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Abstract

This is the third of a series of five reports on some new techmiques in
data intercomparison theory, devised particularly with observed and model
climate data sets in mind. In this study we derive a set of statistics which
describe differences in spatial patterns and temporal evolutions of data sets.
These are derived from the SHAPE statistic of the second study. It is shown
that SHAPE and its derivates are all of a correlational nature, thereby permitting
immediate statistical significance tests using existing tables. However, it
is also shown that correlation-type statistics, especially in multivariate
settings, are limited in their ability to discern differences in spatial and
temporal patterns of data sets. Two multiparameter tests (the S-Phase and
T-Phase) are devised to remedy this limitation and their properties are given
a preliminary examination. The S-Phase test is based on the canonic rotation
angles between the spatial (eigenvector) frames of two data sets that have
been given their singular value decomposition. The T-Phase test is based on
the canonic correlation angles between the temporal (principal component)
frames of two data sets under the same type of decomposition. These multi-
parameter tests, unfortunately, are difficult to interpret, even though they
appear to perform well under realistic data conditions. Further multiparameter
tests are devised and outlined with research programs suggested for future
study. The five general procedures of the second study of the series (IOP,
EOP, APP, PPP, CIP) are potential sources of reference distributions for the

new multiparameter statistics.






Data Intercomparison Theory

III. S-Phase and T-Phase Tests for
Spatial Pattern and Temporal Evolution

Rudolph W. Preisendorfer

Curtis D. Mobley

I. Introduction

We continue our development of data intercomparison methods begun in¥
DIT(II). In that study we began with a systematic analysis of the squared
distance (DIST2) between two data sets. We saw how that squared distance
could be additively split into three parts: one (namely SITES) describing the
separation of the centroids or average location of the data sets, another
(SPRED) describing the difference in radial spread of the data sets (thought
of as swarms of points in a euclidean p-space), and finally (SHAPE), a part
describing the difference in spatial and temporal configurations of the data
sets in p-space. It is this third statistic, SHAPE, that we shall analyze
into its elemental parts in the present study.

The statistic SHAPE is by far the richest of the three that we carved out
of DIST2, for it contains within it the information about the difference in
spatial patterns of the two data sets, and also differences in their temporal
evolution. A preliminary examination in DIT(II) of the power of SHAPE, using
random sampling from gaussian populations to simulate different pairs of data
sets to be intercompared, showed that the power was relatively low compared to
that of SITES and SPRED, under similar testing conditions. This is not surprising

in view of the fact that SHAPE is the result of the collapse of the multivariate

* A list of titles in the present series is given in the reference section
(§8), below. It will be assumed that the reader has access to DIT(II) in
the developments that follow.



§1

internal temporal and spatial structure of a data set down into a single
number. We illustrate this information crunch by some examples in §4, and use
that discussion to motivate some attempts at multiparameter tests (in §§5, 6)
for spatial pattern and temporal evolution differences between data sets.

Besides attempting the construction of new multiparameter tests, we also
devote some effort to analyzing SHAPE. By splitting apart the various pieces
of information within a data set we can produce correspondingly simpler
SHAPE-type statistics (such as ORIEN, COREL, DIAGS, e.g., in §2) that concentrate
on one attribute at a time, namely space properties, time properties, or
variance properties of a data set. This splitting apart of information is
effected through the singular value decomposition of a data set. The resultant
simpler statistics have somewhat higher power.

All of these SHAPE~derived statistics (including SHAPE itself) share a
common statistical structure, namely that of a correlation. This fact endows
these statistics with the advantage that they could be relatively simply
applied using standard statistical correlation tests. But there are also
disadvantages. First of all, the classical correlation test is designed for
the usual gaussian-population sampling procedure. Under real-life sampling
conditions, the ORIEN, COREL, and DIAGS statistics (for example), along with
many other correlation-type statistics presently used in practice, can in
principal have distinctly non-classical distributions (unless special
transformations are devised), and so there could be abuses of the classical
test. But this abuse seems to be common practice (so common that many
practitioners go about the ritual of declaring a correlation significant
without a moment's thought as to the validity of the underlying test).

To some extent we shall go along with such practice, especially in large-

sample settings where the data-derived correlations will very likely
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obey a reasonable facsimile of the classical theoretical distribution. However,
in §7 we will outline some research that can be done to provide some valid
procedures for the new SHAPE-derived correlation-type statistics.

Even with this improved testing procedure of the SHAPE-derived correlation-
type statistics, there remains one more disadvantage, beyond that discussed in
the preceding paragraph, and one that in our opinion is the more serious of
the two. This is the disadvantage in a correlation statistic of having much
information (spatial pattern, temporal evolution, distribution of variance)
compressed into a single number. It is this information-loss property of
correlation that should be the focus of new research on multiparameter statistics
for intercomparing multivariate phenomena in the geosciences. In §§5,6 we
introduce two new procedures (the S-Phase, T-Phase tests) for possible use in
data intercomparison. In §7 we make some simple suggestions for possible
multiparameter statistics (beyond those of §§5 and 6) that are compromises
between the simplicities of a correlation and the complexities of a full
point-by-point description of the phenomenon of interest. In this way we set
the groundwork for a family of statistical procedures that would allow inter-
comparisons of such objects as principal components, principal vectors (empirical
orthogonal functions), and other multivariate objects used in data inter-

comparisons.
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2. SHAPE and Its Descendants

We shall now analyze the statistic SHAPE into various simpler pieces
using the concept of a singular value decomposition of data sets. First of
all, SHAPE was derived in DIT(II), and according to (2.2) of that study we

have,

n |d'(t)-d m’(t)-m
SHAPE = 241 - Z e S (2.1)
t=1 D M

The notation in (2.1) is also defined in Appendix B below where we exhibit the
decomposition of a standardized nXp data set § = é’g%ET into its singular-value
form.* Thus the first of the two factors in (2.1) has the alternate

representation (cf. (B3.21)):

4’ (t)-d_

O'D j

I Mo

K.o.(t)e. t=1,... 2.2
L5 J( )gJ , ooyl (2.2)

If the standardized nXp data set E is given an SVD similar to § (using the

theory of Appendix B as a pattern):

f= L% (2.3)
where
B1(1) ... B (1)
B’ = . P (2.4)
Br(n) ... B_(n)
p
* The name "singular value decomposition" of a matrix comes from the fact

that the data matrix may be rectangular and its associated covariance
matrix may have zero (singular) eigenvalues. Another name that would be
natural is the principal decomposition of a matrix, since its factors are
closely related to the principal-components and principal-eigenvectors of
a matrix.

4
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and where

1= diag[xf,...,xf,] (2.5)

E = [El P _f.p] (2.6)
- T

£j - [fj(l)”"’fj(p)] (2.7)

then the second factor in (2.1) can be written as

m’(t)-m 1};
-2 = AB.(E)f. t=1,...,n. 2.8
o I By (DL, n (2.8)

Introducing these representations into (2.1) we find

sHAPE(B,H) = 2{1 I_z’ I_z’ KM (@B (€55, (2.9)
J=1 k=1

Here there is revealed the rich inner structure of SHAPE(E,E) in terms of the
temporal evolution (gj,ﬁk) of § and E, and their principal spatial patterns
(gj,ﬁk), along with the distribution in space of the dimensionless variances
(Kj,Ak) of ﬁ and E. It should be plausible from this view of its innards that
the power of SHAPE is relatively low. We shall next systematically reduce
SHAPE(ﬁ,E) to its elemental parts which have simpler structure and presumably
somewhat higher power. The results are summarized in Table 2.1, in the left
two columns.

The statistics of simplest structure are ORIEN CORELk, and DIAGS, as

k’
defined in (2.10)-(2.12). For example, ORIENk ("orientation") gives the norm
between the corresponding kth principal vectors (EOFs) of D’ and M’, respectively.
COREI.k ("correlation") gives the norm between the kth normalized principal

components of the data sets, while DIAGS ("diagonal spread") compares the way

all the eigenvalues K?,A? change with j. These three types of statistic,
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TABLE 2.1

NAME SHAPE DESCENDANT How obtained Inner Product
f£rom SHAPE DEFINITION
P
S-SHAPE 2[1 - 3 K.A,(e £.)] set A’ = B’ 2{1 - (K%,I%D)}
P I R = =2 ==
p
T-SHAPE 2[1 - 3 K.A, (e B.)] set E = F 2{1 - (A'K®,B'TH)}
j=1 JJ 1] - - - -
p ~ ~
ST-SHAPE 2[1 - 2 3 (a'B.)(ef.)] | set K= =1 2{1 - (A’E},B'FD)}
Pizy —itd i =727 3 220232
p f — !
ORIEN  2[1 - X 3 elf.] set 2 =B 2{1 - L (&,m}
j=1 373 K=IL=1 P
=727 3p
P _
COREL  2[1 - 1 3 o'B.] set L= E 2{1 - 1 a’,8")}
P j=1 73 K=L=1 P
=T 273
p I 2. !
DIAGS 2[1 - 2 k.A.] set & =B 2{1 - (i*,f*)}
j:lJJ E:E -7

Special fragments of ORIEN and COREL, and also the vector form

of interest:

gy T
ORIEN, = 2(1 - e,f,
COREL, = 2(1 - aTﬁ )

k by
DIAGS = 2(1 - K'A)

where K = [K1,...,Kp]

T

of DIAGS, are

, k=1,...,p (2.10)
, k=1,...,p (2.11)
(2.12)

, A= [Al,...,Ap]T
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respectively, intercompare in great detail the spatial, temporal, and variance
structures of the data sets beyond those structures described by SITES, SPRED
and SHAPE.

Going up the scale of complexity, we come to ORIEN and COREL, in Table
2.1. These intercompare entire eigenframes and principal component frames: E
with F and A’ with B’, respectively, as can be seen from their forms involving
inner products of Sj’gj and gj’ﬁj’ respectively. Since there is now more
structure crammed into one number by these statistics, we would expect lower
power than their counterparts in (2.10), (2.11).

The S-SHAPE statistic in Table 2.1 weights the vectors Ej’gj with their
respective eigenvalues as shown. In this way ORIEN is somewhat sharpened by
helping it to emphasize those vectors in the sets {91’---’Ep}, {gl,...,gp}
that are the more important with regard to variance. A similar set of observations
holds for T-SHAPE in Table 2.1. Finally, ST-SHAPE eliminates only the statistical
effects of the eigenvalues, again (as SHAPE itself) leaving a considerable
amount of structure to be represented by one number. The ST-SHAPE statistic
is included mainly for completeness. It is not anticipated that ST-SHAPE will
be of much use in practice, since it mixes together spatial and temporal
information much in the way SHAPE does.- An overview of these statistics, and

others that are derived from DIST2, is given in Fig. 2.1.

3. Correlational Structure of SHAPE and its Descendants

When we view the nxp data sets ﬁ,ﬁ as points in Enp’ then it becomes
clear that the essential structures of SHAPE, S-SHAPE, T-SHAPE, and all the
other descendants of SHAPE in Table 2.1, are manifestations of the classical

correlation coefficient. The basis for this assertion is developed in Appendix A.
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Using the notion of the inner product (ﬁ,ﬁ) of ﬁ and ﬁ, we see that
SHAPE(D,H) = 2 {1 - (B,H)3 (3.1)

It is clear from this (cf. (A2.19)) that SHAPE(ﬁ,g) is the distance between two
unit vectors ﬁ,ﬁ in Enp’ where ﬁ,ﬁ in another view (sec. 2 of Appendix B) are
standardized nXp data sets. Using this broad algebraic perspective, we can
then view all the descendants of SHAPE in similar manners, and the results are
displayed in the right column of Table 2.1. To deduce the indicated inner
product forms listed in the table, use the SVD forms of ﬁ,g (cf. (B3.18),

(C1.2)) and the appropriate one of the formulas (A2.22), (A2.23).

[/ Limitations of Correlational Statistics

A. Information Loss by Compression

We alluded several times in the Introduction to the fact that much information
compression takes place in the statistic SHAPE. This behavior is a general
characteristic of correlational statistics, i.e., of that class of statistics
whose algebraic form involves inner products or algebraic combinations of
inner products. This interrelation of correlations and inner products is
summarized in (A2.19) (on the matrix level) and in (A2.20) (on the vector
level). We shall now give a simple example that illustrates this compression
property of correlations.

Let D = {d(t,x): t=1,...,n; x=1,...,p} and M = {m(t,x): t =1,...,n;
x=1,...,p} be two space~centered data sets. Specifically, we set p = 24,
and these 24 points are arranged as a 4X6 rectangle on the ocean's surface,

say. One may picture the set as one of numbered points as sketched below:



§4

1 2 3 4 5 6
N

13 14 15 16 17 18 }
Nl

19 20 21 22 23 24

At each one of these points x, m(*,x) and d(*,x) are functions that take on
values for t = 1,...,n. At each x and t, let m(t,x) be related to d(t,x) by

the rule

mn(t,x) = g(x) d(t,x) (4.1)

where for the moment we set

g for x=1,...,12 (the domain N)
g(x) = (4.2)

1 13,...,24 (the domain N')

for x

Hence, depending on the value of g, the m(t,x) values are greater or smaller
than the d(t,x) in the "northern half" N of the common data domain sketched
above. On the southern half N’ of the whole domain, m(t,x) and d(t,x) agree.
Computing the inner product (Appendix A) of this M and D, we find

p

n -
2 X d(t,x) m(t,x)
x=1 t=1

(D,M)

n n
g 2 X d%(t,x) + = Z d2(t,x)
xeN t=1 xeN' t=1

1}

gV + A" (4.3)

Where V and V' are defined in the context of (4.3). The norms of D and M are

IDj2 = (D,D) = V+V’ (4.4)

2] 2

M,M) = g2v+V’ (4.5)

10
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Then we find the inner product, i.e., the correlation, of the normalized data

sets to be:

D M

= = \aa'M
r = ( ’ ) = AL
(] 11

[(g2V+V') (V+V')]*

(4.6)

To see the point of the present example very simply, let us set n = 2m, and

d(t,x) = 1 for all x and t = 1,...,m; and d(t,x) = -1 for all x and t = mtl,...
Then V = V' = 12n, and so (4.6) reduces to
r = ____Sil__a (4.7)
[2(g2+1)]

Now r is a simple function of the magnification factor g over the domain N.

If g =1, then r = 1, as expected (perfect correlation). If g = 0, then for
each t we have a marked contrast in m(t,x) and d(t,x) values between the
northern and southern halves of the domain. For this, r = 0.707. If g were
very large (say infinite), then r = 1/2!2 = 0.707 once again. Therefore the
correlation coefficient doesn't distinguish between these two different spatial
patterns for g = 0 or g = ®. Indeed, it may be checked that the same value of
r in (4.7) holds not only for an equal north-south partition of the 24 point
field but also for an equal east-west partition for the two choices of g

(i.e., g =0 or g = ®»); and for that matter, r = 0.707 for any of the 2,704,156
partitions of the 24-point domain into two 12-point subfields. Therefore, as
the spatial configurations vary over all possible partitions of the 24-point
field into two equal subfields, r stays fixed at r = 0.707 for either of these
two choices of g. Under the present sampling conditions, the sample size is
24, With this sample size the r value of 0.707 is significant on the 1%

level. If we set g = -1, then the visual contrast between the two fields

(North-South, East-West, etc.) is just as great as the preceding g = 0 or

11

,n.
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g = ® cases. But now r = 0, and the correlation is not significant for any of
the 2,704,156 possible partitions.

To summarize, as long as g was non negative, the correlation coefficient
did a creditable job of spotting significant departures of the overall patterns
from the usual random types. When g went negative, the potentially significant
patterns for g = -1 were arithmetically wiped out as the correlation summation
extended over N and N'. Moreover, even in the statistically significant cases
(g = 1, »), we observed an insensitivity of the correlation coefficient to
geographical redistributions of the two contrasting regions N and N'.

Of the two limitations in the correlation coefficient just summarized,
that dealing with insensitivity to geographical distributions of variance is
essentially removable. One simply performs a new correlation significance
test over the smaller regions of interest. For example if an arithmetic
cancellation is suspected over N+N' when g = -1 and N,N' are the north, south
partition elements, then, while r = 0 over N+N’, we would in turn find r = 1
over N and over N’ separately for d(t,x), m(t,x) restricted to these smaller
domains. However, the limitation of arithmetic cancellation, the first and
more essential limitation of the correlation calculation, is still around to

do its nullifying work over these smaller regions.

B. Power Loss by Dimension

The second example of correlation limitations concerns the angular separation
of two unit vectors such as Sj’gj or gj’ﬁj occurring in the SVD of the data
sets M and D. This separation is measured by S§£j or g?ﬁj, respectively.
Thus, specifically, in Ep we would have g?fj = cosO, where 0 is the angle
between &; and gj' We will now describe how the probability distribution of

cos0 changes with increasing dimension p of the space containing Sj and Ej'

12
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The change is such that it induces power losses in the ORIEN test as p increases.
To aid in visualizing the distribution, we will hold £j fixed, and project Sj
onto the fixed gj. Then, if we draw Sj randomly from a population of unit
vectors that are distributed uniformly* over the (p-1)-dimensional surface of

a unit sphere in Ep’ we find that the distribution (for fixed gj) of gggj = cosb

(= x) is

P(x) = D(1-x2)¥@"3) 55 (4.8)
where

D = FCap)/nT(a(p-1)) , -1 € x S 1.

This formula is derived in Appendix E. Some plots of P(x) vs x are shown in
Figs. 4.1-4.8 for selected values of p. Starting with p = 2, we have the pdf
of the component of a unit vector in the plane: Picture the vector on a unit
circle in the xy plane, base at the origin, arrow on the circle. The tips of
the vectors in the population are uniformly distributed, by construction, over
the circle. The projections of the tips on the x axis (along which £j lies)
produce cos® values ranging from -1 to +1. Notice how the cosf's dwell mostly
around +1 and -1. This is intuitively clear. In Figure 4.2 we have p = 3 and
we can still visualize the geometry: the tips of the vectors lie uniformly
distributed over the two dimensional unit sphere in E,. The projections of

these vectors on the x axis are distributed uniformlyt on the akis, as shown.

* If we draw p random, independent samples from N(0,1) and form a unit
vector in Ep’ then this type of vector will have a uniform distribution

over the (p-1)-sphere in Ep.

¥ This is related to the euclidean-geometry theorem that says the area of a
spherical cap or zone is proportional to its height.

