.

A. Finding Tercile Boundaries

The first step in the S-Synoptic Tests is to compute the time averages of

the d'(t,x) and m'(t,x). Thus we write, with x = l,···,p,

-1 n
'd (x)' for n I d'(t,x)

0 t=l

-1 n
'm (x)' for n I m' (t,x)

0 t=l

(2.1)

(2.2)

These averages, specifically for the ~' matrix, are shown in Fig. 2.1, which

gives an overview of both the S-Synoptic and T-Synoptic Analyses.

Next, form the anomalies, for t = l,···,n; x = l,···,p,

d(t,x) - d'(t,x)

m(t,x) - m'(t,x)

d (x)
o

m (x)
o

(2.3)

(2.4)

From these, at each x, find the tercile class boundaries ad(x), bd(x) and

a (x), b (x). These are shown schematically for the~' set in Fig. 2.1. Thusm m

ad(x), bd(x) have the property that they split the n values d(t,x), t = l,···,n

3
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Determin ing terci Ie class boundaries for

S -Synoptic and T-Synoptic analyses

space indexes

x=1 x x=p
space
avgs:

t=1 dIU,I) d' (I,x) d'(I,p) do( I)
ad (I)

bd (I)

spat ia I scatter
of values at each t
drawn for the
case p=9

t dl(t,I) dl(t,x) d'(t,p) do(t} ad(t}
time
indexes bd(t)

t=n d'(n,l) d'(n,x) d'(n,p) do(n) ad( n)

bd(n)

time do( I) do(x) do(p)...
avgs:

ad(l) ad(x) ad( p)

bd(l) bi x ) bd(p)

temporal scatter of values at each x
drawn for the case n= 12

Fig. 2.1
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at each x into three equally populous groups: the above-group (A), the

normal-group (N), and the below-group (B). This may be done on the computer

by ordering the n d(t,x) anomaly values at x in increasing size (and

relabeling the t-values):

and then partitioning these n values into three subsets:

d(tl,x) ~ ••• ~ d(~,x), d(tb+l,x) ~ 000 ~ d(ta,x),

d(ta+l,x) ~ 000 ~ d(tn,x)

At the subset boundaries we define:

ad(x) - \[d(ta,x) + d(ta+l,x)]

bd(x) - \[d(~,x) + d(~+l'x)]

(2.5)

(2.6)

(2.7)

(2.8)

The tercile boundaries a (x),b (x) for the model set H' are found in them m -

same way*, and are given at each x by formulas analogous to (2.7), (2.8)

(simply replace lid" by "m" in (2.5)-(2.8)).

B. Pattern Test

The Pattern Test compares the spatial patterns of the maps ~(t) and ~(t)

at each time t, where, for t =l,···,n,

* If n is not divisible by three, then decide how to place the odd data
points. For example, place the first odd point in N and the second (if
it exists) in A.

5
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T= [d(t,1),d(t,2),···,d(t,p)]

T= [m(t,1),m(t,2),···,m(t,p)]

(2.9)

(2.10)

Thus, at each time t find what tercile cell (A,N, or B) d(t,x) is in, and

similarly for m(t,x). See top panel, Fig. 2.2. In that figure, d(t,x) is in

Band m(t,x) is in N. Therefore these values subtend at x a I-class error.

(If m(t,x) happened to be in B or A, then m(t,x) and d(t,x) would subtend at x

a O-class or 2-class error, respectively.) We now go systematically through

all points x and find the j-class errors (j = 0,1,2) subtended by ~(t) and ~(t)

at those points. Let u(t), vet), and wet) be the total number of

O-,1-,2-class errors, respectively, subtended by ~(t) and ~(t). As a check

we should have:

u(t) + vet) + wet) =p (2.11)

for each t =1,···,n.

The two maps, as spatial patterns, are close when u(t) is large and the

moment

met) =vet) + 2w(t)

is small. The two maps are identical at time t (as far as tercile

classifications go) when

(2.12)

u(t) =p, met) =O. (2.13)

An impression of the statistical significance of a score u(t),v(t),w(t)

at time t is obtainable by comparing this score with that obtained by a

6
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S-SYNOPTIC TESTS FOR
LOCATION, SPREAD AND PATTERN

PATTERN TEST
Showing tercile cells A,N,B and

D' 1a I-class error between _, M
at point x

A

N

point x
for M'

T
A

t
N

+B
..L

mo(x) •
uo------- -

1 ------ --o

A

N

B

(D
1
- Base) LOCATION TEST

Showing tercile cells A,N,B and
a o-class error between.Q~M'

at point x

T
A

t
N

+B
1

Cm(x) •
ul---------

11-------

A

N

B

(.QI- Base) SPREAD TEST

Showing tercile cells A,N,B and
a 2-class error between .Q\ M'

at point x

Fig. 2.2
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process that selects maps like ~(t)t !(t) in a random fashion as follows. At

each Xt and for given fixed tt let d(ttx) be randomly placed in cell At or Nt

or B with equal probabilitYt namely 1/3. Similarly at each Xt for the given

fixed t let m(ttx) be placed with probability 1/3 into one of the terciles.

These placements of d(ttx) and m(ttx) at x are independent of the placements

at every x' other than x. From these two randomly selected maps, we can find

the u,v,w values for them. Under these conditions, the joint probability

p(u,v,w) of the three class-errors u,v,w is readily found (Appendix A, using

the Trinomial Stochaster). Moreover, the probability distributions for the

individual u,v,w error counts are also readily obtained. From these, for a

given significance level, 100«%, O<a<l, we can judge if u(t), vet), wet) are

significantly large or small, as the case may be. The use of these randomly

found u,v,w scores will be illustrated in §4.

The net result of the Pattern Test is a decision at each t whether or not

the triple of scores (u(t),v(t),w(t)) subtended by ~(t) and !(t) is significant

on some 100a% level, O<a<l. If, for example, u(t) is significantly large,

then the spatial patterns of ~(t), !(t) may be said to be significantly close

as regards O-class errors. Other significance measures, in addition to u(t),

are supplied by significantly small values of vet), wet), or met).

c. Location Test

To carry out a (spatial) Location Test on the nxp data sets ~' ,~', first

find the time averages do(x), mo(x), x =1,···,p, as in (2.1), (2.2). Then

order the do(x) (after relabeling) in increasing size:

d (x ) ~ ••• ~ d (x )
o 1 0 P

8
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and find the tercile boundaries t , u , for these averages, analogously too 0

(2.6):

The class boundary values at Xt' xu' are defined as:

to - \[do(xt ) + do(xt +1)]

uo - \[do(xu) + do(xu+1)]

(2.16)

(2.17)

Thus the integers t and u stand at or near the 1/3 marks of p. If p were of

the form p =3q, then t =q and u =2q. Otherwise, proceed as in the footnote

below (2.7), (2.8).

The Location Test now follows along the lines summarized in the middle

panel of Fig. 2.2. At each x see what tercile d (x) is in, and what tercile
0

mo(x) is in. For each of these decisions use t and u as defined in (2.16),
0 0

(2.17) . In Fig. 2.2, d (x) is in A and m (x) is in A, and so they subtend a
0 0

O-class error. Repeat this (do(x), mo(x)) class-error determination at each

of the p places in physical space. Let u,v, and w be the resultant total

member of O-class, I-class, and 2-class errors, so that, as in (2.11), these

must sum to p. The statistical significances of u,v,w, individually or in

common may now be determined exactly analogously as in the Pattern Test above,

using the Trinomial Stochaster.

Observe that the present test has used the D' set as a basis of

comparison (t , u were derived from the do(x)'s). The dual test can be basedo 0

on M'. Generally the triple of scores: u,v,w resulting from this alternate

test based on H' will not be the same as that based on D'. Physical reasoning

9



§2

should decide which base is to be preferred; or otherwise, simply average the

two u's, two v's, and two w's from each type of Location Test. Note that the

Pattern Test was symmetric from the outset.

D. Spread Test

To perform the (spatial) Spread Test on the nXp data sets ~/,~' use the

class boundaries ad(x),bd(x) and am(x),bm(x) of the Pattern Test in par A to

define, for x =1,"',p,

(2.18)

(2.19)

Then order the p values of cd(x), x = 1,"',p, in increasing size after the manner

of (2.15):

and define:

t 1 - \[cd(xt ) + cd (xt +1)]

u1 - \[cd(xu) + cd(xu+1)]

(2.21)

(2.22)

The Spread Test now follows along the lines summarized in the lower panel of

Fig. 2.2. At each x, determine in which tercile cd(x), cm(x) lie. In the

Figure cd(x) lies in Band cm(x) lies in A, and so they subtend a 2-class

error. Repeat this (cd(x), cm(x» class-error determination at each of the p

places in physical space. Let u,v, and w be the resultant total number of 0-,

1-, and 2-class errors. The statistical significances of u,v,w are deduced as

10
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in the Pattern and Location tests. Observe that the Spread Test is based on

~'; an alternate test may be based on ~', and score-averages found, as in the

Location Test.

E. Notes on Alternate Procedures for Generating Tercile Tests

(i) Implicit in the test descriptions above was the assumption that

there were enough maps ~(t) and ~(t), t = l,···,n to generate a workable

terciledecomposition of the values d(t,x), m(t,x), t =l,···,n at each x.

Thus we have implicitly used on D' and H' themselves the Ideal Observation

Procedure (lOP) defined in DIT(II). When the number of samples ~(t),

t = l,···,n is not adequate for this purpose, resort may be made to the

Classical Intercomparison Procedure (CIP) using the suggestions made in

DIT(II). Indeed, the u,v,w statistics defined above (and in Appendix A) are

developed and applied in the CIP setting.

(ii) It may turn out that we have several nxp data sets D~ i = l,···,w
-1

available but individually the n maps ~(t), t = l,···,n in each are not enough

to form a workable tercile decomposition of the map values. (For example n in

such a case would be 5.) It may be meaningful, however, to pool the ow maps

from the given set of D~ matrices, and therefore have a sufficient number to
-1

work with.

(iii) When there are enough maps ~(t), ~(t), t = l,···,n for lOP within

D' and within ~', then it may be of interest to apply the APP (of DIT(II)),

SUitably modified, to ~' and H' and the tercile-forming method. Thus, any

partitioned ~' could be used to generate tercile decompositions and

intercomparisons. Thereby, we could form DD cdfs of v, or w. These DD cdfs

would be compared, in the manner described in APP, to the DH cdfs of the

respective statistics v, or w. (For u, one would use the left tail of the DD

cdf to reject H .)
o

11
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(iv) The PPP may also be applied to the task of generating reference

distributions of the u,v, and w statistics. The idea here would be to see

where the u,v, or w, subtended by the given maps of D' and ~', would fall in

the reference distributions u,v, and w, respectively, generated by the pool

and partition procedure. Significantly small u values, and significantly

large v,w values would be the bases for rejecting H •
o

The above alternate procedures for generating terciles and reference

distributions for u,v, or w have not been studied for their practicality.