13
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PROBABILITY DENSITIES FOR RANDOM UNIT VECTOR COMPONENTS

8- =
o~ )
e 8
-~ ©
~ ®
'8 a4
o o
[am] [w]
a a
& 8.
o o~
8 8
o T T T 1 o T T T 1
-1.00  -0.50 0.00 0.50 .00 -1.00  -0.50 0.00 0-50 1.00
COS(THETA) COS(THETR)
8- 8-
o o
3. 3
) o
< o
d S- oS-
— O — O
[V [V
[am] [}
o o
& &
o o
8 8
o T T T 1 = —T T T 1
-1.00  -0.50 0.00 0.50 1.00 -1.00  -0.50 0.00 0.50 1.00
COSITHETA) COS(THETA)
Fig. 4.1 Fig. 4.2
Fig. 4.3 Fig. 4.4

14



§4

PROBABILITY DENSITIES FOR RANDOM UNIT VECTOR COMPONENTS
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The ordinate of the straight line is %. As we go on to p = 4, visualization
ceases, and we stay close to (4.8) for guidance. The curve of the pdf is now

a circle (do not be misled by the choice of ordinate scale in Fig. 4.3). The
projections of the four dimensional unit vector on the x axis now tend to

gather more toward cos6 = 0. For p = 5, the pdf curve in Fig. 4.4 is a parabola;
the tendency for cos6 to cluster around 0 is beginning to be more pronounced.

At p = 6, in Fig. 4.5, a definite change of character of the pdf curve takes
place: it is now bell-shaped. From this point on, i.e., from p = 6 in Fig. 4.5,
to p = 80 in Fig. 4.8, the trend of the population's cos6 values toward the
origin is inexorable; the height increases linearly with p, the width goes

down as 1/p12

, and the pdf approaches Dirac's delta singularity, as p > .

The practical consequence of this crowding of the components of a random
unit vector (and hence the values of random correlations) toward zero is that
the power of the ORIEN statistic decreases with increasing p: in higher
dimensional settings, two randomly selected unit vectors are very lkely to be
found nearly orthogonal. This is in contrast to the everyday case of p = 2
where the opposite is the case. As a result, as we rotate one unit vector
away from another in Ep’ and cos6 drops from 1 down toward O, the larger the p
is, the longer the drop is before cos0 is out of the (say) 5% critical region
of the right tail of the pdf. Translated into angles, this means that, starting
from 0°, in an E;, setting, say, we reach 75° or so before a statistic such as
ORIEN can detect with confidence 95% that the null hypothesis no longer holds.
We shall illustrate this phenomenon with some examples.

In Fig. 4.9 we have displayed some power curves of ORIEN. In the upper
panel we have the case of n = 50 and one of the curves labeled "p = 2." This
is how that curve was made: Two 50%X2 (= nXp) data sets D',M’ were drawn from

N,(0,I,); i.e., the 50 rows of these matrices were drawn randomly, one by one,

16
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from a spherical two dimensional normal distribution. The Sj and £j eigenvectors,
j = 1,2, were found using the theory of Appendix B, and ORIEN was then formed,
as defined in Table 2.1. One hundred such draws of D' and M’ were made and
from the 100 resultant realizations of ORIEN, a cumulative distribution function
(cdf) was constructed. This constituted the cdf of the null hypothesis--i.e.,
that D’',M’ were drawn from the same population. Next, 10 fresh realizations
of D’ were drawn from the population. Each of the 10 E frames of the realizations
was homogeneously spatially rotated* by 2%° (to simulate draws of D’ and M’
from populations of different orientation), and it was noted whether the ORIEN
between the rotated E frame and the original E frame of D’ lay in the 5% right
critical region of the constructed ORIEN cdf. If it did, the trial was called
a "success." (The null hypothesis was detected to be false.) Out of 10 such
trials 4 were successful, and this is recorded by the leftmost point of the
"p = 2" curve (with ordinate 0.4) in Fig. 4.9. The remaining three points
were made in a similar manner from 10 trials each. From the resultant curve
for p = 2 we see that the power of ORIEN increases rapidly, and by 15° the
power is 0.9. The remaining two curves in the upper panel of Fig. 4.9 were
constructed similarly. The lower panel in Fig. 4.9 gives more detail on the
power of ORIEN for p = 2 when different sample sizes are taken.

The curve for p = 10 in Fig. 4.9 is of special interest here. This
illustrates our comments above about the loss of power of ORIEN in higher

dimensional spaces. Thus we must rotate an E frame in E;5 on the order of 75°

* Refer to (C2.19) in Appendix C, for the theory of spatial rotationms.
There, p = 2, so £ = 1 for the present example. Hence there was only one
canonic rotation angle by which to rotate in this example. In the other
curves of Fig. 4.9, say for p = 10, then £ = 5, and a homogeneous rotation
means simply that all five Gj, j=1,...,5, were set equal to a common

value 6, which was then varied.

18



§4

before ORIEN can detect (with confidence 95%) 9 out of 10 such rotations. The
power magnitude and confidence level here are satisfactory; it is the size of
the angle that is not satisfactory, being unworkably large.

We shall next illustrate what it means physically for a unit vector in
Ego to be rotated by various amounts. The result is quite representative of
general rotations in Ep with high values of p.

One way to illustrate this rotation effect in higher-dimension spaces and
still retain a semblance of visualizability is to work with a principal component
time series, as follows. The rotations will then be temporal rather than
spatial. We generated a 50X2 random data set Q’ just as we did in the context
of the p = 2 curve of Fig. 4.9. We then found the first (unstandardized)¥*
principal component time series fa,(t): t =1,...,50} as defined in (B3.13)
of Appendix B. We next constructed a 50X50 temporal rotation matrix L as
shown in (C2.19). Note that the rotation tﬁeory leading to (C2.19) is general,
so that we can replace "p" everywhere by "n" in that theory. Moreover, we can
choose the 50X50 matrix W to be anything we please in the present example, and
we chose it to be Igo. We further may set all ej in L equal to a common angle
6, thereby producing a homogeneous temporal rotation. We then applied the
homogeneous temporal rotation, for varying amounts of 6, to the vector
a; = [a1(1),...,a1(50)]T. The results are shown in the sequence of
Figures 4.10-4.16. 1In Fig. 4.10 the solid curve represents the unrotated,
original 50-component principal vector a,; the dashed curve represents the

50-component a, rotated by an homogeneous rotation of 10°. As shown in the

* That is, do not divide the centered data set by oO.. The result is

D
aj(t) = Obaj(t), i=1,...,p.
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subsequent figures, the rotation effect becomes noticeable between 20° and

45°. By 90°, the two curves are shifted considerably. Observe that it is not

a rigid shift, but a less obvious one dictated by the structure of (C2.19).

It is easy to obtain explicit expressions for each t-value of a,(t) as a
function of 6 to see what this dependence is. For this, we note parenthetically
that we can write R in (C2.19) as:

T T T T
R = C(X.X. .V, XLy, - .
R= 2 [cJ(g_Jg_J + XJXJ) +s,(x.y. - y.x.)] (4.9)

=353 3=
See Sec. 6 of Appendix C. Hence if z is a pX1 vector, then its rotated form w

is given by:

2
w=Rz-= i [(cj'ij + sjrlj)zj + (-Sjgj + cjnj)zj] (4.10)

where we have written

'ﬁj' for §§§

'nj' for z§§ y J=1,...,8.

Continuing to study the sequence of figures, particularly the figures for

GT = 80°, 90°, we gain an immediate impression of the effect on the time
series {aj(t): t=1,...,50} of an homogeneous rotation of 80° to 90°. This
is, as suggested by the trend of curves in the upper panel of Fig. 4.9, the
amount of rotation needed to attain a power of 0.9 or more for the statistics
. ORIEN or COREL, when p or n is 50. This amount of rotation is large and

easily detectable by eye. In the presence of such shifts we do not need a

statistic such as ORIEN to tell us the two curves are significantly different.
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What we need for this task are more sensitive statistics, ones that are not of

the correlation type, when working in high-dimensional settings with smaller

rotation angles. We next turn to consider this matter.

5. S-Phase Test

We now introduce the S-Phase test, which is designed to tell whether the
E and F frames of a given data/model pair D,M (and hence their spatial patterns)
are significantly close or distant, as the case may be. The central concept
used in the test is the set of canonic rotation angles between E and F. The
theory of these angles is given in Appendix C, and how they enter the S-Phase
test will be fully described in the discussion paragraphs below. A preliminary
glance at Appendix C for notation and terminology will help the reader prepare
for a first reading of the S-Phase test.

We should state at the outset that the S-Phase test, despite its somewhat
finished appearance, is actually but a first attempt to systematically and
objectively gauge the distance between data/model eigenframes E and F in a
practical way. On the one hand, the test, as it is presently constructed, has
several strong features, particularly in the way the rotation angle distributions
are linked to the values of the data matrix D and hence to the physics of the
process under study. On the other hand the test shows some weakness in the
behavior of the canonic rotation angles as measures of distance. These positive
and negative features will be discussed after the test has been defined.

The S-Phase test below has been specifically devised for the case where
the number of samples n and the number p of points in space are such that
n-1 2 p. The theory of Appendix B then shows that the pXp E and F frames are

uniquely defined, and rotations in Ep can uniquely relate E and F. Moreover,
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it is then possible to define a unique set of canonic rotation angles between
E and F. The complementary case n-1 < p, as.the theory of Appendix B shows,
has associated at most only n-1 non-zero eigenvalues and their uniquely defined
eigenvectors. In this case there is no unique rotation between those sets of
column vectors of E and of F that are uniquely determined. However, it is
possible in this case to use the formalism of the T-Phase test. How this can

be done will be outlined in the closing paragraph of §6.

A. S-Phase Test Stages

The S-Phase test has four main stages. Stage I finds the canonic rotation
angles 91,...,92, 2 = [p/2] between the space-centered versions of the given
nXp primitive data sets D',M’. In Stage II the cumulative distribution of the
Bj is found under the null hypothesis, using a Monte Carlo procedure. Stage III
connects the Bj with the values of D in such a way that we know on the average
how much of a rotation of D's E~frame will produce a given percent change in
D's field values. Finally, in Stage IV, the results of Stages II, III are
combined with that of Stage I to decide whether E and F are significantly

close or significantly distant, as the case may be.

STAGE I. (Canonic Rotation Angles Gj)

1. Given: two nXp matrices D',M’'. Center them in space to obtain D,M,
respectively.

2. Find the E and F frames of D and M, respectively.

3. Apply the octant and chirality conditions to E,F.

4. Comstruct R = F ET from the conditioned E,F.

5. Find the canonic rotation angles 91,...,02, of R, where £ = [p/2].

24



§5

STAGE II. (Reference Distribution for Canonic Rotation Angles)

1. Select nXp matrices D( ) ( ) randomly from N (o0, I ). Center g(l),g(l)

in space (average over n dimension). Here i is a realization index i =
1,...,r.

2. Find the E(i),g(i) frames of Q(i),g(i), respectively, i = 1,...,r

3. Apply the octant and chirality conditions to E(i),g(i), i=1,...,r.

4. Construct g(i) = g(i)g(i)T from the conditioned g(i),g(i), i=1,...,r

5. Find the canonic rotation angles 9(1) ..,Béi) of B(i), where £ = [p/2]
and i = 1,...,r.

6. Pool all &r angles 9§1), j=1,...,2; i=1,...,r and find the cumulative

distribution of this set of £&r angles.

STAGE III. (Connecting Spatial Rotations and D-field Changes)

1. Construct rotation platform bases {x(l),zgl),...,x(l),zzl)} for the case
= 24 or {x(l),zf ),... (1),251) éii} for the case p = 2841, i = 1,...,r.
2. Produce f( )(9) vs 8, i = 1,...,r, via homogeneous spatial rotations of

data set D using the ith rotation platform.

3. Average the E(l)(e) over the i = 1,...,r to obtain £(8).

STAGE IV. (Deciding whether E,F are significantly close or distant)

1. Choose an Ea value, 0 £ Ea £ 1. Find that Ba which solves f(8) =
Ba is the acceptance angle, and Ea is the acceptance fraction.

2. Find P, that pairs with Ba using the reference distribution of Step 6,
STAGE II. P, is the acceptance probability.

3. Choose confidence level 1-a of test. o is the size of the test.
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4. Compute from P, and o the critical acceptance number a(close), or a(distant),
as the case may be.

5. E is significantly close to (significantly distant from) F if the number
a of canonic rotation angles 61,...,62 (of Step 5, STAGE I) in [O,Ga] is
greater than a(close) (is less than or equal to a(distant)). In each case the
decision results in a rejection of the null hypothesis H, i.e., that D and M

of STAGE I are drawn from the same population as the Q(i) and !(i) in STAGE II.

B. Discussion of S-Phase Test Stages

STAGE I (Discussion).

The theory of singular value decompositions of data sets is used to find
E and F, as explained in Appendix B. The octant and chirality conditions are
defined in §5 of Appendix C. Their purpose is to uniquely fix E and F so that
the canonic rotation angles are in turn uniquely defined. The computation of
the canonic rotation angles is described in Appendix C. A standard IMSL
eigenvalue routine can be used for the complex eigenvalues of R. The theory
of Appendix C provides the reader with the background that will help in the
intelligent use of the subroutine. Our program, as a result of the octant

condition, places all the 6's in the range [0,n] (see also the remarks below

(c4.4)).

STAGE II (Discussion).

The first five steps of this stage are exact replications of the five

(1) (1)

are drawn from

(i)

steps of STAGE I. The randomly selected pairs D
Np(g,lp). (We chose r = 100 for our work.) For example, D is obtained by

np random samples from N(0,1), the normal distribution with zero mean and unit
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variance. The np numbers so drawn can be used to build Q(l) row by row (or
column by column). Ordinarily, i.e., without the octant condition, as both

experiment and theory show, the so found, will be uniformly distributed

o{%)
J
over [0,2n]. 1In this case Step 6 would not be needed, as we would know the
theoretical form of the reference distribution: a rising straight line over
the domain [0,2n] starting with ordinate 0 and ending with ordinate 1 at 2m.
However, the octant condition prevents the ej of the frames from going beyond
n. This effect shows up first of all in the elimination of rotation angles in
[r,2r], and secondly, in the slower rise of the reference distribution inside
[0,n] near n. Hence the whole point of STAGE II is to find the actual distribution
of the ej's over the range [0,n] as produced by the octant condition.

We put up with these nonlinear anomalies in the 8-distribution because
the octant condition seems to us a sensible way to define the distance between
two orthonormal frames: since the signs of the Ej and gj in E and F, respectively,
do not matter to the physical representation of the fields D and M, we can
change these signs at will until ORIEN(E,E) is a minimum. This minimum is
what we would naturally think of as the (distance)? between the two frames.*

By contrast to this convention, there is another way of fixing the signs
of the Sj’ and gj: by making the first components of the Sj and £j nonnegative
(the "hemispheric" condition). It is clear tht this generally would uniquely

fix the 6's, but not at the minimum possible ORIEN. (The chirality condition

would of course have to be retained.) We haven't made the experiment to see

* This is in analogy to the definition of distance between two arbitrary
sets A,B in Ep: let d(a,b) be the distance between any point a in A and

b in B. Then let a,b vary over their respective sets. The minimum of
d(a,b) so found is the distance between A and B. This is also the sensible
way to define the distance between two islands A,B on the ocean, e.g.
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if the 6-distribution is uniform over [0,n] with this "hemispheric" condition;
we would conjecture that it is. If it were, then STAGE II could be eliminated,
and a new version of the S-Phase test constructed. The loss of the minimum
ORIEN (the octant) condition may be compensated for by a simpler and quicker
S-Phase computer program.

There was ample opportunity to explore the possibilities inherent in the
hemispheric condition prior to writing this report. However, we felt the
matter was of secondary importance since the null hypothesis implicitly used
in STAGE II's present form deals with a rather special population from which
the Q(i),g(i) are drawn, namely Np(g,lp). A more realistic population would
be Np(g,g) for some non-isotropic covariance matrix 2. The reference distribution
of ej's for this 2 is most conveniently found by Monte Carlo methods. Moreover,
estimating 2 from real data would lend a new dimension of reality to the test;
also a new dimension of expense. Therefore we leave the matter of STAGE II
here for the present. Its generalization to the case of 2 can be very simply

made whenever there is a reason to do so (it will affect only Step 1).

STAGE I11I (Discussion)

The theory of construction of the bases involving the eigenvectors XY
is fully covered in Appendix C. We call these bases "rotation platforms"
because they are the scaffoldings from which the homogeneous spatial rotations
of D are made. These rotation platforms are represented by the matrices W in
(C2.22) and (C2.24). For Step 1, one may, e.g., construct these W's by repeating
Steps 1-4 of STAGE II and extracting the W-matrices from the g(i) of Step 4.
Alternatively, one may select a pXp matrix W' randomly from NP(Q,LP). The

columns of W' are linearly independent with probability 1. Then orthonormalize
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these columns using the Gram-Schmidt procedure to find E(l). Let E(l) be the
ith such random rotation platform obtained, i = 1,...,r, in one of these ways.
(In our work we set r = 100.) We then rotate the given centered D matrix via

the formula:

(i) - (i) T 0sS6sn
Do) = DR, 2T (5.1)
where
RV @) = wHpew™T |, 0% : ? o (5.2)

Here L(6) is as defined in (C2.19) or (C2.23) and with all 6 the same.
This is what is meant by an homogeneous rotation. By applying [g(i)(e)]T in

this way, we are in effect rotating Q(l)'s E frame:

a’ k%" [z (o))]

a2 rB@pT , 2505 (5

pr(¥ (0)1T

Thus we induce changes in D via spatial rotations only; variance (via g*)
and temporal evolution (via A) remain unaffected, as well as location (via
Qo). Let d(i)(t,x;e) be the tx element of Q(i)(e), t=1,...,n; x=1,...,p,
i=1,...,r. Let d(t,x) be the tx element of the original centered matrix D.

Then for each t,x,0 and i, form the quantity

. (i) LAY
£ (t,x;0) = ld (£,%;0)-d(t,x) (5.4)
D
where
A U T %
o =[EB t§1 xil [d(t,x)-do(x)]z] (5.5)
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Form the average

(s n p )
e = Lz 3 Be,x0 (5.6)
P t=1 x=1

i=1,...,r ; 056 =n,

Average once again to find

r

o) = (L z(1) 3
£(8) = (; ZoEeN/f 5.7)
i=1
0s0sn
where Emax is the maximum of the numerator over the domain [0,n]. Emax invariably

occurs at 6 = n. Hence 0 S £(8) S 1; 0 < 6 < n.