They are suggestions for further research.

3. T-Synoptic Tests

By means of Fig. 2.1 we see that there is a completely dual set of tests

to the S-Synoptic set of tests described in §2. Thus, instead of averaging

d(t,x), m(t,x) over t at a fixed x, we can average these quantities over x at

a fixed t. To save notation we use the same symbols for this dual arithmetic

activity. Thus do(x) is now do(t), and ad(x) becomes ad(t), and so on, where

t = l,···,n. It is desirable (but not necessary) that p be divisible by 9;

then all expected values of u,v,w and m for the Trinomial Stochaster are

integers. The critical values for the individual statistics u,v,w, and mare

obtainable from the Binomial distribution with the appropriate elementary

probabilities (see Appendix A).

The interpretation of the results of a T-Synoptic Analysis is dual to

their S-synoptic counterparts. Thus, in a pattern analysis in the present

T-Synoptic case, the quantity u(x) will count the number of times, out of a

sample of n, that the ~' and Q' sets have the same anomaly. The diagrams

below will help visualize this case. A large x-set of high u(x) values will

12
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indicate that thet8mporal evolutions of the two sets are alike at most of the

points x of the reaion of interest. This is dual to the S-Synoptic Analyses

wherein a lona t-strina of hiah u(t) values indicates that the spatial

patterns of the two sets are alike at most of the tiaes t Qf the period of

interest.

0 u(t) p u-curve

1 \ _-L, n
.... .......... :

t .~ ............~.~
",. ----"

/ --
comparina maps\ I "I comparina time series

I J
~(t), !!(t) / u(x) ·..·i ~(x), !!(x)

I r:over time t , J: over space x
I I ;

u-curve~
I i
I .

I
I

0n

1 x p

S-Synoptic Tests T-Synoptic Tests

Of course similar dual interpretations can be made for the remaining

statistics v, w, and m.

Just as we can concentrate attention on a space subreaion when doing

S-Synoptic Analysis, so too can we concentrate attention on a time subperiod

when doing T-Synoptic Analysis. The hyperaeometric distribution can be used

with equal facility in both types of analysis when we are seeking significant

behavior in the appropriate subsets.
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4. Application: Effects of Different Objective Analysis Schemes

A. In a recent study, Liu (1982) has produced an objectively analyzed

sea surface temperature set consisting of semi-monthly averages of the SST

over the tropical Pacific during the years 1975 to 1980, inclusive. Therefore

there are 144 "snapshots" of the SST pattern over the region, (200 S, 200 N) and

(800 W, 1600 E) shown in Fig. 4.1. The objective analysis scheme was basically

of the Cressman (1959) type, as modified by Levitus and Oort (1977), with

additional smoothing operations, outlier cutoff, data weighting, and

gradient-dependent features added by Liu. The four new features of Liu's

scheme are summarized in the right column of Table 4.1. We were mainly

interested in seeing how important the effect on the resulting data set was,

as contributed by the gradient-dependent and data-weighting features of Liu's

scheme. Accordingly, we asked Liu to remove these features from his scheme to

obtain what we call (for historical reasons) the "modified Levitus-Oort"

scheme. The resultant scheme is summarized in the middle column of Table 4.1.

This scheme yielded a second data set to be compared with the Liu set. We

also asked Liu to produce a third data set by completely removing the

diffuser-smoother and curvature-corrector features of his program.* The

scheme producing this third set is shown in the left column of Table 4.1. We

designate this scheme as the "Original Levitus-Oort" scheme, since it

incorporates only the essential features of Levitus and Oort (1977), namely

grid-to-rack interpolator, an ordinary corrector-on-the-grid, an updater, and

a Laplacian smoother.

* These various features of Liu's scheme will be developed in detail in
DIT(V). They may also be discerned in Liu (1982). For our present purposes,
the descriptions in Table 4.1 are adequate.
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B. We selected four regions in the Pacific area over which the three

different data sets were to be examined for the 18 month period from January

1975 to June 1976. The regions were selected on the basis of spatial data

density and SST gradient, and are shown in Fig. 4.1. Each region is 5°xI0o in

extent and has p =24 points. Over the 18 month period, for a given region, we

have two "snapshots" or maps per month; hence in the theory above, n =36.

Region 1 lies off the Coast of Mexico, and has high data density with large

SST gradients. We selected the second region around Hawaii for its high data

density but low SST gradient. Region 3 on the equator below Hawaii has

moderate data density and small SST gradient. Finally, region 4 has low data

density and small SST gradient. We anticipated considerably different

resultant data sets as regards location, spread, and pattern, because of the

different ways the sets were produced through modification of Liu's objective

analysis scheme. The results of applying the S-Synoptic tests for pattern,

location, and spread to these data sets are shown in Figures 4.2, 4.3, 4.4.

In these figures the averages of u,v over the 36 semi-monthly periods are

shown. (A primer in reading these diagrams is given in Appendix A. The

horizontal and vertical lines in the figures give 5% significance levels for v

and u, respectively.)

In Fig. 4.2, we intercompare the 36x24 set of Liu (=~') with the original

36x24 set of Lev-Ort (=~'). See the open squares. Also Liu (=~') was

compared with modified Lev-Ort (=~'). See the solid circles. We can see by

these dots, being crowded near the vertex, that data density and SST gradients

playa small role in the objective analysis effects on spatial patterns. In

other words, the gradient-dependent features of Liu's scheme are not important

additions to the Cressman and Levitus-Oort techniques, as regards pattern

changes. That is, by dropping these features from Liu's scheme we produced a

17
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set that is still significantly close to Liu's original set on the 5% level,

in the sense of u, v, and m. Looking at Fig. 4.3 we see that the

gradient-dependent features of Liu's scheme are not important to the location

(overall average) of the data sets because the solid circular points once

again crowd around the "perfect match" vertex of the diagram. In Fig. 4.4,

where we examine the resultant spread or scale (variance) of the processed

data sets, we see that there is a strong density and gradient effect on the

spread of the sets. In region 1 where density and SST gradient are high, the

Liu and modified Lev-Ort sets are close in the sense of spread (variance)

(meaning the removal of SST-gradient features of Liu's scheme did not matter).

However, in region 4 they differ in spread to the extent that any two randomly

chosen 36x24 data sets would differ.

Notice that in each of the three diagrams of Figs. 4.2, 4.3, 4.4, the set

of points for intercomparing Liu and modified Lev-Ort is closer to the

"greatest fit" or "perfect match" vertex than the set of Liu vs. original

Lev-Ort points. Also, the differences in effect between Liu's scheme and the

original Levitus-Ort scheme on pattern and spread (or variance) of a data set

are more pronounced than the differences in effect, between Liu vs. original

Lev-Ort on location.

In sum, our conclusions concerning the gradient-dependent smoothing

operation of Liu's objective analysis scheme, reached via the Trinity

statistics SITES and SPRED in §5 of DIT(II), are corroborated by the present

Tercile Method of intercomparing data sets. As the reader may verify, these

two intercomparison techniques (Trinity and Tercile) are quite different in

character. Therefore, the conclusions they agree on in this example may have

some basis in reality. A final, detailed look at Liu's objective analysis

scheme, and its effects on a raw data set, is made in DIT(V).

21
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C. Recall that Figures 4.2, 4.3, 4.4 plot time averages of the u and v

statistics. It is sometimes instructive to look at the individual time

behaviors of vet), vet), and wet). As an example, consider region 1, over

which we intercompare the spatial patterns of Liu vs. original Lev-Ort. The

re~ults are displayed in Table 4.2. The average values of the u and v are

respectively 16.4 and 7.2. These are the coordinates of open square 1 in

Fig. 4.2. A "period" in Table 4.2 is a \ month period and is denoted e.g. by

symbols of the form "1/2/75", meaning the second half of January 1975. Note

that the standard deviations of the u(t) and vet) are quite large, indicating

considerable variation in pattern differences over the 18 month period. In

the present case, however, we see that only twice (3/1/75, 7/1/75) did u fall

below its 5% significance level 11.5, indicating that, as far as u (O-class

error count) goes, the SST patterns of Liu's set and the SST patterns of the

original Levitus-Oort set are significantly close 34 out of 36 times over the

18 month period in region 1 of the Pacific. Once again this attests to the

non essentiality of the SST-gradient-sensitive and other features in Liu's

scheme, regarding spatial patterns.

22
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Table 4.2

Time dependence of u,v,w scores over Reaion 1 while intercomparina
Liu and oriainal Lev-Ort SST Patterns

Period u v w

1 1/1/15 13 11 0
2 1/2/15 13 11 0
3 2/1/15 13 11 0
4 2/2/15 17 7 0
5 3/1/15 11 12 1
6 3/2/75 19 5 0
7 4/1/75 19 5 0
8 4/2/15 22 1 1
9 5/1/15 14 10 0

10 5/2/15 18 6 0
11 6/1/15 13 11 0
12 6/2/75 16 7 1
13 7/1/15 11 11 2
14 7/2/15 21 2 1
15 8/1/15 24 0 0
16 8/2/15 19 5 0
17 9/1/15 21 3 0
18 9/2/15 20 4 0
19 10/1/15 16 6 2
20 10/2/15 19 4 1
21 11/1/15 15 7 2
22 11/2/15 16 8 0
23 12/1/15 15 8 1
24 12/2/15 16 8 0
25 1/1/16 18 5 1
26 1/2/16 16 8 0
27 2/1/16 17 7 0
28 2/2/16 20 4 0
29 3/1/16 12 12 0
30 3/2/16 15 9 0
31 4/1/16 13 11 0
32 4/2/16 20 4 0
33 5/1/16 14 10 0
34 5/2/16 18 6 0
35 6/1/16 13 10 1
36 6/2/16 15 9 0

AVERAGE 16.4 7.2 .4
STD DEV 3.-3 3.2 .6
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5. Application: Self-predictability of a Data Set

The purpose of this discussion is two-fold. First, we wish to show how

the concept of data pattern intercomparison, by the Tercile Method, may be

used to generate and score a wide variety of possible long-term forecasts of

oceanographic variables. Secondly, we introduce the notion of self­

predictability as a possible measure of the information content of a

data set. For we anticipate that the self-predictability of a data set varies

inversely with the noise content of the set, as seen through the "eyes" of a

given forecaster. By "self-predictability" of a data set we mean here the

tercile score u (via the Pattern Test, above) between a data set's actual

pattern at time t+! and its predicted pattern at t+! based on a pattern at an

earlier time t (using some means of forecasting), over some fixed spatial

domain, where! is the lead between the later and earlier times. Before

proceeding, the reader may wish to look over the definitions, given in

Appendix A, of the various benchmark and empirical forecasters used in the

self-prediction exercises described below.