From these constructions we see that E(e) gives the average fractional
change of the original D-field induced by an homogeneous rotation of 6 radians.
As 0 increases over [0,n], our experience is that f(8) increases nearly linearly

with 6. 1In all cases the rise should be monotonic over the entire range.

STAGE IV (Discussion)

The acceptance angle ea of Step 1 defines a proper subinterval [O,Ba] of
[0,n] in which we keep watch for the occurrence of canonic rotation angles Bj,
j=1,...,2. It is intuitively clear that, no matter what ea is or how it is
obtained, the more Bj that fall in [O,Ba], the better is the fit between E and
F, i.e., the smaller is the norm ||E-E[®. This is the basis for the significantly-
close decision in step 5. On the other hand, too few Bj falling in [O,Ba]
raises the possibility that E and F are significantly distant from each other.

The key word in each of these decisions is "significantly." This entails

associating to [O,Ba] a probability of a Bj falling in [O,Ba]. This is done
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by means of the reference distribution of Step 6, STAGE II. Moreover Ba
itself is chosen using £(6) in an attempt to connect up this probability with
the field values of D. The smaller the Ea we choose, the smaller is the
resulting ea, and hence P, and so the more stringent we are intending the
test to be for the significantly-close option; and the less stringent for the
significantly-distant option.

What option in Step 5 is chosen is largely a function of who is doing the
test. A GCM developer who is in the first stages of developing his model
would likely choose the significantly-distant option. In the resultant S-Phase
test for moderate choices of Ea and o, unless the model is really bad in its F
frame match to the data E-frame, the number a of accepted Bj will not be less
than a(distant). In the final stages of development of a GCM that appears to
have promise in its spatial pattern simulations of real data, the modeler may
wish to test whether F is significantly close to E. Our experience is that
the significantly-close test is a very demanding one (say for Ea =0.1, a = 0.1)
in contrast to the significantly-distant test which is relatively forgiving.
Whether one chooses this or that option, he still has the ability to vary Ea
and d.

The details for finding a(close) and a(distant), which are instrumental
in reaching these decisions, are as follows. On the assumption that the Bj
are pairwise independent (which by experiment seems largely so) we can compute
the probability P(j) that precisely j of the £ camonic rotation angles are in

[O,Ga]:
5 = & piiop .
P(i) = (j) pa(l-pa) , i=1,...,2. (5.8)

For the significantly-close decision, find that a for which
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L
2 P(G)=a (5.9)
j=atl
and call the value "a(close)." The critical region is [a(close)+1,...,2].

For the significantly-distant decision, find that a for which

L
2 P(@3) = 1-a (5.10)
j=atl
and call the value "a(distant)." The critical region is [0,...,a(distant)].

In our work we most often used o = 0.1.

c. Some Preliminary Studies of the S-Phase Test

The feature of the S-Phase test that makes it particularly interesting
from the physical point of view is STAGE III, wherein the changes in D induced

by rotating the E frame of D are connected to the homogeneous rotation angles

6. The quantities £(6) and Ea summarize these connections, where fa is a

choosable parameter. In this paragraph we examine the effect, of changing fa’
on the decision concerning the proximity of the E and F frames. Specifically,
on the one hand, we are interested in seeing the S-Phase test continuing to
declare that the E and F are significantly distant under a wide range of
increasing-fa conditions (starting from Ea = 0) when we know that these two
frames are indeed distant. On the other hand, E,F frames that have been

deliberately built close together should be declared by the S-Phase test to be
significantly close under a wide range of decreasing-fa conditions (starting
from Ea = 1.0). It turns out that these two situations are more or less

symmetrical within the S-Phase formalism, and so we will illustrate only one
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of them. We consider the significantly-distant case, and set up some test
cases as follows.

We choose an nXp data matrix D and produce four rotated versions !i of
it, i = 1,2,3,4. We apply the S-Phase test to each pair(g,gi) to see if it
will detect our attempts to make the E frame of D and the F, frame of !i close
or distant. The choices of the rotation angles between E and Ei are shown in
Fig. 5.1. In part (a) we display 12 rotation angles uniformly distributed
over [0,%t] to simulate a random rotation between two 24X24 matrices E and F;.
In part (b) the rotation angles are crowded around 0 to simulate relatively
close frames E and Fp, while in (c) the reverse is true for E and F3. Case
(d) is intermediate between cases (b) and (c), and it was this case that
produced a surprising result, which we shall discuss presently.

To begin the intercomparisons we constructed a 36X24 (= nXp) matrix D by
drawing its 864 entries randomly from the normal population N(0,1). We then
used (C2.21) with W = Ip4 to rotate D spatially (cf. (5.3)) via R = L, where
the Bj in L are specified as in (a)-(d) of Fig. 5.1. The result was gi,
i=1,...,4. The analytic forms of the Bj, j=1,...,12, in these cases are

given below:

case (a): Bj = 90° (j/12) , uniform on [0°,90°]
case (b): Bj = 90° ((j-1)/12)3 , packed toward 0°
case (c): Bj = 90° (1-((j-1)/12)3) , packed toward 90°
case (d): Bj = 90° (1+(j-6)/40) , packed around 90°

Once we had a data matrix pair Q,gi, we found the frames E and Ei and
then applied the S-Phase test to this pair of frames. For all four test cases
we had fixed o at 0.10, and made various choices of Ea’ These choices and the

salient results of the S-Phase test are shown in Table 5.1. In cases (a)-(c)
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FOUR DIFFERENT MODES OF E,F FRAME SEPARATION
FOR CHECKING S-PHASE TEST

CASE (a)
[ I I T A O O O
I T 1T 1 T 1T —1 ¥ 1 1
O 10 20304050607080909j
N
LY
&’&6
CASE (b) &%
I N e
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CASE (c)
Lﬁ | | 'le L'QI!

i 1 I
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CASE (d)
[ T 1T 1 J||””mu[ T I

| 1
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CASE (e)
CASE (d) AS RECOVERED BY A A E——— 1]]] N
STAGE -1, S-PHASE TEST O 20 40 60 80 100 120 140 160 180 6;
Fig. 5.1
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TABLE 5.1

The results of the S-Phase Test on four different modes

of E,F-frame separation.

Significantly-Distant Option.

{no. of Oj in [O,Ga]}/a(distant)
Case Ea 6; P, Accept or | Reject Ho if fraction is 1 or less.
Reject Rejected Ho means signific.-distant
Ho frames.
(a) | 0.10 | 11.6 ] 0.095 R 1/1
0.99 |168.5 | 0.94 A 12/11
(b) [0.10 | 11.6 | 0.095 A 7/1
0.99 |168.5 | 0.94 A 12/11
(c) |0.10 | 11.6 | 0.095 R 0/1
0.20 | 24.0]0.22 R 1/2
0.55 | 67.5|0.48 R 4/5
0.60 | 74.6 | 0.52 R 5/5
0.99 |168.5 | 0.94 A 12/11
(d) |0.10 | 11.6 | 0.095 R 1/1
0.80 (108.0|0.69 A 10/7
0.99 |168.5 | 0.94 R 11/11
the Gj were recovered exactly in STAGE I of the test. In case (d), the recovered

Gj are shown in case (e) of Fig. 5.1.

discuss this first.

The case we were initially most interested in was case (c), and we shall

The rotation angles were deliberately selected to be

large, crowding around 90° from below 90°, as can be seen from Fig. 5.1. We
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set o = 0.10 and chose the acceptance fraction Ea to be 0.10. The Monte Carlo
runs in STAGE III produced an f(0) curve which associated to Ea = 0.10 the
acceptance angle Ba of 11.6°. This angle in turn, via the reference distribution
of STAGE II, yielded up the acceptance probability p, = 0.095. This P, defined,
via (5.10), a critical acceptance number a(distant) = 1. When the program
computed the Bj for D and Mj, as described in STAGE I, it was found that none
of the 12 Bj was in [0,0a] = [0,11.6°]. Since we needed 0 or 1 of the Oj's in
[0,11.6°] for rejection of Ho, the null hypothesis Ho (Step 5, STAGE 1IV) was
accordingly rejected. We conclude, for this level of Ea’ that E and F, are
significantly distant. This was what we designed case (c) for and what we
wanted, intuitively, the S-Phase to declare. We then raised Ea to 0.20 and
still obtained rejection of Ho' Ho was rejected because 1 canonic rotation
angle was found in [0, 24.0°] while a(distant) in this case was 2. At

Ea = 0.60 we we obtained the final rejection of Ho’ and at Ea = 0.99, Ho was
accepted. Therefore, at about ia = 0.60 we have the acceptance/rejection
threshold of Ho on the 90% (= (1-1)100%) confidence level. The reader will

now see that, in case (c¢), had we crowded the Bj more closely toward 90°, we
could have raised Ea somewhere beyond 0.60 and perhaps still have had rejection
of H , i.e. the test would have continued to declare the E and F; frames

significantly distant.*

* The dual result for this case (c¢) would occur in the significantly-close
option using case (b): Starting with (say) Ea = 0+9, the S-Phase test
would reject Ho and declare E and F; significantly close. This rejection
of Ho would continue until fa was decreased to around 0.50 or somewhat

below, where there would occur an acceptance/rejection threshold. For F
smaller than the threshold, Ho would be accepted. For a given da, the

smaller %a is before acceptance of H , the closer are the E and F frames.
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In practice, i.e., with real data, this sweep of the S-Phase test parameter
Ea over (0,1) starting near 0 would, for given a, give a succession of acceptances
and rejections of Ho. The user of the S-Phase test would then receive an
impression of the proximity of an E and F frame which would be a much more
detailed impression than had he selected just one Ea and arrived at a single
acceptance or rejection of Ho. In the significantly-distant option, and for a
given o, the larger Ea is before acceptance of Ho, the more distant are the E
and F frames. This many-look situation is similar to that in the APP (auto-cross
permutation procedure) of DIT(II) where many looks at a statistic, such as
SITES or SPRED, were made before declaring that the data sets were significantly
separated or not in the sense of SITES or SPRED, respectively.

In case (a) we obtained acceptance of Ho all across the Ea range, except
at Ea = 0.10, indicating that, as far as the S-Phase tests analysis was concerned,
the E and F; frames could have been obtained from two samples drawn randomly
out of Ny4(0,I5,4).

In case (b) we obtained acceptance of Ho all across the Ea range. This
is a reasonable result for the present option, and since we know, by construction,
that E and F; are relatively close, this suggests that a user of the S-Phase
test would do well to try both options in Step 5, STAGE IV on a given pair of
data sets. In the present case, the result of applying the significantly-close
option is anticipated in the preceding footnote. As a user's experience with
the S-Phase test grows, and a history of results accumulates using both options
and a small set of a values, the proximity analysis of two new E and F frames
would be viewable against the accumulated results of earlier tests and more
than just an objective conclusion would result.

We turn finally to case (d). This case differs from the others because

we have allowed the angles Gj to spill over the 90° threshold in (0,180°).
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After we produced F4 by rotating E the indicated amount, we sent E and F4 off
to S-Phase test and observed the following: In STAGE I of the test an
independent determination of the canonic rotation angles between E and F4 was
made. The result is shown in Figure 5.1 (e) which we call the recovered
angles. Unlike cases (a), (b), and (c), wherein the Gj distribution was in
each case recovered exactly, we obtained the distinctly different distribution
shown in (e) when we started with that in (d). When this result appeared, we
were momentarily puzzled. It eventually became clear what was happening: the
program was correct; the octant condition was doing what it was designed to
do, namely to flip the Sj vectors of the D matrix until E was changed to some
new E’ such that ORIEN(E’,F4) is a minimum (cf. §5, Appendix C, and the
discussion of STAGE II in par. B, above). It turned out that this minimum was
below the ORIEN(E,F4) value for the original E. The net result is that, for
Ea = 0.10, the test rejected Ho’ on the grounds of the presence of the single
recovered angle of size 6.94° in [0,11.6°]. This angle, near 7°, can be seen
in Fig. 5.1(e). Clearly the 1/1 fraction in Table 5.1 for this case is a
borderline decision. As we continued to raise fa we obtained a strong acceptance
at Ea = 0.80. Continuing on to Ea = 0.99, we obtained a final (borderline)
rejection of Ho' Recall that, in the significantly distant option, a rejection
of HO means the frames are significantly distant. Hence, in our sweep through
the range of Ea values, we see the E,F4 frames first as distant, then close,
and then distant. Closer examination of all these results shows that, while
at first puzzling, they are nevertheless reasonable: by rotating D out past
the 90° threshold of rotation angles, we produced an F4 frame that could be
transformed, via successive sign changes on its vectors Ej’ to a new frame Fgy,

of equivalent physical validity for representing M4, that was definitely
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closer* to D than F4. However, the distribution of the recovered angles,
although distinctly new, was still qualitatively like the original: concentrated
around 90°, sparse near 0° and 180°.%

Despite this rationalized reasonableness of the result of the S-Phase
test in case (d), we are left with a sense of overall disappointment in the
test. For one thing, we have discovered that, under the octant condition, a
continuous rotational transformation of a data matrix D can induce a discontinuous
transformation of the canonic rotation angles Bj. This is illustrated by the
ej distributions in Fig. 5.1(d), (e). This is a property, however, that can
be tolerated until something better is devised. (A possible remedy for this
weakness of the test is to drop the octant condition and explore other ways of
keeping the frames E,F uniquely defined. One such possibility is the "hemispheric"
condition discussed in par. B above.)

While the S-Phase test seems to have the general configuration of a
potentially good research tool, it is clear that its interpretation is somewhat

complex, and not unlike reading tea leaves. Thus, it probably can be handled

* Since ORIEN(E,F) is symmetric in E,F, the minimum ORIEN condition can be
attained by acting on either E's or F's vectors.

¥ Nevertheless, observe that, in the process of continuously rotating D out
past 90°, we encounter an abrupt change in the recovered canonic rotation
angles of STAGE I. It might be noted that we could avoid the discontinuity
of the recovered ej's by defining an equivalent homogeneous canonic rotation
L
angle ee such that (on the basis of (C4.4)) 4(1—cos6e) = (4/p) (l-cosek);
k=1
ee varies continuously as E is rotated continuously. However, such a tactic

returns us to the single number description of distance, and this is what
the S-Phase test was intended to avoid in the first place.
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by researchers with a bent for statistical niceties; but it is not for the
researcher wanting a rough and ready "cook-book" answer to his data intercomparison
problem. Perhaps some future research will take the basic ideas here and

rework them into something more practicable.

6. T-Phase Test

We consider next the T-Phase test, which is designed to tell whether the
A’ and B’ frames of the given data/model pair D,M (and hence their temporal
evolution) are significantly close or distant, as the case may be. The central
concept used in the test is the set of canonic correlation angles between A’
and B’. The theory of these angles is given in Appendix D, and how they enter
the T-Phase test will be described in the discussion following the statement
of the test. The general features of the T-Phase test have been made as close
to those of the S-Phase test as their inherent difference allows. The inherent
difference is in the dimensionalities of A’,B’ vis a vis those of E,F. The
latter matrices are pXp, while the former are nXp. E and F therefore can be
connected uniquely by a rotation in Ep whenever n-1 2 p. Rotations in En,
when n-1 2 p, can always connect A’,B’, but the rotations are not unique.
Thus, a unique set of canonic rotation angles linking A’,B’ is impossible
whenever n-1 2 p, a case which often occurs in practice, and the case on which
the S-Phase test was built. When n-1 < p, it is possible to make a unique
rotational connection between A’,B’. 1In this case the formalism of the S-Phase
test can be adopted once any n-1 of the linearly independent p columns in A’
and any n-1 of the linearly independent p columns in B’ are chosen as bases

for E the common space for these bases.* In view of this fact we will

n-1’

* That the columns of A’,B’ are vectors in a common E . is demonstrated in
Appendix D. See (D6.4), (D6.5).
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dwell exclusively in this section on the more difficult of the two cases for
the T-Phase test namely where n-1 2 p. As noted above, the central concept
needed in this case is the canonic correlation angle. In par. C below, we

shall give an overview of the S-Phase and T-Phase tests.

A. T-Phase Test Stages

STAGE I (Canonic Correlation Angles)

1. Given: two nXp matrices D',M’. Center them in space to obtain D,M,
respectively.

2. Find the A’ and B’ frames of D,M, repectively.

T T
3. Construct P. = A’'A’ nd P, = B'B’ .
I, mAAT and Ry = 2R B

4, Find the canonic correlation angles wl,...,wp of guP

_B'

, and then gag

STAGE II (Reference Distributions for Canonic Rotation and Correlation Ang;es)

i ) (1)

1. Construct pairs N of orthonormal frames in En’ of same chirality,

2=1,...,r. (See also Step 3).

2. Find canonic rotation angles 01(1), 6%;)] between E(l),g(i), 2=1,...,r.

Pool all [%n]r angles; form a reference distribution from them.

3. During process in Step 1, select the first p orthonormal vectors from
E(l) (1) 61 )

B(i)

for each i = 1,...,r, resulting in nXp frames A

1) ( )

, respectively. Find canonic correlation angles between A ,

namely wfi), .,wgi), t = p-max[0,2p-(n-1)]. Pool all tr correlation

and from P

angles; form a reference distribution from them.
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STAGE III (Comnecting temporal rotations with D-field changes)

1. Construct rotation platform bases {§£i)g£i),...,§£i)2£i)} for the case
n = 2m or {ggl)ggl),...,gél),zél),giii} for the case n = 2m+l, i = 1,...,r.
2. Produce f(l)(ﬁ) vs 8, i = 1,...,r, via homogeneous temporal rotations of

data set D using the ith rotation platform.

3. Average the f(i)(e) over the i = 1,...,r to obtain £(8).

STAGE IV (Deciding whether A’,B’ are significantly close or distant)

1. Choose an Ea value, 0 S Ea < 1. Using f(6) of STAGE III, find that 6,
which solves f(8) = fa. 6, is the acceptance rotation angle, and fa is
the acceptance fraction.