A. The setting for the first example is the 99 point set in the tropical

Pacific as depicted in Fig. 4.1. The points are numbered starting with the

first in the southwest corner, and ending with the 99th off the coast of

Mexico in the northeast corner. Fig. 5.1 depicts the self-predictability of

Liu's data set produced using his full objective analysis scheme as summarized

in Table 4.1. We apply to this set the forecasting techniques of three

empirical forecasters: the (Most) Probable Markover, the Pure Analoger and

the Persistence Analoger. The remaining two forecasters are the so-called

benchmark forecasters: the Stochaster and the Persister. The average number

of O-class errors of the Stochaster on the 99 point set is 33, and is shown
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as a horizontal line in the figure. The Stochaster's 5% significance level is

shown as a horizontal line at u =41. Hence pure-chance forecasts will

average around u =33, and only 5% of the time will they produce u values of

41 or more.

We shall describe how a typical forecast went for the Persister. We

started with a full sequence of 144 maps of SST over the 99 point set from

January 1975, to December 1980. Each map was a \ month average of SST over

the 99 point set. We then applied the Pattern Test of the S-Synoptic method

to the first and second maps of the sequence, found and then recorded the

associated O-class error count u. We then went to the second and third maps

of the sequence, found and then recorded the associated u; and so on for all

143 possible \-month-separated maps. We averaged the u scores, and found

u =49, and this became the ordinate of the Persister curve at \ month lead

time. This process was repeated with the Persister for various other lead

times out to 50 \-months, and the Pattern Test u scores averaged and plotted.

For the other forecasters we applied their definitions in turn to each of the

144 maps, according as their definitions allowed, and plotted the average u

scores for each lead out to 50 \-months. We shall now describe some of the

results.

The Persister begins with a very skillful forecast at a lead of \ month,

earning 49 O-class errors out of a possible 99. At the end of 10 \-month

leads, i.e., 5 months, the Persister's forecast is just below the 5%

significance level relative to the Stochaster. The Persistence Analoger

starts at \ month lead with an excellent u =57 out of a possible 99, and

drops to the 5% level in about 6 months. Standing back and considering these

two performances, we are somewhat surprised at the high skill of these

self-forecasts, especially in view of our experience with season-ahead

forecasts over 99-point sets of the u.S. Mainland. (This will be illustrated
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later in Fig. 5.5.) For the moment we continue to look at these unexpectedly

high self-predictions of the tropical sea surface temperature set,

particularly through the "eyes" of the Pure Analoger and the (Most) Probable

Markover. We see from Fig. 5.1 that the Pure Analoger has significant

forecasts out to about a year, while the skill of the Probable Markover never

falls below the 5% level for the duration of this particular set of forecasts

(25 months).

B. The settings of the second example, shown in Fig. 5.2, are five

parallels of latitude: 200 S, 100 S, equator, lOON, 200 N. For each of these

parallels, from 1600 E to 800 W, we chose 99 points on or near each of these

parallels and made a series of forecasts for \ month leads. For example we

applied the Pure Analoger to the task of forecasting \ month ahead the SST

along the 99 points of 200 S. The total record consisted of 144 such \ month

averaged SST snapshots from January 1975 to December 1980. Therefore the Pure

Analoger made 143 forecasts of \ month lead time at 200 S. The average u-score

was 40.8--just below significance at the 5% level. However, at 100 S the

average forecast score of the Pure Analoger soared to u = 49 and dropped to 45

at the equator. It reached a comparable low at lOON to that at 200 S, and then

rose again to about u =47 at 200 N. The performances of the remaining

forecasters are as shown in Fig. 5.2. They all (except for the Best Analoger,

who is in a class by himself) exhibit the maximum self-predictability at 100 S

and a local minimum at lOON. While we will not conjecture here about the

physical mechanisms behind these similarities in latitudinal behavior of

self-predictability (and hence noise or information content of the SST field

in the tropical Pacific), it is clear that the N-shaped curves in Fig. 5.2 are

strongly influenced by the equatorial current and its counter currents.
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c. In the third example, shown in Fig. 5.3, we return to the setting of

Fig. 5.2, in particular the 99 point grids along latitude parallels lOoN and

20oN. We were interested in the self-predictability of the SST set along

these parallels as a function of lead time. Recall that the curves of

Fig. 5.2 were based on a fixed ~ month lead time. Hence the curves in

Figs. 5.2, 5.3 at lead time \ month should match. The u scores were found

analogously to those in Fig. 5.1. Then, as we step off along the lead-time

axis, the u scores begin to drop. The main thing we were interested in was

the relative occurrence of forecast lead times at which the curves fall below

the Stochaster's 5~ u-significance level. On the basis of Fig. 5.2, we

anticipated that these lead times would be greater at 200 N than at lOoN. This

is generally the case. Thus the Persister's forecasts along 200 N drop below

the 5~ level at 5 months lead time, while along lOoN they drop below at 4

months. The Pure Analoger's forecast curve becomes non significant along 200 N

at 8 months, while along lOoN it is never quite significant. The Probable

Markover, apparently extracting maximal information from the data set, manages

to stay significant out to 25 months. The slight rise in his curve is quite

interesting and, at this writing, we have not tested this behavior for

plausibility.

D. In the fourth example, shown in Fig. 5.4, we return to the 99 point

region of Figs. 5.1 and 4.1 and examine the effect on forecasts of averaging

the data sets over time periods larger than \ month. We selected for study

averaging-time-periods of 1, 2, and 3 months. Other than this variable

averaging time, the forecasts were made generally as those in Fig. 5.1. We

therefore expect the curves to match at the \ month lead time. Two extra

forecasters were included in the experiment, namely the Climater and the Best
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Analoger. We were particularly interested in the forecast skills at the three

month (1 season) lead time.

It is noteworthy that in no case did the forecast skill diminish as we

went from ~ month to 3 months lead time. Indeed, the Persistence Analoger,

Probable Markover, Persister, and Pure Analoger end up with somewhat higher

forecast skill scores at the season-ahead lead time than at the ~ month lead

time. There are definite questions for further research that these results

and those of the preceding three examples raise, questions that have

implications for the season-ahead climate forecasts over the u.s. Mainland and

other regions of the planet.

D. We conclude these examples of the use of the Tercile Method of data

intercomparison by plotting in Fig. 5.5 the uv coordinates of the the five

principal forecasters of Fig. 5.4 (those above the 5% significance level). We

also added the performance of the Empirical Markover. These plotted points

are shown as solid circles in Fig. 5.5. It so happened that in a time

interval (1974-1982) containing this same period, 1975-1980, we had verified

the average season-ahead forecasts, over the U.S. Mainland, of these same

empirical forecasters.* In this earlier study, the u.s. Mainland was also

laid-over with a 99-point grid; hence both sets of forecasts are comparable.

In Fig. 5.5, the horizontal lines are of constant v, and the linest with slope

-2 are lines of constant moment m =v+2w. The results are remarkable: we see

that, on the whole, the forecast skills of the empirical forecasters, (in

* See Preisendorfer and Mobley (1982) §15.

t The equations of the constant-m lines are of the form v =-2u + (2p-m).
In Fig. 5.5 we have p = 99.
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these two separate sets of forecasts), are almost co-extensive over the uv

diagram. The empirical forecasters on the whole are nearlg as skillful at

season-ahead forecasts over the U.S. Mainland as theg are at season-ahead

forecasts over the present Tropical Pacific domain, a region about five times

the area of the U.S. Mainland. On closer examination of the diagram,

forecaster by forecaster, we may be led to expect the skills of the empirical

forecasters over the tropical Pacific to be slightly superior to their

temperature forecast skills on the U.S. Mainland. Future studies of this

matter may be of interest to season-ahead forecast efforts.

6. Application: A Principal-Component Selection Rule

Adopting the assumption that a relatively high-u self-predictability

index of an nxp data set D' is associated in some way to a relatively low

noise content of the data set, we can explore the possibility of a principal

component selection rule inherent in this assumption. As shown in Appendix B

·of DIT(III), we can represent the space-centered values d(t,x) of D' in

principal component form:

d(t,x)
p

= I a.(t)e.(x)
j=l J J

p
= I b.(t,x)

j=l J
(6.1)

where we have written, for j =1,···,p,
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'b.(t,x)' for a.(t)e.(x)
J J J

If we explicitly display the associated eigenvalues, we can write

b.(t,x) =t~a.(t)e.(x)
J J J J

\- t.p.(t,x)
J J

(6.2)

(6.3)

For each fixed j, we now may consider B. ={b.(t,x): t =1,···,n;
-J J

x =1,···,p}, j =1,···,p, as a data set in its own right and subject it to an

S-Synoptic Tercile Pattern Test to determine (in the manner of §5) its

self-predictability. Thus, we would use B. to determine the class boundaries
-J

ad(x), bd(x) as in (2.7), (2.8). Then we would select a fixed lead time t of

interest (say one season) and

b.(t+l) the associated values
-J

find for b.(t) = [b.(t,I),··.,b.(t,p)]T and
-J J J

u.(t), v.(t), w.(t) and m.(t), t =1,···,n.
J J J J

To

keep matters simple we would at first work only with the time averages of

u.(t), v.(t) and plot the results (u.,v.), j =1,···,p in a uv diagram, after
J J J J

the manner of Fig. 5.5. The result would be a set of p points in the uv

diagram. These points can be partially ordered, as were the points on

Fig. 5.5 (see (A3.4) or Preisendorfer and Mobley, 1982, §7). The simplest

form of selection rule would be: choose those points (u.,v.) of maximal
J J

forecast skill and that lie in the 5% u-significance region of the uv diagram.

If the j indexes of (u.,v.), so selected, comprise the integer set J, then
J J

the reduced form of (6.1) becomes

d(t,x) - I. b.(t,x)
j~J J

= I. a.(t)e.(x)
j~J J J
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Presumably the d(t,x) would make up a new data set of enhanced self-predictability

and therefore of reduced noise content.