2. Use the reference distribution in Step 2, STAGE II to find P, that pairs
with Ba. P, is the acceptance probability.

3. Use the reference distribution in Step 3, STAGE II to determine acceptance
correlation angle ¢a from P,-

4. Choose confidence level 1-a of test, a is the size of the test.

5. Compute from P, and o the critical acceptance number a(close) or a(distant),
as the case may be.

6. A’ is significantly close (significantly distant from) B’ if the number a
of canonic correlation angles ¢1,...,¢p (of Step &4, STAGE I) in [O,¢a] is
greater than a(close) (is less than or equal to a(distant)). In each
case a decision results in the rejection of the null hypothesis Ho that
the A’,B’ frames of D,M in STAGE I are drawn from the same population as

the A B frames in STAGE II.
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B. Discussion of T-Phase Test Stages

STAGE I (Discussion)

The theory of singular value decompositions of data sets, used to find A’
and B’, is as described in Appendix B. The canonic correlation angle theory
is given in Appendix D. A standard IMSL eigenvalue routine will find the
eigenvalues of gagB, and from these a simple algorithm finds the corresponding

correlation angles.

STAGE II (Discussion)

This stage differs from that in the S-Phase test by going directly to
orthonormal frames in E_, rather than mimicking g(i),g(i) (as in S-Phase), to
find the nXp é(i),g(i) frames. This is apparently an unavoidable step, and
its role in the T-Phase test will be clear once STAGE IV has been discussed.
We note, in passing this point, that we could modify STAGE II of S-Phase to
look like Step 1 of this stage without any loss of generality to S-Phase. In

this way the two tests, in STAGE II at any rate, can be structured more closely.

STAGE 111 (Discussion)

This stage is similar, in all details, to STAGE III of the S-Phase test.
Now, of course, we use the nXn temporal rotation 3(1)(6) to map D: 5(1)(0)2 =
g(i)(e) = [B(i)(e)é']K%ET. The g(i)(e) are now processed just as in the

S~-Phase test.

STAGE IV (Discussion)

The use of the three distributions in this stage can be seen in Figure 6.1.

By means of the STAGE III homogeneous temporal rotatiomns in En we find the
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FIXING 8y, Pq, AND Yjq IN THE T-PHASE TEST
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curve in Fig. 6.1(a). Choosing ;a then fixes Ba. This Ba in turn fixes P,
via the curve in Fig. 6.1(b), coming from Step 2, STAGE II. This P, is then
used to find ¢a in Fig. 6.1(c), using the curve obtained in Step 3, STAGE II.
This roundabout way to link P, with ¢a is unavoidable because we have rotations
in En that must generate E(e). Somehow, then, these 6 have to be linked with
y, and that is the task of the (pa,ea) in Fig. 6.1(b). Of course it is in
principle easy to think up ways to link P, and ¢a directly: imagine a data
set available for use in which a goodly supply of n-samples of p-variate
fields can be obtained. The resultant A’,B’ sets from each sample will then
collectively produce a reference distribution of canonic correlation angles.
From this an acceptance interval [0,¢a] can be produced. The ¢j of D,M can
then be tested for membership in [0,¢a] and the number of these angles in
[0,¢a] can be gauged for significance (in either the close or distant option).
What has made this attractively direct procedure possible is, of course, an
adequate data setting (cf. DIT(II)). What we are struggling with (by choice)
in the present version of T-Phase is an inadequate data setting (cf. DIT(II)),
to show how one can do something along the line of a T-Phase test in the
poorest of settings. a(close), a(distant) in the T-Phase test are reckoned as

in (5.8), (5.9), (5.10).

C. Overview of S-Phase and T-Phase Tests

In the present study, we have introduced the S-Phase and T-Phase tests in
specific physical contexts and perhaps have thereby given the impression that
one test should always be used to tell if spatial patterns are close or distant
and the other to tell if the temporal evolutions of data sets are close or
distant. In this paragraph we will try to dispel any such impressions and
point out the dual structure of these tests, and the general nature of each,
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but with a minimum of mathematics. If at some later time these tests will
have proven to be useful, then perhaps it will be worthwhile for a general mathe-
matical formalism to be developed to free each test from its specific origins.

The first hint that each of the two tests is not restricted to just
spatial or just temporal patterns occurs in the introduction to each test.

The S-Phase and T-Phase tests were each stated for the case n-1 2 p, and hints
were made as to the treatment of the complementary case n-1 < p. The reader,
having perused Appendix B, will then have discerned that the relative sizes of
n-1 and p are critical to the matters of degenerate eigenvalues and to non-unique
eigenvectors in the singular value decomposition of an nXp data matrix D.

These matters directly concern the conduct of each test. When n-1 2 p and n
pertains to time samples and p to spatial points at which the samples are

taken, then it is natural to call this the nondegenerate case, while n~1 < p
denotes the degenerate case. The S-Phase and T-Phase tests above are written

for the nondegenerate case.

In the degenerate case, the S-Phase test is to be conducted along the
lines of the nondegenerate-setting T-Phase test: select from the p columns of
E and F n-1 linearly independent columns, and these will now be treated as if
they were A’ and B’ frames. Dually, in the degenerate case, the T-Phase test
is conducted along the lines of the nondegenerate-setting S-Phase test:
select from the p columns of A’ and B’ n-1 linearly independent columns and
these will now be treated as if they were E and F frames.

Out of these observations comes the realization that the essence of an
S-Phase test is testing the closeness of two p-member orthonormal frames in
some p-dimensional space EP, while the essence of a T-Phase test is testing
the closeness of two p-member orthonormal frames in some q-dimensional space

Eq, where p < q. It doesn't matter to these tests whether the interpretation
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of a vector in the frame at hand is that of a principal component time series

or a principal spatial vector (empirical orthogonal function) of a data set.

7. Some Research Problems

Our findings in §4 indicate that comparison techniques for high-dimensional
multivariate data sets require multiparameter structure; nothing less will
serve as a reliable research tool. The lesson of §4 was that a single parameter
_test (e.g., via correlations or norms) simply lost too much of the multivariate
information being fed into it for the results to be fully informative. This
does not mean we advocate discarding correlation- or norm-type statistics in
the multivariate setting. We shall continue to use them and draw inferences
by means of them; but we intend to continue the search for multiparameter
tests such as the S-Phase and T-Phase tests of §§5, 6, and beyond. In this
section we outline some potentially powerful multivariate tests especially
concerned with tests of significance of differences between principal component
time series, eigenvalue sequences, and principal vectors (EOF's); that is,
statistical significance tests for intercomparisons of the three main classes

of objects arising from a singular value decomposition of data sets.

*F

A. Intercomparing factors é',K%,E and B',L%,

The SVD decomposition of nXp data sets D and M results in comparable
objects such as A’,B’ and K%,L%, and E,F (see Appendix B). Their intercomparisons
by means of inner products (correlations) are summarized in Table 2.1. Besides
this form, we can compare these objects in more detail, as summarized in the

following list.
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(i) Intercomparison of the normalized principal components in A’ = [a; ...
gp] and B’ = [El,...,QP]. Specifically, compare the n values uj(l),
aj(Z),...,aj(n) of gj with those Ej’ i.e., Bj(l), Bj(Z),...,Bj(n).

(ii) Intercomparison of normalized eigenvalues K1’---’Kp of K with the normalized
eigenvalues Al,...,Ap of L.

(iii) Intercomparison of the principal vectors in E = [e; ... gp] and F =
[f; ... gp]. Specifically, compare the p values ej(l), ej(Z),...,ej(p)

of Ej with those of gj, i.e., fj(l), fj(2),...,fj(p).

One possible useful method of intercomparison is the r-tile method, which

we now turn to consider.

B. Intercomparisons by r-tiles Using Various Procedures for Reference Distribution

We shall illustrate one method of data intercomparison which is based on
the r-tile classification of the range of values of each of the variates in
the object of interest. To be specific, suppose we are to compare a p-dimensional
unit vector e with another p-dimensional unit vector f, when both are measured

within a natural-basis frame defined by {gl,...,gp}, i.e.,

P

e= 3 e.u, (7.1)
j=1 379
P

f= 3 f.u, (7.2)
j=1 37

Imagine the components ej of e to be formed from variates randomly drawn from
N(0,1) and then normalized. It is shown in Appendix E that ej is distributed

on [-1,1] in accordance with the probability density function described in
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(E2.6). This density is the same for all p components of e. Moreover, if f
is constructed in the same way, then its components, too, will be distributed
as defined in (E2.6). It is therefore possible to partition the common range
[-1,1] of these components into r subintervals [-1,x1],[x1,x2],...,[xr_l,I],

so that the probability of a component falling in any one of these subintervals

is 1/r. The right boundary xj of the jth subinterval is defined by

}i q(x)dx = j/r , j=1,...,r-1 (7.3)
where q(x) is defined in (E2.6). The r classification subintervals so defined
form the basis for the r-tile intercomparison method.

There are five broad procedures we may now use to apply the r-tile method.
These methods supply the requisite reference distributions for various statistics
arising in the r-tile method. These procedures are defined in DIT(II) as:

IOP: Ideal observation procedure
EOP: Empirical observation procedure
APP: Auto-cross permutation procedure
PPP: Pool-permutation procedure

CIP: Classic intercomparison procedure

We shall briefly consider these in turn.

(i) In IOP we would have available for our reference distribution constructions

@ @ 5 =9, N
(1)

an adequate data base, i.e., a sufficiently rich collection D

of comparable nXp data matrices. From each pair 2(1),g(1) we would find E

and E(l), and in particular we would choose for intercomparison two vectors
5(1) and g(l). The first component egl) of g(l) would then fall in one of the

r-tile subintervals defined via (7.3), the second component egl) will fall in
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one of the r-tile subintervals, and so on. All p components of g(l) will be

(i)

will be classifiable.

(1) ()

Fig. 7.1 (upper) shows the results of classification of e "’ ,f for the case

classified in this way. Similarly, the p components of f
of r =3, p=7, and Fig. 7.1 (lower) shows another example for the case of

When both vectors' components are plotted in a common r-tile setting, as
in Fig. 7.1 (upper), e.g., then we can tally the r-class errors they subtend.
The 0-class error ugy associated with Fig. 7.1 (upper) is 2, since two times out
of the seven the components ej’fj landed in the same subinterval of [-1,1].

The 1-class error in (a) is u; = 3 since there are three occasions where ej’fj
are one class apart; and the 2-class error us = 2. The sum of these errors is
ugtustuy = 2+3+2 = 7 = p. In case of Fig. 7.1 (lower), we can tally the

r-tile errors similarly. Thus ug =2, uy =2, up =1, ug =1, uy = 1. 1In
general for an r-tile classification, the r-tile errors are UosUps e el
and these add up to p.

In an adequate (i.e., IOP) data setting, such as the present one, it is a
straightforward matter to estimate the probability distribution functions of
the j-class errors uj. Let u§i) be the j-class error of g(i),ﬁ(i)
with the ith sample Q(i),g(i)

(i)

would arrange the uj in ascending order (after relabeling):

associated

from the data collection. Then, for fixed j we

WD W@ L0 r = 100 usually, 7.4)
J J h| j=1,...,r"1 )
This would define the 05% and 95% critical values u§05),u§95), say, if r = 100

(the usual value chosen in adequate settings). From these we could make r
inferences about any unit vectors such as e’,f’ that would subsequently come
up for comparison. Thus we would find the j-class errors u6,...,ué_1 subtended

by e’,f’ in the manner explained above. Then we would compare ugy with u§°5),u§95),
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and decide if e’,f’ were significantly distant or close. For example, if
u895) < up, then we would say with confidence 95% that e’,f’ are significantly
close on the 0O-class level. Furthermore, if uj < u§05)’ j=1,...,r-1, then
e’,f’ are with confidence 95% significantly close on the j-class level. The
more j-class levels on which e’,f’ are significantly close, then the greater
is the belief that e’,f’ are indeed close. The greatest significantly-close-type
score achievable in an r-tile test is ug = p and u, = 0 for j = 1,...,r-1.

When deciding on the significantly~-distant option, we of course would

want u’ < u(OS), d u€95)
o o j

an < uj, j=1,...,r-1 and the greatest significantly-
distant-type score would be uj =0, j=0,...,r-2; and u._, =P
A measure of distance, natural to the r-tile method, is the moment
r-1
m= X ju, . (7.5)
=1
This gives the linear distance* between e and f. When estimating the distribution
functions for the uj, that for the moment m should also be estimated. Clearly
the smaller m is, the closer are the unit vectors e,f. Hence for statistically-
close tests we would use the left tail of m's distribution.
If we had to choose only two measures of distance to gauge the closeness
of e,f when r > 3, then these would be up and m. For r = 3, we would choose

up and m or u; and m.t One chooses r in accordance with available data (generally

the more data available (i.e., the larger N is) the larger r can be when

* For r = 3, the idea of m can be obtained by thinking of distance between
two corners in a rectangular street network where north-south blocks are
twice the length of east-west blocks.

¥ For examples of the case r = 3 (terciles), see Preisendorfer and Mobley
(1982), and Preisendorfer (1977).
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compiling the distributions). Given enough data, one chooses r also on the
basis of how finely the range [-1,1] is to be subdivided, and on how adept the
researcher is in visualizing and making use of multiparameter measures of

distance.

(ii) In EOP, APP, PPP, the data matrices D) M), i = 1,... r are handled in
the manners described in DIT(II). In each procedure the j-class errors and moment
m for a given data/model pair D,M can be determined. The end result in each
procedure is a reference distribution for uj, j=0,...,r-1, and moment m = f%ijuj.
These reference distributions can then be applied to the problem of judging J—
whether or not two given unit vectors e’,f’ in the E,F frames of D,M, respectively,
are significantly distant or close. This decision process was described in

detail in (i), just above. The reader can now see the rather large set of

possibilities he may resort to in his quest for a reference background for the

j-class errors uj and moment m.

(iii) We consider finally the Classical Intercomparison Procedure. There are
several possibilities here, too, that would be of interest to pursue in future
research.

First of all for the purpose of finding the reference distributions of
the u, and m, one can postulate the Stochaster: a person or device that
places a marker randomly in some r-tile slot for each of the p component
indexes. Thus, in Fig. 7.1 (upper), the Stochaster will randomly place a
point in one of the three classes above index 1. Then quite independently of
that action the Stochaster would randomly place a point in one of the three
classes above index 2, and so on, for all p indexes. The probability of the

point falling in any one of the classes above each index is, by definition of
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the Stochaster, 1/r. It then follows that the joint probability for a set
(uo,...,ur_l) of j-class errors subtended by two p-sets of marks placed by the

Stochaster is*

» D! ug uy Uy 6
(o,ug,.v0u ) = olugl..ou__ 1) 80 21 =er 8y (7.6

where

ag = 1/r

aj = 2(r-j)/x2 , j=1, ,r-1
r-1 r-1

jfo aj =1 , jfo uj =p

Therefore, by adopting the CIP, we completely open up the analytic possibilities
regarding reference distributions for the uj. In particular the distribution
for u, is:

J

' uj p-uj
.~ (1-a, 7.7
a, ( aJ) (7.7)

The distributions for uj, so laboriously obtained by the other four
procedures, as sketched above, are now generously supplied by classical statistical
procedures, providing one can justify the underlying assumptions giving rise
to (7.6), (7.7). In the present study this means asking whether the ith and
jth components of randomly produced unit vectors (as in Appendix E) are statistically

independent. For it is the hypothesized statistical independence of the

* See e.g. Preisendorfer (1977), p. 10.
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Stochaster's component-to-component actions that allows (7.6) or (7.7) to be
derived. Are the components of randomly-produced unit vectors pairwise independent?
The answer clearly is "no," as a perusal of (E2.2) will immediately show.
Here, then, we are looking into the degree of statistical dependence of the
components of e (or of f). If this degree is sufficiently small, then (7.6)
and (7.7) may be nearly correct and descriptions of the uj distributions
therefore may be usefully applied to the unit vector intercomparison problem.
Of course, we may simply use (as has already been done, e.g., in Preisendorfer
and Mobley (1982)) the Stochaster's reference background supplied by (7.6)
(for r = 3) to gauge the significance of separation of spatial patterns in
general--patterns that themselves have nonzero spatial correlations within
them. These observations thus lead us to the following list of research

questions concerning reference distributions.

C. Research on Reference Distributions

Let two random unit vectors e,f be generated by the method of §2 in
Appendix E. Thus their components are generated by means of random samplings
of N(0,1).
(i) What is the joint probability density of the jth and kth components
of e?
(ii) What is the probability density function for the jth canonic direction
angle ¢j of e? (87 of Appendix C)
(iii) Are the jth and kth canonic direction angles ¢j’¢k of e statistically
independent?
(iv) What is the probability density function of ¢k-¢é where ¢k,¢é are
the kth canonic direction angles of e,f, respectively? (See discussion
below Table C7.1 in Appendix C.)
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(v) How well can the distributions in (i) be represented by normal
distributions (of one or two variates, respectively)?

These questions may be sought analytically or numerically. We conjecture that
in (ii) the distribution is uniform, and that the ¢j are independent of one
another in (iii). The questions may be extended to normalized principal
component vectors «,f, and to eigenvalue vectors K,A (Table 2.1 and (2.12)).
Suitably phrased, these questions may be extended to pXp orthonormal frames of
vectors represented either by vector components or by the %p(p-1) canonic
direction angles (Appendix C). The reader will observe that the main thrust
of the questions is toward the canonic direction angles. In the likely event
of an affirmative answer to question (iii), the theory of the Stochaster,
embodied in (7.6), would bg rigorously applicable, resulting in practical
intercomparison tests for EOF's, their principal components, and even their

normalized eigenvalue vectors K and A.
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Inner Products and Norms of Data Sets

1. Introduction

In this Appendix we outline the theory of inner products and norms of
data sets, concepts which lie at the base of (euclidean-space) data intercomparison
theory. 1In the view of the present Appendix, a pair of nXp data sets D and M
in matrix form is visualizable as two vectors in En , which therefore have an
inner product between them, and also their difference D-M has an associated
distance or norm. Inner product is intimately related to correlation, and one
of the main conclusions the machinery of the present Appendix allows us to
reach (cf. §3 of the main text) is that the SHAPE statistic and its descendants
are analyzable into various forms of the correlation statistic. The latter
has a well-established statistical-inferencial procedure, and so data inter-
comparison problems centering on the SHAPE-like statistics of data sets can be
reduced to significance decisions about correlations (cf §8§4,7 of the main

text).

2. Inner Product

Let X,Y be two nXp matrices. Let us write

P n
'(X,Y)' for 2 z x(i,j)y(i,3) (A2.1)
j=1 i=1
where
X = {x(i,j): i=1,...,n; j =1,...,p}
Y= {y(i,i): i=1,...,n; j=1,...,p}
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The number (X,Y) is the inner product of X and Y. It is the direct
generalization of the inner product of two nXl matrices (vectors) u,v:

° T
(u,v) = Z u@@)v(i) =uy (A2.2)

i=1
The last equality uses the customary notation for (u,v) when we work with
vectors. Equation (A2.1) can be placed into this classical form g?g provided

we write

P
"trace A' for X a(i,i) (A2.3)
i=1
where A is any pXp matrix {a(i,j): i,j = 1,...,p}. Then we can write (A2.1)

as
- T
(X,Y) = trace X'Y (A2.4)

where "T'" as usual denotes the transpose operator. By direct computation we

observe that:

= trace Y §T = trace Y'X (A2.5)

Hence (A2.4) is independent of the order of X and Y and of whether the transpose
operation "T" is taken on X or Y.

Either from the basic form (A2.1) or from (A2.4), we can prove the following
properties enjoyed by inner products of data sets: let X,Y,Z be nXp data

sets, and a an arbitrary real number. Then

X,Y) = (1,X) (A2.6)

-—
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The norm ||X[|? is defined as

X2 = (%,%)

We may think of |X|| as the Iength of X.

(A2.7)

(A2.8)

(A2.9)

The basic properties of inmer product

and length as we know them from E; and ordinary vectors in En hold also in

E
np
X = 0 if and only if X = 0 (A2.10)
la X|| = |a|] |X|] , for any real number a (A2.11)
(triangle inequality) NX+Y ) < §X) + Yl (A2.12)
(Schwarz inequality) X, Y] = |IX] Y} (A2.13)
IR-2I? = K] + LI - 25D (42.14)
€ %) = 7] = 1, then
0 < |X-¥f? = 2[1-(X,1)] £ 4 (A2.15)
This implies (consistently with (A2.13)) that for unit length X,Y,
IX,1)| £1 (A2.16)

Therefore if X,Y have unit length we can assign a real angle eXY between them,

0 £0,, $nr, such that

XY

i}

X,Y) cosByy

In general, (A2.14) may be written

IX-x)Iz = IX)12 + lZ]* - 2|X[|[Y] cosbyy
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where coseXY is (g/"g", X/"X"). Also, (A2.15) becomes, for unit length X,Y,

X - X"z 2[1-trace§?¥] = 2[1-traceX X?] (A2.19)

2[1-(X,V)] = 2[1-cosBXY]

This formula is characteristic of the norm of X-Y for two unit vectors X,Y in
Enp' It is the direct generalization of the norm of u-v of two nX1l unit
vectors in E :

n

2[1-5Tg] = 2[1-trace u XT] (A2.20)

lu-v]|2

2[1-(u,¥)] = 2[1-cos6 ]
The correlation coefficient of two average-centered* data sets u = {u(i):

i=1,...,n}, v={v@d): i=1,...,n} is:

n
2 u(i)v(d)
i=1

r(u,v) = - = (A2.21)
(3 uzE)¥ (3 v2(i))*

i=1 i=1

and is therefore seen to be simply ETE = (u,v), where u,v are the unit vectors
associated with u,v, respectively. Thus norm, inner product, and correlation

are intimately connected in (A2.19) and (A2.20).

Finally, we observe that if the gqXn matrix B is such that §T§ =

the pXq matrix C is such that C g? = lp’ then for all nXp matrices X,Y,

(BX, BY) = (X,Y) (A2.22)
Xc,Yc)=(X,Y) (A2.23)
n n
* i.e. 2 u@)=0 , Z v(i) =0.
i=1 i=1l
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These formulas follow at once from (A2.4), and amount to the assertions that

inner products and norms are invariant under change of bases or rotations in

data spaces. It is worth noting that these relations hold also for ordinary
T.

vectors. Thus, e.g., if R is a pXp matrix such that R'R = lp (i.e., if R is a

rotation) and u,v are vectors in Ep, then (A2.22), (A2.23) become

®w'RY =y (A2.24)
trace(gTB)T(ng) = ETX (A2.25)

A general related result, that is often useful, is:
trace §T§ B = trace B X Q? = trace X (A2.26)

for any pXp matrix X and any pXp matrix B of orthonormal vectors.
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Singular Value Decompositions (SVD) of Data Sets

1. Introduction

The singular value decomposition (SVD) of a space-centered nXp data
matrix D = {d(t,x): t=1,...,n; x = 1,...,p} allows us to split the space-time

structure of D neatly into three parts A',g%, and E

T

D = A'K’E (B1.1)

which, respectively, describe the temporal evolution of the data set (via A'),
its variance structure (via K), and the spatial pattern (via E). The SVD
forms the basis for the various intercomparison statistics described in the
text. In view of the use of (Bl.1) in calculating SHAPE, we shall develop the

SVD of D for the case of the standardized form of D (cf. (B2.8)).

2. Standardized Data Sets

Let D' = {d'(t,x): t=1,...,n; x =1,...,p} be an nXp data matrix in

primitive form. We center D' in space by finding the time averages

n
do(x) =n 13 d'(t,x) , x=1,...,p (B2.1)
t=1
writing
'do' for [do(1), *++ , do(@)]T (82.2)

the centroid of D', and defining the centroid matrix:
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- - s
Do = |do(1) dp(2) -+ do(p) QoT
do(1) do(2) +++ do@)| = | do" (B2.3)
: : : T
do(1) do(2) +-- do(p) do
Then the space-centered* data set D is
D = D'-Dg (B2.4)
We write
'o2' for ||D’'-Dof? (B2.5)

Thus 0% is the norm of D’'-Do (cf. Appendix A). Alternate forms of o% are

n

02 =3 |4’ (t)-do| 2
t=1
P n
= 2 2 (d’(t,x)-do(x))2 (B2.6)
x=1 t=1
where we write:
'd’(t)' for [d’(t,1),...,d"(t,p)]T , t =1,...,n. (B2.7)

Og is a measure of the scatter, or variance of D’ about Dy, i.e., of the

n-point swarm {d'(t): t =1,...,n} about d, in EP. The standardized form

of D' is defined by writing

* An entirely analogous development can be made for time-centered data
sets, resulting in a generally dual theory of data intercomparison. The
modifications of the present formalism to cover the time-centered case
are readily made. Note that in DIT(II) for simplicity we dropped the
primes from d'(t,x), d’'(t) and zeros from do(x), do. Here we need the
primes for the reader who wants to keep the distinction between centered
and uncentered data.
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3. SVD of Standardized Data Sets

(@’ (1)-d0) /oy,

‘D' for oj! (0'-Do) = [(d’(2)-d0) /0,

(@’ ()-do) /0,

(B2.8)

Let ﬁ be an nXp data set in standardized form.* Then by the theory of

Appendix A and (B2.8) we have
IBJ? = trace 75 = 1.
Let us write

'§ for DD

(B3.1)

(B3.2)

the pxXp scatter matrix of ﬁ. Let 21,---,§p be the pXl1 eigenvectors of S, and

K%,...,K; their associated dimensionless eigenvalues, with Kj 20, j

Therefore, by definition of e; and K;,

Writing

'K'  for diag[K%,...,Kg]

'E' for [ey ... gp] (p>*p)

—

N B

(B3.3)

(B3.4)
(B3.5)

* As in the case of primed symbols, the tilded symbols are kept for readers
who need to distinguish between dimensioned and dimensionless variables.
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where

_ T .
e; = [ej(l),--.,ej(p)] , i=1,...,p (B3.6)

we see that (B3.3) can take the matrix form:

SE=EK (B3.7)
with
E'E =EE® =1 (B3.8)
- - - = -P
In view of (B3.1) and (A2.26),
~ P
trace K=1 , i.e., 2 K? =1 (B3.9)
=1

Because of the space-centering in (B2.4), ﬁ has at most n-1 independent rows.
Hence the rank of ﬁ, and therefore of E is min[n-1,p] = p. Thus at most p of
the K? can be non zero. The reader should reflect on the necessity of centering
a data set prior to forming the scatter matrix. (What is the interpretation

of the diagonal elements, say, of the scatter matrix of a non-centered data

set?) Also it should be noted that division of the centered data set by a

D
affects K but not E. Finally, it should be verified that the eigenvectors
associated with sets of equal eigenvalues (e.g. zero eigenvalues) are not
uniquely determined.

The principal decomposition of § is defined by writing
'A' for D E (nxp) (B3.10)
and then writing the identity
~ ~ T
D=DEE (B3.11)
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E? (B3.12)

=14
132

Here z is the nXp matrix of principal components (which by standardization are

dimensionless)
A= a (1) ... Sp(1) (B3.13)
3@ ... Epin)

On recalling (B2.8), (B3.12) can be written in vector form as

d'(t) =do + oy Z a.(t)e, , t=1,...,n (B3.14)
= = j=1 4
or in scalar form as
P o
d’'(t,x) = do(x) + o Z a.(t)e.(x) (B3.15)
jz1 40

t=1,...,n: x=1,...,p.
The SVD of D is obtained by writing*

'A’'  for z K (nxp) (B3.16)

so that

12
H

>

lﬁg

* If some Kj is zero then replace "Kj-l" by "0" in (B3.16). This defines the
=%
K

generalized inverse of and hence of ﬁ.
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where

a, (1) ... ap(l)
A = . . (B3.17)

a1in) e ap&n)

(Observe that A’ is independent of the normalization by O, just as E is.)

Then (B3.12) takes the desired SVD form:

B=aku (B3.18)
where
IT oo
ATA" =1 (B3.19)
A A Zp

which follows from (B3.16) and

This in turn is deduced as follows (using (B3.2), (B3.7), (B3.8)):

i=0p'dw

13
]

i
b1
~
=]
(=)
—
<2}

=EEK=K (B3.20)

The vector and scalar versions of (B3.18) are

P
d’'(t) =do + obj£1 Kjaj(t)gj , t=1,...,n (B3.21)

P
d’(t,x) = do(x) + oDjil Kjaj(t)ej(x) , (B3.22)

t=1,...,n ; x=1,...,p.
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n

Because of space-centering (as in (B2.4)), Z aj(t) = 0, and so the gj, i=1,...

t=1
are confined to at most an n~1 dimensional subspace of En’ i.e., to an Ep,
p = min[n-1,p].

4. Connections Between Standardized Sets and Non Standardized Sets

We summarize here some of the connections between D and its standardized
form § that may be useful in practice.

By (B2.4) and (B2.8) we have

~

2 = 0..D (B4.1)

?’

The scatter matrix S of D is by definition

T

§=DD (B4.2)
and so by (B4.1), (B4.2) and (B3.2), we have
= 02§
5 =08 (B4.3)
If 2j, j=1,...,p are the eigenvalues of S, and K§, j=1,...,p, are those of
s, then
zj = oﬁxﬁ , j=1,...,p (B4.4)
and conversely
K. = o.12% , 5 =1,...,p (B4.5)
J D j ’ ’ i
Hence
L= diag[ll,...,ﬂp] = ogl_c (B4.6)
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and (B3.7) for D becomes via (B4.3), (B4.6),
SE=EL (B4.7)

Thus S and g share the same eigenvectors.
The total scatter of the space-centered set D is given in the following
equivalent forms:

P n T
X X d2%(t,x) = (D,D) = ||D||2 = trace D'D

x=1 t=1

2. = o2 (B4.8)

trace § =

H Mo

The first equality comes from (A2.1), the second from (A2.9), the third from

(A2.4), the fourth from (B4.2), the fifth from (B4.7) via:
_ T
S=ELE , (B4.9)

and (A2.26). The sixth equality in (B4.8) comes from (B3.9) and (B4.6).
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Canonic Rotation Angles Between Orthonormal Vector Frames

1. Introduction

The canonic rotation angles allow a reduction of the number of parameters
in ORIEN (cf. §2 of the main text) by a factor of two. We now present some
introductory comments on the theory of canonic rotation angles.

The SVD (B3.18) of an nXp data set ﬁ produces a pXp matrix E of eigenvectors:

E=les ... e) (€1.1)

which summarize the spatial patterns of the data set. If we had another nXp

data set E of SVD:

= B'E2FT (€1.2)

=R

then it may be of interest to compare E and the pXp matrix F for similarities,

where
F=1[f ... £ . C1.3
= [_1 __p] ( )

A natural measure of distance between E and F is attained through the rotation

transformation R that maps E into F:

T

R=FE (C1.4)

T

= [_t:l PO f_p] %1
T
e
~P

P
=2 g.gT
=1 T3
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This R has the property that it maps ek into gk:

=

P T P
Sk = (.2 Ejsj)gk - .5

T

f.(e,e) = f (€1.5)
=i =ik =k

i=1 =1 1

1

for
k=1,...,p .
The norm between ex and gk is

- T
llex £, ll2 = 2(1-e, £,) (€1.6)

k=1,...,p
and the norm between the frames E,F is

IE-E|I? = trace(E-F)" &-F)

2(1-trace§TE)

2(1- 3 oT¢ ) (€1.7)
(-2 e '

j=1

This, except for a normalizing factor (coming from SHAPE), is what in §3 we
have called "ORIEN." Hence ORIEN is a natural measure of distance between the
two frames, involving the p inner products E§£j’ j=1,...,p. These p parameters
can be used individually (as in (C1.6)) or collectively (as in (C1.7)) to
measure the separations of interest. In the case of (C1.7) it is possible to
reduce the numbers of parameters by half if we introduce the notion of a
canonic rotation angle.

The remainder of this Appendix is devoted to the subject of canonic
rotation angles between two orthonormal bases E,F of Ep' These angles are

closely related to the eigenvalues of R = F ET.
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2. Basic Properties of Rotations in E .

Matrices of the form R = F ET, where F and E are pXp matrices of orthonormal

vectors, are called rotations. They are characterized by the property BTB =
RR. =1I.
- = P

eigenvalues A of a rotation R. Thus, by definition R,w, and A are such that:

We examine the structure of the pXl eigenvectors w and associated

B w = Aw . (C2.1)

We know from (C1.5) that R preserves the length of w (cf. also (A2.24)).
Hence (C2.1) cannot hold in general unless both A and w are complex valued.
(What must ||w|| be if w and A in (C2.1) are real valued and A = 1?) To prepare
for such a possibility, we generalize the notion of inner product and norm to
complex valued vector components:

ol §

l¥)|? = whw = w (2.2)

Hence '*' means: take the complex conjugate (denoted by an overbar) as well

as the transpose. In detail, if

E - [wl, "W ]T ’ X - [V1, 'V, ]T (C2-3)
P P
then
wk = [61,...,Gp] , ' (C2.4)
and
why E w 2 E jw.| 2 (c2.5)
w¥y = Ww.V. w||© = W, . .
j=1 J ] ’ | " j=1 J

Suppose w # 0 is an eigenvector of R with R's entries real valued as usual.

Now, evaluate (R w)*(R w) two ways:
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once directly via: (R w)*(R w) = w*R¥R w = "v_v"2 (c2.6)

once indirectly via (C2.1): (Aw)*(Aw) = [A] 2 "2"2 (c2.7)
Since these two values are equal, we conclude
A2 =1 (C2.8)

Therefore:

A. The eigenvalues A of R are of the form A = ele, 0 £6 < 2n.

Observe that not only w,A satisfy (C2.1), but also the pair Q,X.
Therefore:
B. The eigenvalues A and their eigenvectors w come in distinct complex
conjugate pairs when |A| # 1.
Suppose now that w;,A; and wp,A; are eigen pairs of R with w; # 0, wp # 0,
and Al # Az, 50 61 # 62 in Aj = eiej, j =1,2. Ve now evaluate (R w3)*(R wz)

two ways:

once directly via: (R wy)*(R wp) = wi¥w,

once indirectly via: (Aw1)*(Agwp) = AiAg wi¥w,
Since these two values are equal, we conclude

Since 6, # 05, and their difference lies strictly in (-2m,2rn), it follows that

wi*wy, = 0. Hence:

C. Eigenvectors of R belonging to distinct eigenvalues are orthogonal.
In working with real data sets, the probability of encountering equal
eigenvalues or real eigenvalues of R is practically zero. Therefore it is
practically certain that, under real working conditions, a pXp rotation

matrix with p complex, unit-magnitude eigenvalues will have a set of p
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pairwise orthogonal eigenvectors. In order to simplify the present exposition
we will work under this assumption unless otherwise noted.
We now examine the real and imaginary parts of the eigenvectors w of R.

Let
w=x+tiy

~ Here x,y are pXl vectors with real components. Let w;,ws; belong respectively

“to eigenvalues A;,A; such that A; # Ay and Ay # X2. Then for Aj,Ag

0 = wybwy = (xy+iy )¥*(xo+iy2)

(zf-iz¥)(§z+izz)

(5¥£2+X¥Xz) + i(§¥z2'5321) (C2.9)

On the other hand, for A;,A,
- T T .. T T
0 = wy*wp = (X1X2-y1¥2) - i(X1y2-X2y1) (€2.10)
The real and imaginary parts of (C2.9), (C2.10) are separately zero. From
these we conclude

ﬂzz =0 ﬁzz =0 (€2.11)
E'{Xz =0 Ezzz =0 (€2.12)
Also, for any j, if w. w, belong to A,,A, and A, # A, then
=J =] 3] J J
- T T T
0 = w.%w, = (x.x.-v.v.) - 2i(x.v.
witwy = Oxgoygyg) - 210y

whence

= yly. (€C2.13)
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T
v. =0 C2.14
XY, ( )

Condition (C2.13) allows us to make all XY, of unit length. (Since [|w|? =
Ixl2 + Jl¥l® = 2|x|2 = 2||)y)|3, in (C2.1), divide through by %|w||2.) The argument
leading to (C2.11), (C2.12) also holds for general indexes j,k on the A. Thus
the interesting eigenvalues Aj of a rotation are those that are non real, so
that we have (C2.13), (C2.14); and those pairs Aj,A of eigenvalues that are
distinct (Aj # Ak) and nonconjugate (Aj # Xk), so that we have (C2.11), (C2.12).
- The real eigenvalues of R can only be 1 or -1, resulting in identity rotations

or reflections, respectively.