Now that the idea has been broached, several alternative selection rules

come to mind. Suppose (for some fixed lead time i) that instead of evaluating

the self-predictive skill of the individual maps, b.(t), t =1,···,n, we would
-J

evaluate the skill of various additive combinations

b(Klt,x) == I b.(t,x),
jeK J

t =1,···,n; x =1,···,p (6.5)

of the ~j(t), where K is any non empty subset of {l,···,p}. Thus !(K) =
{b(Klt,x): t = 1,···,n; x = 1,···,p} is an nxp data set in its own right and,

just as B. above, it can be examined for self-predictive skill. The number of
-J

non empty subsets K of {l,···p} is 2P-1 and therefore, for the usual range of

p(10 to 100), very large. Efficient ways of examining these collections of

the !(K) are called for. A random search for the K's may be the basis for

their selection. It may simplify the search if it is limited to those subsets

of indexes j in (6.5) for which the sum of the i. is (say) at least
J

p
80% of the total sum I i ..

j=l J

The class of selection rules that is forming, especially with the latter

considerations of including the i.'s in the decision process, is quite
J

different from the dominant-variance and time-history rules developed in

Preisendorfer, Zwiers and Barnett (1981). The present rules attempt to link

the dimensional reduction of the given nxp data set D' to a

self-predictability property of the set rather than to the purely variance or

correlational properties of the principal components a.(t), j = 1,···,p;
J

t =1,···,n. We shall leave this matter here for possible future study.
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APPENDIX A

Trinomial Stochaster

1. Introduction

The applications of the Tercile Method, in §4 of the main text, draw on

the theory of the Trinomial Stochaster, which we will briefly review here. In

§2 below we shall outline the Stochaster's theory and in §3 we will list and

define the empirical forecasters. The reader wishing more detail on the

Stochaster and empirical forecasters may consult Preisendorfer (1977) and

Preisendorfer and Mobley (1982).

2. Trinomial Stochaster

Consider p points in space and three terciles of values of some field at

each point x. Thus, at each point x a range of n possible values of a given

field has been divided into three equally populous cells A, N, and B, as in §2A

of the main text. It is immaterial to the Stochaster defined below how these

terciles at each point were constructed; just that they exist.

The Trinomial stochaster generates a random field over the p points, as

follows. At point x =1, he randomly flips an unbiased cube with opposite

faces marked with "A", "N", and "B". Thus with equal probability, namely 1/3,

an A, N, or B shows up. He notes the outcome and assigns it to point x =1.

In general, at the xth point, he assigns an A, N, or B with probability 1/3,

and in this way produces a random field in tercile form. He then passes over

the p points once again and generates a second random field, statistically

independent of the first. Next, a tally is made of the number u of O-class

errors (matches) between the values of the two fields. At the same time the v
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I-class and w 2-class errors are also tallied over the p values (recall

Fig. 2.2). Clearly, for these u,v,w scores, we must have

u + v + w =p (A2.1)

Moreover, since the fields were independently produced, the probability of a

match (i.e., a O-class error) occurring in any A or N or B cell at a given x

is (1/3)2 = 1/9. The schematic diagram below shows more generally that 1/9 is

the probability of anyone of the nine types of occurrence of the two fields

at each x:

A N B

A

N

B

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

tercile value of
second field at x

tercile value of
first field at x

Thus the three possible types of match for the first and second fields are AA,

NN, BB - down the main diagonal, and each is of probability 1/9. Therefore

the probability a of a O-class error at any x is the sum of these prob­o

abilities, namely 1/3. Moreover, the probability al of a I-class error

is obtained by summing all four of the 1/9 fractions occurring just off the

main diagonal of the above diagram. Thus al =4/9. Finally, the probability

a2 of a 2-class error between two randomly produced fields at x is obtained by

thssumming up the two 1/9 at the AB, BA boxes: a2 = 2/9.
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Having determined the elementary probabilities ao, a1, a2 of occurrences

of 0-, 1-, and 2-class errors at each x, we can now compute the probabilities

of u, v, w 0-, 1-, I-class errors individually or jointly as subtended by two

randomly produced fields with terciled values on a set of p points. The

probability p (u) of u matches of two fields out of a possible p matches is
o

where

p u p-up (u) = ( ) a (I-a)o u 0 0
a =1/3

o
(A2.2)

In a similar manner we have the probability of v I-class errors between the

two random fields as

P1(V) __ (p) v (1 )p-va1 -a1 ,v a1 =4/9 (A2.3)

and for 2-class errors:

__ (p) w (1 )p-wa2 -a2 ,w
(A2.4)

The joint probability of u,v,w 0-, 1-, 2-class errors between the two randomly

produced fields is:

( ) pI u v w
p u,v,w = ulv!wl ao a1 a2

where

(A2.5)

u+v+w=p

By summing p(u,v,w) over all possible values of v and w, for example, we

return to p (u) of (A2.2).
o
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3. Display of Scores: The uv Diagram

The tercile intercomparison of two maps in p-space results in a triple of

scores u,v,w. Since any two of these are independent (cf A2.1) we may pick,

say, u and v and plot a point with these coordinates in the uv plane. Since

u,v are each bounded by 0 and p, and since (A2.1) holds, the region of

possible (u,v) points is a triangle as shown in Figs. 4.2, 4.3, 4.4. The

diagrams are drawn for the case p =24. The average score of the Stochaster is

at (u,v) = (8,10.7) = (aop, alP), and is denoted by "random fit" in the

figures. From (A2.2), (A2.3), (A2.4), we can find the 5% significance levels

for u,v,w and these are, respectively, 11.5, 6.1, 1.6. The 11.5 was found,

e.g.*, by summing p (u) from u =0 up to the u which gave a sum of 0.95, or just
o

above. The u,v, 5% significance levels are included in Figs. 4.2, 4.3, 4.4,

and help in discerning significantly close fits between fields. The first

indication of a significantly close fit is given by a u score exceeding 11.5;

the second is given by a v score being less than 6.1; and finally by a w score

being less than 1.6. Having all three scores significant produces a joint

significance level which can be calculated if desired,t from (A2.5).