Summarizing:

D. If Aj'!j is an eigen pair of R with LF = §j+igj, then for any two non
conjugate distinct eigenvalues Aj,A , (€2.11), (€2.12) hold, and for non
real Aj' (c2.13), (c2.14) hold. In other words, under the above conditions,
Ej'!j are orthogonal for all j; and Eﬁ'gk and zj'!k are pairwise orthogonal
for j # k. Finally, all X;14; can be normalized to unit length.

Writing out (C2.1) in full complex form we find:
R(x.+tiy.) = .-1is, iy, C2.15
_(§J 1}1J) [cJ 1sJ](§J 123) ( )

where* c. = cosb, , s. = sinb,
J J J J

Separating real and imaginary parts, we have

R x. = c.x.+s.y. C2.16
-] J=] JZ ( )
Ry. = -5.x.+c.y. . C2.17
- Z.] J-] JZJ ( )
* The minus sign convention cj-isj is chosen here and in (C2.19) below to

permit rotation angles from .9 to Y; to be positive 90° clockwise, in the

. cor e X
plane of X.,y; as seen along the direction X, Xy,
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These may be written as

R [x;,5,] = [x;,y,] [:J :J] (C2.18)
J J
which is the basis for the required real form of (C2.1). The Bk are the real
versions of the Ak (cf. property A above), and are called canonic rotation
angles.
We can now build up R out of pieces like (C2.18). Thus we have:
E. Let R be a rotation in Ep. If the dimension p of Ep is even, i.e.,
p = 2% for some positive integer £, then there are £ pairs of real valued
unit vectors [Ej'!j] inE, j=1,...,% such that all 28 vectors are

p
mutually orthogonal, and £ angles Bj,O Y Bj < 2n, such that

3[5121 Xy °°° §£221 =

)
x e e o [~ - 1
x 3, 23, r 2y ] [ s
S1 Cq 0
C2 ~S2
S C2
sy
0 c, =S
°2 g
(C2.19)
i.e., such that
RW=VWL (C2.20)
Therefore
_ T
R=WLW (€2.21)

is the desired representation of the rotation R on EP. Here W is a pXp matrix

of eigenvectors of R defined in the context of (C2.19) such that
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T T

WW =WW= (C2.22)

I

which follows from property D. We also have, by virtue of property D:

F. Let R be a rotation in Ep. If the dimension p of Ep is odd, i.e., p = 28+1
for some positive integer £, then there are £ pairs of real valued unit
vectors [Ej'gf] in Ep, j=1,...,2 such that all 2¢ vectors are mutually

orthogonal, and £ angles Bj, 0= Bj < 2rn, along with a real valued unit

vector Xor1 in Ep orthogonal to all 2% others, such that:

Rlx1y1 Xa2¥2 **° X,9, X541

= [X1y1 X2¥2 *** Xp¥y x5 1 [e1 -5y 7
S1 €y 0
C2 ~82
So Co . (C2.23)
) C, ~=S
0 Sg g
p |
i.e., L J
R=WLW , WW =WW=I (C2.24)

Here X041 is a unit eigenvector of R associated with eigenvalue 1 (= eie,
with 6 = 0 or ). Note that for the case p = 2£+1, the characteristic equation
of R is a polynomial of degree 22+1. The roots of this equation occur in
conjugate pairs, and all must be of unit magnitude. The odd real root must
therefore be +1 or -1.

This brings us to an important practical matter: that of finding a
unique set of £ canonic rotation angles in (C2.19) or (C2.23). It is quite
possible that two different computer programs, starting with data sets D,M,
could yield up E,F frames that give two different sets of Qj, i=1,...,4%

The following considerations will lead to uniquely defined sets of canonic

angles ej, i=1,...,[p/2].
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3. Chirality of Orthonormal Frames

We shall show that it is possible to connect up orthonormal frames E and
F by a rotation R only if the frames have the same "handedness"--i.e., left or
right handedness--or "chirality", for short: a simple example will make this

clear. Let E,F be of the form

a -b c -d
—E_ - ’ E = (C3.1)
b a d c
where a%+b2 = 1, a > 0, b > 0, and c?+d2 = 1, ¢ > 0, d > 0. Hence e; = [a,b]T
and e, = [-b,a]T are orthonormal vectors, as also are f; = [c,d]T, fo = [-d,c]T.

Observe that the determinants of E and F are both +1. The rotation matrix

that maps E into F is given by

T —c -d a b
R=FE = (C3.2)
d c -b a
F
ac + bd -(ad-bc) o -B
ad - bc ac + bd B o
The eigenvalues of R are given by the solutions A of
(@ -A2+p2=0 (C3.3)
i.e.,
i
A=atip=ei® (C3.4)

The angle 6 is zero if and only if B = 0, and this is the case if and only if

ad = bc , i.e., a/b = c/d (€3.5)

This is so if and only if a = ¢, b =d, i.e., the E,F frames are identical. A
sketch of e;,e; and f,,f, is:
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The meaning of 6 is that of a rotation of E into F.

Now suppose we multiply e; by -1. Then we obtain a new orthonormal frame

a b
E’ = (C3.6)
b -a
Observe that
detE’ = -(a?+b?) = -1 ’ (C3.7)
whereas before
detE = a%+b? = 1 . (€3.8)

Moreover, the rotation matrix is now

T -E -d| |a bw
R’ = FE) = (€3.9)
d c||b -a
= [ac -bd] [ad + bc- Y 6
ad + bc L—(ac-bd) 6 -y
The eigenvalues of R’ are given by the solutions A of
=(y=A)(y¥A)-82 = 0 (€3.10)
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A = (y2+62)% = 11 (€3.11)

The associated A-angles are 6 = O,n. The diagram associated with E’,F is:

AN .
2N e 7
\ pid

\ /
\ S

~€2

We conclude that there is no rotation R, with det R = +1, in the plane of
ej,ez, that maps E’ into F, so that e; > f; and -ep »> f;.

A numerical program encountering general pXp frames such as E’,F, i.e.,
frames of different chirality, yields up degenerate angles, i.e., angles pnly
in the form 0 or . In reality, however, the associated eigeﬁvector mapé for
E’ and F, as usually plotted in data displays, could be visually quite close.
They may only differ by a sign, but that sign difference is immaterial for
most uses of eigenvector plots. The way to prevent the degenerate 6 case (all
0's are 0 or ) is to make certain, when determining the vector members of E
and F, that the determinants of these matrices are both of value +1 or both of
value -1, i.e., that E and F have the same chirality. By simply changing the
sign of one Sj’ or gj, the associated determinant's value undergoes a sign
change, and no important change in physical properties of Ej or ij is made.

Now observe that the determinant of R is the product of the eigenvalues of R
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and so is easily reckoned as part of the canonic rotation angle program.
Furthermore, observe, as above, that in general the determinant of an eigenframe

E or F is *1. Hence, since
detR = (detF)(detE’) = det(F)det (E) (€3.12)

we can insure detR = +1 by merely changing the sign of one vector, e; (say),
if necessary. Then, as the simple example above indicates, we would have E,F
of the same handedness and we would obtain the associated non degenerate
canonic rotation angles. Therefore a true rotation between E and F would be

determinable.*

4. ORIEN via Canonic Rotation Angles

From §2, we have, by definition

ORIEN(E,E) = - ||E-E|?

for the average norm between pXp eigenframes E,F of two nXp data sets D,M,

respectively. By (Cl1.7) we can write this as

2
P

P 7
(1-3 e, £.) (C4.1)

ORIEN(E,F) = e, f,
j=1 3 7

Assuming E,F have the same chirality (i.e., they have determinants of like
sign) we wish to express ORIEN(E,F) in terms of the canonic rotation angles Bj

between the two frames. Towards this end, we compute

* The set of all pXp rotation matrices R with detR = +1 forms a group,
while those that have detR = -1, do not. A true rotation is a matrix R
with detR = +1.
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IE-E|2 = trace (E-F)'(E-F)

trace (E-R E) (E-R E)

T T
t E°(I -R")(I -R)E
race (_p R )(__p R)E

T
trace (Ip R )(IP-B)

T
t 2I -(R+R
race [ : (R+R7)]

Here we have used (A2.26) in going from the third to the fourth line. We now
return to (C2.19), (C2.23) and use the representations of R given there.

In the case of p = 242,

trace(B+§T) trace E(L}LT)ET

trace (L+LT)

2
=4 I c, (C4.2)
j=1
Also
t 21 = 2p = 448 C4.
race LN P ( 3)
Hence
1 4 L
= - - 2 = — -
ORIENE,E) = 5 IEE|® = 5 % (=)
4 2
== 3 (1l-cos8,) , 2 = [p/2] (C4.4)
P k=1 k

which was to be shown. From the point of view of distance measure, we see

that we can work with 6, in the range 0 < 6 £ m, since [[E-F[|2 attains a

k
maximum when all Gk are m.
In the case of p = 2£+1, since we want a true rotation, we take the

(22+1)st root in (C2.23) to be +1. On calculating the new counterparts to
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(C4.2), (C4.3), we find (C4.4) once again. Hence (C4.4) holds for all values

of p. This is reflected in the meaning of "[p/2]" in (C&4.4) which says:

"take the largest integer in p/2."

5. The Octant (Minimum~-ORIEN) Condition

For the purpose of running an S-Phase test (§5 of the main text), one
that can be duplicated by independent investigators using different eigenvalue-
finding routines, we have used the following conventions. The goal of the
conventions is to define two unique E and F frames belonging to given data

matrices D,M, which yield up the same set of canonic rotation angles.

A. Suppose, then, the numerical routine has returned two sets of eigenvectors
E=[e; ... gp], F=1[£f ... gp]. The e and £j are fixed except for signs.
We use (C4.1), (C4.4) as guides to decide whether or not to change the sign of
a given Ej' The idea is to systematically switch the signs of the Ej so as to
obtain a minimum distance between the frames E and F. Therefore if some inner
product in (C4.1) is negative, say EjTﬁj < 0, then change Ej to -gj. The end
result of such a systematic procedure is an ORIEN(E,F) of minimum value.
Also, as a result, the Ej’fj pairs are each 90° or less apart., This is the

octant or minimum ORIEN condition.

B. Once the octant condition has been imposed on E,F, we must check to

see that E,F have the same chirality.* If (detE)(detF) > 0, then E and F have

* One can construct an example wherein e f >0, j=1,...,p, but where E,F
are of opposite chirality.
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the same chirality and we can go on to find the canonic rotation angles. If
(detE) (detF) < 0, then pick for sign reversal that gj which will increase
ORIEN(E,F) the least, using (C4.1) as a guide. The end result will be a
unique pair of eigenframes E,F of the same chirality and of minimum possible
distance apart. In this way two independent researchers using the same nXp D,

M sets will produce identical sets of canonic rotation angles ej, j=1,...,[p/2].

6. Representation of Rotated Vectors

A. Returning to (C2.21) and (C2.24), we convert these matrix statements

into vector form. Thus (C2.21) becomes for p = 2£

+ gjg§) - s.(x.g? -y x?)] (€6.1)

T
X. .
~ J 177 J-J

L
R= 2
— - J

[c.(x,
j J ]

1
where
cj = cosej , sj = sinej , J=1,...,2

The action of R on the eigenvectors Ej’zj is, for j=1,...,2

Rx, =c,x, +s.y. C6.2
R x = cx; * 5y, (C6.2)
= -s.x, + c.y. 6.
RYj = =85%y ¥ ¢33 (ce.3)
so that
R (x. +iy.) = e 5. + iy.) (C6.4)
B | J =] J
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For the case of p = 28+1, in (C2.24), set Cop1 = 1s 894q = o, Yoi1 = 0 and
replace £ by £+1 everywhere in (C6.1). Thus (C2.24) becomes
2 T T T T T
R=2 [e.(x.x. +y.y.) - s.(x.y. - y.x.)] £ x, .x
! [ J(‘J_J~ XJXJ) SJ(EJXJ XJEJ)] —2+174+1
(C6.5)

The plus sign is chosen for true rotations.

Now let z be an arbitrary vector. Then the image of z under R for p = 28+1,

is
2
=Rz= 2 (x,E. +y.n.) - s.(x.n, - vy.E. b 4
TR Loy Cxgy *+ y5ny) = o5 (g = 7381 = 2p40800
2
= 2 c.E. ~s.n.)x. + (c.n. + s.£.)y.] £+ x
& [(e;€; - syndx, + (eony + s, 80y.1 £ x5,
(C6.6)
where
T T .
§j =zx o, Ny=zy o, §F 1,...,2 (c6.7)
For the case of p = 22, drop the last term in (C6.6).
B. A special case of (C6.1) or (C6.5) occurs when the vectors Ej’xj are

from a natural basis of some Ep in which we are working. Let {31,...,EP} be a
natural basis of Ep (i.e., the kth element of Ej is the Kronecker delta ij).

Then if p = 22, (C6.1) becomes

T

2 T T T
R= 2 [ejluyy qupgy ¥ up5uy5) = 85(uy5 10y = U5 55 )]

.

j=1

(C6.8)
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= T
If p = 28+1, then add 04190041

From this we see that the action of R on a vector

to the right side of (C6.8).

P
z= X z.u, (C6.9)
j=1 94
is one of rotations in successive planes formed by adjacent pairs EZj-l’EZj of
vectors, j = 1,...,2.

C. The rotations in the natural frame {gl,...,gp} need not be confined
to adjacent members of the basis. A rotation in E_ within the plane of the
arbitrary vector pair L is given by the pXp matrix.

_1' -
'.1
u C. -8
J J
1
Buv = .. (C6.10)
1
v 5. c
J J
1.
"1
u v

Thus the gj's occur on the main diagonal at locations u and v, and the sj's
occur, as shown, to fill out the rectangle of four symbols. All other entries
of the main diagonal are 1 and all remaining off-diagonal entries are zero,
indicating zero rotation within all other possible coordinate planes. There
are %p(p~1) linearly independent matrices of this structure, and these form
the basis of a vector space of rotations within the frame {21:---:Ep}- If the
determinants of these matrices are 1 (choose the + sign of the last diagonal
entry in (C2.23) when p = 22+1) then the vector space is a group under matrix

multiplication (and hence we will have a %p(p-1) dimensional field of rotations).
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7. Canonic Direction Angles of a Unit Vector in Ep

In this section we develop the theory of canonic direction angles of a
unit vector in Ep' These angles are direct generalizations of the polar
coordinate angles of a unit vector in E3. They may be of use in tests of
significance of differences between pairs of unit vectors. Such tests arise,
e.g., in principal vector (EOF) intercomparisons between two data sets.
Suggestions for new tests, based on canonic direction angles, for vectors and

for orthonormal frames, are made in §7 of the main text.

A. Let e = [el,...,ep]T be a unit vector in Ep' Let {21,---»Ep} be a
natural basis of Ep (i.e., Ej has Kronecker deltas as components ij). For
the purpose of finding the canonic direction angles of e, we will subject e to

a sequence of rotations Bk(¢k) of the form (C6.8):

R (0 = RQy,uyy30) + 1(a5,--050) (€7.1)

k=1,...,p-1.

Here

o T T . T T

R(upe Uy 30) = olmiye + me W] = 8y = Bl (€7.2)
_ T T . T T

Qg o8) 5 Wepolyep + gy + 00+ uqu Yoy, (C7.3)

€ = cosek » 8 = sin¢k (C7.4)

To keep track of successive mappings of e, let us place a subscript "1"

on it to start the sequence, so: e; = e. Then in (C7.1) set k = 1 and find

ez = Ri(¢1)ey (C7.5)
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where

p .
E 2 e.,u, C7.6
€1 521 €544 ( )

The vector e; may be written as:

T
ez = (cqfuqu,” + EzEzT] - 51[2122 - EZE1T])S1 * 1(23»---’Ep)21

(ci1eq - s1ep)u; + (creg + sjeq)ug + 2 €Y (c7.7)
j=3

We want to find that value of ¢; in (C7.7) which will make the coefficient of

u; zero. Thus we require

cie; - syep = 0 (Cc7.8)
It follows that

c1 = ez/Y2 , 51 = eq/y, (c7.9)
where

Yo = (ef + eﬁ)l2 20 (C7.10)

Using the principal branch (-%m, %m) of the arctan(x) function where x is in

the range (-®,®), we have ¢; defined in the range, -%nt £ ¢; < %n:
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e; >0, e 20

At - arctan (ez/eq) when { or
e; >0, ez <0
0 e; =0, e2 >0
¢, = 0 when e =0, ey =0 (C7.11)
n e =0, e2 <0
e; <0, e2 350
=% - arctan (ez/e,) when ( or
e <0, e2>0
Using this value of ¢; in (C7.7), we obtain
P
€5 = Yous + 2 e.u. (C7.12)
- - j=3 37 .
J
Setting k = 2 in (C7.1), then we have
ea = Ra(d2)e2 (C7.13)
Using the representation of Ry(¢2) we find
P
ea = (ca¥2 - szegduz + (czeg + s2¥p)us + 3 e u, (C7.14)
i=4
We require the coefficient of uy, in (C7.14) to vanish. Thus we require
C2Y2 - Sgeg = 0 (C7.15)
It follows that
c2 = e3/ya , 82 = Y2/Ys3 (C7.16)
where
Ys=(ef +ef+eB)?20. (€7.17)
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From (C7.16) we require

arc cos(ez/Yys) Y3 > 0 (C7.18)

b2
0 Y3 =0
so that ¢ is in the range 0 £ ¢, S m.

The choices of the zero ¢;,¢2 values, when y; = 0, y3 = 0, respectively,
in (C7.11) and (C7.18), are made on the common-sense basis that no rotation is
needed when no componentlof finite size of the current Ej falls on the current
Ej basis vector.

If we go through the stage once more, now finding ¢3, R3(¢3) and ey, we
see that the case just completed for k = 2 is repeated in all essential steps.