Another useful measure of significantly close fit is given by the moment

m =v + 2w (A3.I)

* The 5% significance level 41 for u in the case p =99 (as used e.g. in §5 of
the main text) is found in exactly the same way. The Stochaster's average
u for p =99, is a p =99/3 =33.o

t See, e.g., Preisendorfer (1977) for an example of Extensive tables (cf Table A
there) that can be compiled, and which can be used to find the probability
content of any subset of the uv diagram.
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Under moderately large p values the m of the Stochaster is distributed nearly

normally. The average value m and variance a2 of m are given rigorously bym

-m = p(at + 2a2) = 24·(2/9) = 21.33 (A3.1)

The 5% critical level for m is therefore approximately* (with a = 3.610):m

-m =m - 1.64 a =15.41c m (A3.31)

The smaller m is, the better the fit between the two fields. For m values

below 15.41, we have significance on the 5% level. The line m =15.41 is drawn

in the Figures and labeled "5%m" for the case p = 24.

One may see the systematic use of m, in scoring and ranking

intercomparisons, by consulting the references in the Introduction to this

Appendix. In fact, in ranking fits, we tend to favor the use of v and m.

(A3.4)

if and only if mt ~ m2 and Vt ~ v2' We would read (A3.4) as saying: "data fit f t

is greater than or equal to data fit f 2". This ordering definition satisfies

the postulates of a partial order (reflexivity, symmetry, transitivity).

* when p = 99, mc = 76, see Fig. 5.5.
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4. The Benchmark and Empirical Forecasters

We introduce the present forecasters with the idea in mind of using them

for data intercoarparison purposes. Thus, as shown in the main text above,

these forecasters can have their roles extended to become also

intercollparators. We shall, however, retain their "forecaster" name for

simplicity.

The benchmark torecasters are defined as follows:

Climater: always predicts normal

Persister: always predicts present

Stochaster: always predicts randomly

The Stochaster was defined in §2 of this Appendix. In the context of tercile

representations of data fields, the other two benchmark forecasters may be

further described this way:

The Climater never makes a calculated try at forecasting, and therefore

never tries to predict above or below normal. Verification uv scoring

diagrams for the Climater show the characteristic tell-tale pattern of his

forecasts: all his verification points have w =o.

The Persister is the lazy cousin of the Climater. Whatever pattern now

exists over the map, the Persister says that will be the pattern of the next

period, e.g. the next season.

The ellpirical forecasters are defined here in the context of tercile

representations of data fields.

In the definitions below, it will be helpful to think of the data maps

laid out on a table, in a straight line, from earliest on the left to the

latest on the right. In each definition, one of these maps will be singled

out as the present or current season map, and the torecast will be for the

successor just to its right, i.e., the next season map. Here, of course
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"season" is used simply to fix ideas. In Table 4.2 of the main text t e.g. t we

work with periods of time \ month long. Therefore t the following definitions

are quite generally applicable.

Pure Analoger: Go through the entire record and find that map of the

record which has the smallest m-value (m =v + 2w) with respect to the

current season's map. This is the analog of the current season's map.

The forecast for the next season is the seasonal map succeeding the

analog's map.

Persistence Analager: Proceed, as in the case of the Pure Analoger t to

find the current season's analog. The forecast for the next season is

the map of the analog.

Best Analoger (non operable): Single out an arbitrary map of the record t

and designate it as the current season map. Then go to the next season

map. (This is where the procedure in practice becomes non-operable.)

Find the analog of the next season's mapt i.e. t that map of the record

which is closest to the next season map in the sense of the m-metric.

The forecast for the next season map is this analog of the next season

map. This produces the best possible pure or persistence analog forecast

that can be made for the next season map, as contained in the record t and

using the m-metric.

Empirical Narkover: Fix attention on anyone of the p points on some

arbitrary current map. Go through the record and build the 3x3 tablet at

the point, consisting of relative frequencies of transition from any
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given one of the 3 states A, N, B, in the current season, to any other

given one of these states in the next season. (The rows of the matrices

are thus probabilities, adding up to 1.) Repeat this at each of the p

points, resulting in p, 3x3 transition probability matrices. To forecast

the next season's map, use the present season's A, N, or B state and the

3x3 matrix at each point. Draw a random number in a suitable manner to

determine which final state the initial A, N, or B state will go to, in

accordance with the transition probability. Repeat this at each of the p

points. The result is a map which is a realization of a random variable.

(llost) Probable IIarkover: Establish the 3X3 matrices as above. At a

given point, currently in state A, N, or B, find the maximum entry in the

associated row of the transition matrix. This maximum entry gives the

most probable final state. Use this most probable final state to

forecast next season's anomaly state from the present season's observed

anomaly state at the given point.

The result is a deterministic map.

Repeat this at each of the p points.

(In the event of a tie, i.e., two or

more maximal row elements, at a point, make a prediction using the

Climater.

In the experiments summarized in §5 of the main text the empirical

forecasters were allowed to range over the entire record of 144 maps in order

to produce their analogs or their 3x3 transition probability tables, as the

case may be.
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