Hence the kth stage yields ¢k’ Bk(¢k) and &1 of the form:

e+l = Bk(¢k)gk , k=1,...,p-1 , with e; = e given (c7.19)

R (&) = Ry ,u .56) + l(gk+2,---,gp), as in (C7.2),

(c7.3), (c7.4) (C7.20)
arc cosle, . ./ 1 = [ef++--+e? ]% k=2 -1
b = k1 Yier1dr Yier1 k#1! reeoPTh
k -
0 , Y =0 (c7.21)
¢; as in (C7.11) (€C7.22)
E k 1 (C7.23)
e = yu t €.u ’ =1, »P- .
RS B
e =u (C7.24)
-P -P

The angles ¢k’ k =1,...,p-1, are the desired canonic direction angles associated

with the unit vector e in EP.
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B. The process of finding the ¢k is shown schematically in Fig. C7.1. The
amounts of rotation required to reduce the u, -component of e and its two
successors to zero is shown in parts (a), (b), (c) of the figure. The final
three stages of rotation are shown in parts (d), (e), (f). The vector e has
therefore been subject to p-1 successive rotations (some possibly of zero
degrees) which eventually place e's image along Ep' The p-1 numbers ¢k’

k =1,...,p-1 associated to e in this way constitute a form of address of ¢k
with respect to the natural basis {21,---,Ep}- Therefore, like the components
ej of e, the ¢k may change from one basis to another. However, if we have two
vectors e,f that are close in the sense of the norm |e-£f||2, then the two sets
of angles ¢1,...,¢p_1 and ¢{;...,¢é_1 associated with them, with respect to a
fixed natural basis, will generally have the p-1 values ¢k-¢é small and be
directly comparable. The matter is not quite this simple, but perhaps some
form of systematic comparison of ¢k and ¢é, k=1,...,p-1 for a fixed natural
basis will lead to a method of judging whether two unit vectors are significantly
close or'distant, resulting in a method that is more powerful (in the technical
sense) than one based on simple one-number indexes such as correlations or

norms.

C. If we apply the formulas (C7.21), (C7.22) to the individual natural basis
elements we may find their canonic direction angles. For example let
u; = (1,...,0) be substituted in place of the general vector e used to develop

the theory. In terms of the e-components we have e; =1, ez = 0,...,e = 0.

From (C7.11) and these values of ej, we find ¢; = ¥n. From (C7.21), ¢ = *++ =

¢p-1 = ¥n. Going next to up = (0,1,..;,0), we have e; = 0, e; = 1,...,ep =0,

and find ¢; = 0, ¢g = ¢ = ¢p-1 = 1. Table C7.1 summarizes the canonic

direction angles, so found, for all the basis elements.
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CANONIC DIRECTION ANGLES FOR A UNIT VECTOR
IN E, . STAGES «, kt1,k+2,..., p=2,p=1,p

Uks+2 Uk+3

€k Ek+i

a ¢)k Yy +i b ¢k+| Ugs2

Uy U+l

!k+4 gp

€k+2 €p-2

Uk+3 Up-i
C K+2 -

Uk+2 Up-2
Yp A!p
¢p-l
-e-p—l gP
e gp—l f gp—l
Up-2 Yp-2
Fig. C7.1
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Table C7.1

Canonic Direction Angles of Natural Basis Vectors Ej

Angle Index
1 2 3 e ke p-2 p-1
uy An yn hn yn hn
up 0 An n n yn
Basis
Vector
Ek o 0 0 L3I 3 %T[ oo o an an
Ep-l 0 0 0 e 0 cee 0 in
u 0 0 0 cee 0 see 0 0
-p

A study of this table, with an eye toward learning to gauge "distance"
between two unit vectors in terms of canonic directions, reveals the following

possibilities. We know that "Ej'EkHZ = 2(1'E§E = 2 for all j,k =1,...,p.

»)

Therefore each Ej is the same distance from another Yo namely 25. Moreover,

every distinct pair Ej’gk

and u; subtend the same angle, namely %1, as subtended by El’gp' On comparing

subtends the same angle, namely %t. In particular u

the canonic direction angles of u;,u;, we see they differ in the first angle
by an amount %nt. They do not differ in the other angles following the first.
On comparing gl,gp, we see they differ in all angles. But yet the equations
"gl-gpnz = 2 = |luj-up||2 say that the distances between LIRS and u,up; in terms
of canonic direction should be the same. If we are to use the canonic
direction angles as measures of distance, then for a given pair of unit
vectors we may proceed along the set of angle indexes of their canonic

direction angles taking differences of the angles and tallying the amounts and
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number of new differences encountered. In this way, every pair of basis
elements differ by the fixed amount ¥n. More generally, if ¢1,...,¢p_1 and
¢i,...,¢é_1 are the canonic direction angles of unit vectors e and f, then we

would form the p~1 differences: ¢1-07, ¢2-02, O3=03,..., ¢ _.-¢' .. If

p-1 "p-1

¢,-01 # ¢2-¢2, then we retain ¢,-¢, for later use. If ¢;-¢; = ¢2~¢z then we
discard ¢;-¢; and retain ¢p-03. If ¢p-02 # ¢3-¢3, then we retain ¢,-¢; for
later use. However, if ¢p-¢2 = ¢3-¢3, we discard ¢p-¢2, and go on to compare
¢3-¢2 with ¢4-¢4, and so on down the line. The number of these retained
differences and their amounts may be r-tile classified, as suggested in §7 of the

main text, and used as multiparameter gauges of separation of the unit vectors

and f.

|

D. We now establish the reverse connection between the canonic direction
angles ¢k and the components el,...,ep of the given vector e. The direct
connection is given in (C7.21),(C7.22), going from the ej to the ¢k. We will
show how the ej are obtained from the ¢k.

From (C7.19) we have
- pl -
e =R (e, » k=1,...,p-1 (€7.25)

where

BT(¢k) = R(-¢,) (C7.26)

Hence in (C7.2)

T, | _ T T T T
RO(O) = cpluy + 0 gy ]+ syl = Byt
+ l(2k+2""’2p) (C7.27)

Starti ith k = p-1 i = f. (C7.24 we find
arting wi p-1, since e = u, (cf. ( )),
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&
]
—
|
=
5
—
~
_U-e
-
N’/

s [u uT - uT
p-1 "—p-1-p -p—p-1

whence

_ T
ep-2 = Rpp (05 5)e, 4

T

= T ] u

= ¢ [u uT +u .u
p-2"-p-2-p-2 -p-1-p-1

= Cp-2%p-1Yp-1 T 5p-15p-2Y%p-2
From this pattern we generally expect, for j = 1,...,p-1,

, = . LR . . +
&p-j = %p-;j°p-1%p-2 5p-(G-1)%p-(j-1) 7 ®p-1°p-2

In particular, on setting j = p-3, j = p~2 and j = p-1, we find

es = CSSP_ISP_Z ©°c s4quq t sp_lsp_z **° Sgug
ey = czsp_lsp_2 s*+ sgug + sp-lsp-2 *** Sglp
LR szEz + S oo lel

€1 7 C18,.15p-2 p-15p-2

We may tabulate these results:

96

T

s-p-1 * sp-2[9p-22p-1- -p-lEp-Z

]gp (C7.28)

(€c7.29)

]gp_l

(C7.30)

5 _.u__.
P-J-P-1]
(C7.31)

(C7.33)
(C7.34)
(€7.35)
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Table C7.2

Components of a Unit Vector e in Ep in terms of its Canonic Direction Angles

Basis Vector Component of e along LY
Ep ep = cos p-1

Ep-l ep__1 = sln¢p_1 cos¢p_2

Ep-2 ep_2 = s1n¢p_1 S1n¢p_2 cos¢p_3

u . - 1 1 e 1 . .
LI ep_J s1n¢p_1 s1n¢p_2 31n¢p_J cos¢p_(J_1)
ug eg = sin¢p_1 sinq)p_2 *++ sintg cosdsp

uo eg = sin¢p_1 sin¢p_2 *++ sintdg sind, cosod,

u, e, = sinq)p_1 sin¢p_2 *++ sintdg sin¢, sin¢,

The canonic direction angles of a unit vector e in Ep are therefore the
generalizations to Ep of the polar coordinates of a unit vector in E;. Here

the range of ¢; is -%t < ¢; < %n , and 0 £ ¢k sn, k=2,...,p-1.

E. It is easy to check, from Table C7.2, that e§+---+e; = 1. This indicates
that the p components of the unit vector e may be arbitrarily chosen subject
only to the unit length constraint. A practical way to do this is to select p
numbers ej from (-®,®) according to some rule, and then set ej = Sj/(8§+"'+8;)¥,
for j = 1,...,p. One such rule, the normal~distribution rule (pick the sj
randomly from N(0,1)) is discussed in Appendix E, along with the distribution

of ej it induces. On the other hand, if we choose the canonic directions ¢j
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arbitrarily from their respective domains, then each choice will result in a
unit vector e, using Table C7.2 to find the ej from the ¢j. It is plausible
that if the components ej are generated using the normal-distribution rule,

then each canonic direction angle ¢j is uniformly distributed over its range

and independently of the other ¢j. Conversely, by constructing e via independent
random selections of ¢j from a uniformly distributed population of angles over
their ranges, the components of e will be distributed as if they were generated
from the normal-distribution rule. (It would then appear that the normal-
distribution rule is a sufficient but not necessary rule to generate uniformly
distributed canonic rotation angles.) We will not seek proofs here of all

these intuitively plausible assertions (see §7C).

8. Canonic Direction Angles of an Orthonormal Frame in E

We come now to the final main topic of this Appendix, namely the assignment

of canonic direction angles to each member of an orthonormal frame in Ep’

where Ep has some chosen fixed natural basis to be used to find the angles.

The purpose of these angles is to provide another gauge of distance between

two pXp orthonormal frames E,F, within the given Ep’ a gauge that does not
compress the %p(p-~1) pieces of information inherent in each frame into a

single number, as does the ORIEN statistic. However, the utility of these
angles will not be explored much beyond their derivation, which is included

here for future reference.

A. Let E = [eqep **° gp] be an orthonormal frame in Ep relative to a given
natural basis. For the present purpose, let us relabel these as 511,512,...,e1p
to designate the first step in a sequence of p-1 steps. Starting with e;; and

using (C7.21), (C7.22), find e;,'s canonic direction angles: ¢11’¢12""’¢1,p—1°
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Also, by means of (C7.20) and using these angles, find Blk(¢1k)’ k=1,...,p-1.

Then form the matrix product §; = R1 1(¢p_1) *++ Ry1(¢;). This matrix, by

yP=
our constructions in par A, maps e;; into Ep' Moreover, §; maps the remaining
p-1 elements e12""’51p of the frame E into new p-1 vectors: € k-1 °

’

S, e x k =2,...,p which are all in the p-1 dimensional subspace spanned by
’

El,...,Ep_l.

B. We now may start over with the p-1 vectors e ¥
’

space of the Ej's’ j=1,...,p~1. Thus, using (C7.21), (C7.22), find ez;'s

k=1,...,p~1 in the p-1

canonic direction angles: ¢21,¢22,...,¢2 p-2" Also, by means of (C7.20), and
’

using these angles, find BZk(¢2k)’ k=1,...,p~2. Then form the matrix product

S = R2,p-2(¢2,p-2) *«+ Rz1(921). This matrix maps ey; into Ep-l and it maps

the remaining p-2 elements €225 58, p-1 into new elements: e
’

&3,k-1 = 528

2,k’

k =2,...,p~1 in a subspace spanned by 21""’Ep-2'

C. The general jth step, j =1,...,p-1, starts with gjl’ng""’gj,p-(j-l)'

From e, Using these p-j angles, we construct

51 we find ¢j1’¢j2""’¢j,p-j'
gjk(¢jk), k=1,...,p~j. Then form the product §j = Bj,p-j(¢j,p-j) v Bj1(¢j1)'
§j by construction maps Ejl into Ep-(j-l)’ and we define a new set of p-j
transformed basis elements via Ej+1,k-1 = §°9jk’ k=2,...,p~(j-1) contained
in the subspace spanned by 51,...,_P_j.
D. The results of these p-1 steps are summarized in Table C8.1.
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Table C8.1
Canonic Direction Angles of a pXp Orthonormal Frame [e; ... gp]
¢11 ¢12 i ¢1,p_3 ¢1,P'2 ¢1,P'1
$21 b22 e ®,p-3  %2,p-2
% : X . see . . c8.1
%51 %52 ®5,p-3 ( )
%-2,1  %-2,2
¢p-l,l

These angles, as
dependent on the
given basis, two

set ¢ of %p(p-1)

in the individual-vector case of §7 of this Appendix, are
chosen, fixed natural basis {51,...,2p} of Ep. However, in a

orthonormal frames E,F will have a uniquely assigned ordered

canonic direction angles that may be intercompared row by

corresponding row and index by corresponding index, much as in the vector case

of §7 of this Appendix.

the closeness of two frames E,F of a different character than ORIEN.

In this way we can develop a multiparameter gauge of

Under

random sampling from N(0,1) to generate an nXp data set D, we would expect the

¢jk in (C8.1) to be uniformly distributed over their respective ranges. If

this is so, then the r-tile method of intercomparing vectors in Ep (§7 of the

main text) would be extendable to intercomparisons of E and F.
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Canonic Correlation Angles Between Orthonormal Vector Frames

1. Introduction

The canonic correlation angles do for principal components what the
canonic rotation angles do for principal vectors: they provide an economical
description of the separation of the sets of principal component time series.
We now present some introductory comments on the theory of canonic correlation
angles.

The SVD (B3.18) of an nXp data set D produces an nXp matrix A’ of principal

components
A" = [ay ... « D1.1
a [o, —p] ( )

which summarize the temporal evolution of the data set. If we had another nXp
data set ﬁ, of SVD as in (C1.2), then it may be of interest to compare A’ and

the nXp matrix B’ for similarities, where

B' = [By --- Byl - (D1.2)

A natural measure of distance between the frames A’ and B’ is COREL, as defined

in §2 of the main text:
COREL = _ [|A’-B'||2

(1-

0 Mo

g?ﬁ.) (D1.3)

TN

J

In view of the developments in Appendix C, one is led to inquire whether we
can have something here analogous to the canonic rotation angle ek. In Appendix C
we had eigenframes E,F of ﬁ and ﬁ and the required rotation was R = F E?,

whence the canonic rotation angles ek. In analogy to R, one is tempted to

101



APPENDIX D

define a new rotation S of En into En in the present setting by simply writing

"§" for g’é’T. However, when we test this for the rotational property:

T§ =S §T = 1, we obtain §T§ = é’é’T, which is generally not I (cf. é’Té’ =

S §T = Q’Q’T, which again is generally

w

by (B3.19)). We also obtain
/T

L,
not ln (cf. BB’ = lp). Some investigating shows that there is generally no
unique rotation in E that maps the orthonormal set A’ into B’. This is
because generally we require n~1 2 p for non-degenerate eigenvalue structures¥
in the SVD.

Suppose, however, that we remain within the subspace of En spanned by é'
and that spanned by B’. We then rotate A’ within the subspace spanned by the
vectors of A’. At the same time we rotate B’ within the subspace spanned by
B’. All the while these rotations are going on we monitor COREL in (D1.3),
where the gj and Ej are now elements of the rotated A’ and rotated B’. There
will generally exist an orientation of A’ and an orientation of B’ within
their respective subspaces that together will minimize COREL. For data inter-
comparison purposes this minimum COREL will give a measure of the closeness of

the subspaces spanned by A’ and B’ an hence the closeness of the temporal

evolutions of § and ﬁ. We now proceed to find this minimum COREL.

2. Minimizing COREL

Following the program outlined above, let R,S be nXn rotation matrices

such that

Ra.=a, , SB.=b, , j=1,...,p (D2.1)

* Thus it follows that the space En is generally too big for the two
orthonormal frames A’ = [gp °-° gp] and B’ = [B; *-* Bp] individually to
span it, leaving many ways in which each of these frames can be extended
to bases for En' For each extension there is a generally different
rotation between the extended bases.
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where Ej is in the subspace of En spanned by [gl,...,gp], and hj is in the
span of the [Ql,...,ﬁp]. The latter sets are defined in Appendix B. Thus, we
require that ij’hj be linear combinations of the gj’gj’ respectively. Thus,

for suitable numbers r,,, and s_ , we have:
jk jk

P
ij =R 9'—3 = kzl rjk Qe » I % 1, »P
(D2.2)
p -
2j =8 'EJ = kil sjk Ek y J=1,...,p

Moreover, we explicitly require that R,S do not change the lengths of the

gj’ﬁj when the latter are rotated. Thus we require of rjk’sjk’ that

P P
T
l1=aa.=(2 r., a Z r., o0, = X r? D2.3
2525 7 G2, Tk L Tie ) T 2 T 02:3)
T P
1=bb, = 2 s , j=1,...,p (D2.4)
=371 =y Jk
Hence for the two rotated sets A = [31""’§p]’ B = [Elr---’bpl’
COREL (A,B) = = ||A-B2
P
=2 3 (l-g?_.)
P oy 373
} [-( 2 T (E )]
= = 1- r,,o s,
o Gt Tt Gl Pinta
2 3 -3 3 I8 1 (02.5)
= = 1- r.,s. o .
Pjes1 =1 ey 32OV oFo
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Equation (D2.5) shows that COREL(A,B), for fixed gﬁ’ﬁm’ may be considered as a
function of the rj2 and sjm' We seek a minimum of COREL(rjz,sjm) subject to

the conditions (D2.3), (D2.4). These conditions can be written as

g g 2 (D2.6)
r¢<, = p .
j=1 e=1 4%
3 2.7)
s¢_ =p .
j=1 g=1 1"

Hence, if A,y are appropriate Lagrangian multipliers, we wish to simultaneously

minimize the set of numbers:

p p
)+A 2 % r?z +py I 2 82jm (D2.8)

¢(r.,,s. ) = COREL(r
%" jm i=1 2=1 i=1 2=1

i2’%jm
j’*Q’ m = 1,---,P

A necessary condition for this minimization is

8¢(r.2,s.m)

8rj2

8¢(r.£,s.m)

Js,
jm

=0 , j,2, m= «»P (D2.9)

|
[y
-

=0 , j,&, m=1,...,p (D2.10)

Applying these operations to (D2.8) we find, for j,Z, m=1,...,p,

p
ﬂ—:_g T g— =
arj£ P mi] sjmgﬁﬁm + P A rj£ 0 (D2.11)
P
3% _ _2 T 2 = 2.1
asjm P 2£1 rjﬁgﬁﬁm * P H sjm 0 (D2.12)
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Using (D2.2) we can reduce the summations to:

T
a,b, = A r, (b2.13)
-2~ 2 .
J J i ¢&m=1,...,p
T =us (D2.14)
3 jm )

Multiplying (D2.13) by o and (D2.14) by ﬁm’ summing over £,m, respectively,

and using (D2.2), we find: for j = 1,...,p,

p
T
2 o b. = A D2.15
(2 o) by = M, (p2.15)
i=1, P
P T
(2 ﬁmﬁm) Ej = pjhj (D2.16)

Here we have added subscripts to the p,A, as suggested by the algebra. Write

p
'P ' for I a aT (= A'A'T) (nXn) (D2.17)
L £ %f (=24

2=1

ji=1, P
't for 3 pg' (=8BT) (axm) (D2.18)
_B m=1 - =
Then (D2.15), (D2.16) become

Pb, = A.a, D2.19
—0=] JEJ ( )
P.a. = pu.b. D2.20
8%~ Mi2 ( )

These are the required equations governing Ej’hj' They form a pair of
simultaneous eigenvalue problems for the Ej’hj’ Aj and uj. The Ej’hj

satisfying these equations minimize COREL[A,B].
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3. Canonic Correlation Angles

A. To prepare for the numerical solution of (D2.19), (D2.20) and some

interpretations, observe that ga P, are projections* on the spaces spanned by

=B
the a's and B's respectively.
That is:
T _ T _

ga = Ba , BB = 25 (D3.1)
and in particular

?'d-a-_] = EJ ’ EBEJ = P‘J ’ j=1,...,p (D3.2)
and so, also,

T, _.T T, _,.T .

‘a‘_]?'a = E‘J ’ EJ'BB - EJ ’ j=1,...,p (D3°3)

From these properties it follows that, by operating on (D2.19) with a§ and

recalling (D2.3),
T .
a, (P.b.) =A, a.a, = A, , i=1,...,p

Similarly, operating on (D2.20) with §§ and recalling (D2.4),

T T
b, (P,a.) = W.b,b, = j, i=1,...
b, (_BgJ) Mibb, = W, y J=1,...,p

The left sides of these equations simplify by (D3.3) and are clearly equal to

Eghj so that we find

ab, =A, =4, , j=1,...,p (D3.4)

* In our introductory remarks we encountered P = A’A’T and gﬂ = B’B’T in

our search for rotations in En' We now see the true nature of these

matrices, i.e., they are projections and not rotationms.
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By this, the geometric interpretation of “j is that of the cosine of an angle
between gj and gj. This angle is ¢j’ the jth canonic correlation angle.
"Correlation" is used in the sense established by (A2.21), now in the temporal
domain (since ﬁj’hj are nXl vectors and "n" denotes in this study the number

of samples in time of a geophysical field).

B. We now reduce (D2.19), (D2.20) to forms readily evaluated numerically.

Operating on the left of each side of (D2.19) with P,, and similarly on (D2.20)

B

with ga’ and using these equations also to simplify the results, we find

BgPy by = Hiby (D3.5)
B—a I 7 j =1,---,P, (p+1,...,n)
P,Pg a; = Hia (D3.6)

=g 25 T Hj%
We may therefore solve either one of these for the respective “j’hj or pj,gj.
The other set of vectors then follows from (D2.19), (D2.20), as the case may
be. Observe that pj enters only as p?. Hence we take pj > 0, and the associated
angles ¢j are in the range 0 < ¢j £ n/2. We will comment on the extended j-range
in (D3.5), (D3.6), in §4, below.

To begin the calculations, consider (D3.6). Then by definition of matrix

products

(B2g

n
).. = %

157 F (), (B )2j , i,j=1,...,n. (D3.7)

From (D2.17), (D2.18), for i,j,2 =1,...,n,

P

(ga)iz = 2 am(i) am(z) (D3.8)
m=1
p 3

(Rgly; = I By (D) - (03.9)
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where a = [am(l),...,am(n)]T, m=1,...,p, as defined in (B3.17). Hence the
nXn matrix BGBB needed in (D3.6) is fully defined in terms of the orthonormalized
principal components of the data sets ﬁ,ﬁ. The remaining details of solution

of (D3.6) proceed as in any other eigenvalue problem.

4. Orthogonal Projections ga, BB on E

Observe that the routine solution of (D3.6), e.g., yields n (rather than
just p) vectors Ej’ We began our analysis in (D2.1) restricting attention
only to the first p vectors gj, j=1,...,p. Generally the remaining vectors

a y+-+.y a_ in (D3.6) are outside of the A’'-space and are associated with
—ptl -n

zero pj's. For example, suppose 3p+1’ is a non zero vector in the orthogonal
complement* of the A’-space. There are two cases (see Fig. D4.1 drawn for the

case n-1 = 3, p = 2): (i) either a

p+l

. . ’ ' . .
is in the B'-space or (ii) gp+1 is in

the orthogonal complement of the B’'-space. In case (i), 232P+1 = 2541 by

(D3.2), and then ga(g P = 0 by hypothesis and (D2.17). Hence

p2p+1) = Bodper
= 0. In case (ii), (Eﬂgp+1) = 0 directly (by (D2.18)) and so M

Hence in general the gj,j = pt+l,...,n belong to zero eigenvalues ”j' On the

Yp+1 pr1 O

other hand, those “j in the j range 1,...,p, that are zero, are of important
physical interest. An estimate of the number of such ”j will be made in §6 of
this Appendix.

We observe further that those gj,g belonging to distinct pj,pk are

k
necessarily orthogonal. To see this, multiply each side of (D3.6) in turn by
g? and gi, for an arbitrary choice of j, k = 1,...,p:
* En can be represented as a direct sum of the space spanned by A’ and

another subspace of En’ all of whose vectors are orthogonal to all of
those in A’. This subspace is the orthogonal complement of A’'. See,

e.g. Fig. D4.1.
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CANONIC CORRELATION ANGLES
FOR n-1=3,p=2

= cos Y
a7 COS Yozl
J3=cosY3=0
Ha*cosYig=O

Fig. D4.1
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T _ 9. T
ﬁj (gagpﬁk - pkﬁj.a.k (D4.1)
T _ o T

ay (P PBﬂj) = “jikﬂj (D4.2)

Now, the left sides of these equations are equal. To see this, we have from

(D4.1), (D3.3), and (D3.1):

T
E =

T
."P )P = a.P P.a.
=J JBge =j=B~k  “k=p=j

(The last equality follows from the fact that the transpose of a scalar results

again in that scalar.) Further from (D4.2),

= aip

T
(2, PR K

=p2j B2j

Thus the left sides of (D4.1), (D4.2) are equal. Therefore, from (D4.1)
(D4.2)
2 _ 2y I, =
(uj M) a3y 0
whence

a2, =0 , j#k.

Since the a; are by construction unit vectors (cf. (D2.3)), we may write

the preceding result as:

5§3k = ij , J,k=1,...,p. (D4.3)

In an exactly similar manner, we can show

g?gk =6, » dk=1,...p (D4.4)

when the associated eigenvalues pj,pk are distinct.
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Finally, and most interestingly, we have
j,k=1,...,p. (D4.5)

To see this, observe that from (D3.6) and (D4.3), we have, for j, k =1,...,p,

T = y2a1, = 2
8 (B,Pgay) = Myaa; = Bjd;,

The left side simplifies via (D3.3), (D2.20) for j, k=1,...,p,

T _ T _ T
(Ekgd) BB?.J' = g—kgﬂij = gkpjhj

On comparing these two results, (D4.5) follows.

When j = k in (D4.5), we return to (D3.4).

5. COREL via Canonic Correlation Angles

It is difficult to make a picture that illustrates (D4.3), (D4.4), (D4.5)
in a non-trivial setting. However, the sketch in Fig. D4.1 may be of help in
visualizing the relations for the case n-1 = 3, p = 2. Note that we use
"n-1 = 3" instead of "n = 3". This is in accordance with the fact that the
space of the vectors A’,B’ is actually an n-1 dimensional subset of En' (For
more discussion of this, see §6 below.)

Continuing to examine Fig. D4.1, we see that in the A’-space we have
a;,a, orthogonal to each other, as also are b;,b, in the B'-space. The rotating-
minimizing action on COREL (cf. (D2.8), (D2.9), (D2.10)) forces a; and by to
coincide at the intersection of the two subspaces, and constrains aj,b; to
remain normal to a,,b,, respectively. As a result, the canonic correlation

angle Y; measures the angle of separation of the two subspaces, a situation,
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by virtue of (D4.5), to be generally the case. In this way we see that (D2.5)

for the minimum value of COREL becomes, via (D3.4):

I~

COREL(A,B) =

]
it Mo

T
1-a.b.
( _j_j)

o

j=1

I
|
I Mo

(l-uj)

j=1

|
TN
1 Mo

(1-cosiy;) S COREL(A',B). (D5.1)

j=1

Observe that, in computing the ¢j’ we are using the Ej and gj of the the minimizing

frames A,B instead of the vectors of the original data-derived frames A’,B’.

6. Estimating the Number of Expected Zero Canonic Correlation Angles

A. When computing the canonic correlations “j’ some of them in the
range 1 £ j £ p will necessarily be of unit magnitude, indicating a corresponding
zero correlation angle ¢j. The more of these ¢j that are zero, the closer do
the subspaces spanned by A’ and B’ lie to each other, and the more of the time
series {aj(t): t=1,...,n}, j =1,...,p that can be represented by the {Bj(t):
t=1,...,n}, j=1,...,p. In what follows we give two ways of estimating the
numbers of ¢j expected to be zero. One way is exact via numerical procedures,

the other is approximate by general reasoning.

B. Exact Determination of s

From the general theory of finite dimensional vector spaces we have the
following theorem (Halmos, 1958, p. 19). Let P,Q be two subspaces of an

n-dimensional vector space. Let the dimensions of P,Q be respectively p,q.
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Let r be the dimension of the union of P and Q (the set of all linear combinations
of the pooled set of vectors in P and Q), and let s be the dimension of the

intersection of P and Q (the subspace of all vectors common to P and Q). Then
ptq = rt+s . (D6'1)

It can be shown that the dimension s of the intersection of P and Q is the
expected number of zero correlation angles.

This fact can be illustrated in Fig. D4.1. First of all we recall
(Appendix B, below (B3.22)) that space-centering the data sets reduces the
span of the A’,B’ vectors to a common n-1 dimensional subspace of En' For, if
we have {u(t): t =1,...,n} as the orthonormal basis of E in which the data

values of gj’ﬁj are represented, then

n
a. = 2 oa.(t)u) , j=1,...,p (D6.2)
But by space centering,
n
2 oa,(t) =0 , j=1,...,p (D6.3)
t=1 J
Hence we can write (D6.2), for j = 1,...,p, as
n-1
a. = 2 a.(t)[u(t)-u(n)] (D6.4)
25 oy u u
In a similar way we have, for j =1,...,p,
n-1
.= 2 B.(t) [u(t)-u(n)] - (D6.5)
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The set of vectors {u(t)-u(n): t =1,...,n-1} is easily seen to be linearly
independent, and therefore forms a basis of an n-1 dimensional subset of En.
In Fig. D4.1, the common n-1 dimensional setting for A’,B’ is drawn as three '
dimensional, and the latter basis sets have p = 2. In (D6.1), therefore, we
have p = q = 2. As drawn in the Figure, we estimate visually, that r = 3.
Hence s = (p+tq)-r = 4-3 = 1. The two vectors ap,b, are shown lying in the one
dimensional intersection of the A'-space (= P) and the B’'-space (= Q). Thus
Mz = cosyfp = 1, and Y = 0 between a, and b,.

We now return to the main thread of the argument leading to an exact
determination of s. The procedure is numerical. Start with the sets éé =
fa .- gp} and Bé = {Ql s Qp}. Hence in (D6.1), p = q. The number p of
linearly independent vectors in éé is assumed to be p and less than n-1. (If
p = n-1, then r = n-1 and s = n-1.) Note that, in general, p = min[n-1,p].
Recall that, by construction, the gj are pairwise orthogonal and of unit
length. We now determine r by starting with the estimate r = p. Then we take

B1 from gé and find its representation in the éé frame:
o.) o, . (D6.6)

Next, find ||B1-Bi||. If this is zero (say to within* £), then we conclude that

B is in the span of éé. If ||B -B’| > €, then B is not in the span of éé and
1 1 1

we add By to the éé-frame, and thereby produce a new orthonormal basis é’p+1,

using the Gram-Schmidt procedure. As a result of these examinations, we

update éé to éé+1 or leave it as éé, as the case may be. Next we take B, from

* For example € = 10 19,
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Eé and form its representation in the updated A’'-frame, find "Ez'ﬁé" , and
decide to augment the é’-frame or not. In this manner, we eventually go
through gé, pick up, say, a new vectors beyond éé and the end result is an
augmented A'-frame of dimension p+a. This p+a is, by construction, precisely

r. Then from (D6.1), since p = q,
s = 2p-r = p-a (D6.7)

" is our required exact determination of the number of zero canonic correlation

angles.

C. Approximate Estimate of s

The approximate estimate of s depends on the following two intuitive
insights into the growth of the dimension r with dimension p. The first
insight is as follows. When 2p is small relative to (n~1), then (with probability
1) the union of the subspaces spanned by two randomly chosen A’ and B’, each
of dimension p, has dimension r = 2p, and so by (D6.7), we have s = 0. As p
grows, r continues to keep pace with 2p and s remains zero until we reach
2p = n-1. The second insight is as follows. At this point, with probability
1, r attains the limit n-1 and it cannot grow larger than n-1; but of course p
can continue on to n-1. In this latter range, then, (D6.7) is of the form

s = 2p-(n-1). These two intuitions can be summarized succinctly by the formula:
s = (number of ¢j equal to zero) = max[0, 2p-(n-1)] (D6.8)

Since the total number of ¢j of interest is p (recall from §4 of this Appendix

that n-p are necessarily 90°, corresponding to ”j = 0), we also can say:

t = (number of ¢j greater than zero) = p - max[0,2p-(n-1)] (D6.9)
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The following table gives a simple illustration of these rules of thumb for

the case n = 10.

number of ¢j equal to 0° number of number of ¢j
P s = max[0,2p~-(n-1)] nonzero 43 equal to 90°
t = p-s n-p
1 0 1 9
2 0 2 8
3 0 3 7
4 0 4 6
5 1 4 5
6 3 3 4
7 5 2 3
8 7 1 2
9 9 0 1

From this we see that the desirable research setting is one in which n-1

exceeds 2p, so that s = 0. In this way there is no geometrically forced

coalescence of the spaces spanned by A’ and B’. Then, if COREL(A,B) is significantly
small under these conditions, the corresponding members of the A’,B’ frames of

the data sets would be close in temporal evolution, or at least could closely

represent one another by appropriate linear combinations.
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APPENDIX E
The Distribution of a Component of a Random Unit Vector in Ep

and its Link with the Distribution of the Correlation Coefficient

1. Introduction

The discussion in this Appendix provides a reference probability distribution
for the significance test in §7 dealing with the comparison of two eigenvectors
of a given pair of data matrices, § and g. The discussion, interestingly,
also informally provides a link between such a distribution and that of the
classical correlation coefficient between two samples from a population of

uncorrelated gaussian variates.

2. The Distribution of a Component of a Random Unit Vector in Ep

We construct a random unit vector in EP, P 2 2, as follows. We randomly
draw p samples from N(0,1). Let these be Yj’ j=1,...,p. Then the set of random
)%

P
variates {yj/( )3 yi j=1,...,p} comprises the components of a random
k=

1
unit vector in Ep' The squares of these components, namely

J

P
- 2 2
y. = y¢/ 2 ¥ (E2.1)
Fg=p K

are such that the y?, j=1,...,p are independent chi-square variates, each of

a single degree of freedom. Moreover, if we write (E2.1) as:

yo=—34 | j=1,...,p. (E2.2)
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where

P
A (E2.3)
k=1

k#j

82
j

then we recognize yj as a random variate with the beta distribution of 1 and
p-1 degrees of freedom. That is, in general, if x, is a chi-square variate
with k; degrees of freedom and x, is an independent chi-square variate with ky

degrees of freedom, then the pdf of y = x;/(x;+x,) has the form*

FCakatka))
y
T Gy )T (k)

p(y) = (1-y)¥k2"1 (E2.4)

In the case of (E2.2), since Y; and 62 are independent, and k; = 1 and kp = p-1,

we find,

I'(%p) -3
p(yj)dy- = Y.

%(p-3)
(1-y.) dy. (E2.5)
J T ()T (%(p-1)) J J J

for j =1,...,p, and 0 £ yj £1.
We are at present interested not in yj but x = ty?, the components of the
random vector. Moreover, it is clear that the pdf of yj is independent of j.

With this change of variables to x, so that 2xdx = dyj = Zy?dx, (E2.5) becomes

I'(kp) -
P(Yj)de = (1'-x2);"‘(P 3) 4
r)rix(p-1))
= q(x)dx (E2.6)
* For a derivation of this well known pdf, from first principles, see

Preisendorfer (1979), Equation (A50). Otherwise, see Rao (1973), p. 167.
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where -1 S x £ 1, aqd "x" denotes any of the components iy?. In this way we
attain the required distribution q(x) of the projection x of a random unit

vector on a fixed unit vector. The factor "2" in the differential connection
above was accounted for by going from the range 0 S yj £ 1 to the range -1 S x £ 1.
The integral of q(x) over the latter range is unity. By symmetry, the first
moment of x is 0, and by a simple calculation using (E2.6), the second moment

of x (its variance) is 1/p. This shows that the "widths" of the pdfs in

Figs. 4.1-4.8 go to zero approximately as 1/p%.

3. The Link with the Correlation Coefficient

The classical correlation coefficient arises in the following typical
sampling operation. Draw p random samples xl,...,xp from N(0,1) and again
another p random samples yl,...,yp from N(0,1), and then form the correlation

coefficient:

P P onk P 2 X
r=(2 x.y)/(2 x2)*( 2 y%) (E3.1)
je1 37 = K g K

This then is equivalent to the exercise in §2 above of finding the inner
product ETX of the two associated unit vectors formed via each xj or yj being
divided by the square root of the sum of squares of the X, Oor y, respectively,
as shown in (E3.1). A moment's thought will show that this inner product of
two random unit vectors X,y is equivalent, in the derivation of §2, to finding
the component of x along a fixed unit vector y, provided we reduce the number
of independent components of x by 1, i.e., from p to p~1. (In effect x now
lies in a variable 2 dimensional plane determined by it and y. Hence, as seen
from y's vantage, x has p-1 degrees of freedom, for p 2 3.) Thus we have at

once from (E2.6), on replacing "p" by "p-1":
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r(x(p-1)) -
a(r) = (1-r2) (-4

ré)rx(p-2))

» P23 (E3.2)
for -1 S r £ 1, which is the classical pdf for the sample correlation coefficient

for p pairs of random samples from an uncorrelated bivariate normal distribution

of zero population means.
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