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Marine Weather of the Inland Waters of Western Washington!

James E. Overland and Bernard A. Walter, Jr.

ABSTRACT. The mid-latitude, west coast marine climate of western
Washington is typified in summer by high sea-level pressure as part
of the North Pacific weather pattern and in winter by a sequence of
storms which originate to the west. Mean and extreme temperatures
are moderated by the proximity of the Pacific Ocean and Puget Sound,
resulting in an mean temperature of 4°C in January and 17°C in
August at Seattle.

Local variations in precipitation and wind are influenced by
both large-scale weather patterns and the region's topography. Fifty
percent of the annual precipitation for most of the inland region falls
in the four months from November through February, and less than five
percent falls in July and August; the driest region is to the northeast
of the Olympic Mountains. Over the inland waters, the winds flow from
high to low sea-level pressure in the direction of the local channels.

Recent studies by the University of Washington and PMEL on the
Puget Sound convergence zone, sea and valley breeze, precipitation .
patterns and local wind patterns are summarized. The storm which
resulted in destruction of the Hood Canal Bridge has shown that the
presence of the Olympic Mountains can induce a regional low-pressure
system in their lee which can result in strong surface winds over
the inland waters.

1Contribution number 595 from the NOAA/ERL Pacific Marine Environmental
Laboratory, 3711 15th Avenue N.E., Seattle, Washington 98105.



1. Introduction

The climate of the Puget Sound Basin in western Washington State is a
mid-latitude, west coast marine type. The source regions of the predominant
air masses reaching Puget Sound are over the Pacific Ocean; this produces a
moderating influence on the weather in both summer and winter. A prevailing
westerly-to-northwesterly flow of air associated with high sea-level pressure
in the eastern Pacific results in a dry season beginning in June and reaching
a peak in midsummer.! In the late fall and winter the high-pressure area
retreats to the south allowing a series of storms to cross the region, thus
effecting a wet season that begins in October, reaches a peak in winter, and
decreases in the spring. This winter pattern is occasionally interrupted by
the influence of continental high pressure which is accompanied by cold tem-
peratures and dry air.

Topography has a large influence on the weather of Puget Sound (Figs. 1
and 2). The region is flanked on the west by the Olympic Mountains and on the
east by the Cascade Range. The elevation of the region varies from sea level
on the Sound to 2500 m and higher in the mountains. The Cascades and the
Canadian Rocky Mountains shield Puget Sound from cold air masses moving south-
ward across Canada. To the west, the Willapa Hills (which 1lie south of Hoquiam,
Washington), the Olympic Mountains, and the Coastal Range on Vancouver Island
are effective in protecting the area from more intense winter storms that
reach the coast by forcing orographic precipitation on the western slopes
(Hobbs et al., 1975). The Strait of Juan de Fuca, the Strait of Georgia, and
the Chehalis River Valley provide low-level passages for maritime air to move
inland and are the primary determinant of surface winds.

The next section provides a climatological overview of air temperature,
precipitation, winds, and other important climatological variables for the
Puget Sound Basin. Section 3 discusses the synoptic or large-scale distribu-
tion and propagation of high and low sea-level pressure patterns that influence
the meteorology of western Washington. Section 4 provides a summary of a
number of regional meteorological phenomena that contribute to the climatology
of the region.

2. Climatological Summary

2.1. Air temperature

The yearly cycle and variability of monthly mean temperatures measured at
SEATAC Airport, 20 miles south of Seattle, are shown in Fig. 3. During the

The meteorological convention of specifying the direction from which the
wind is blowing is used throughout this memorandum.
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Figure 1. Location map for western Washington
and southwest British Columbia.
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summer months, afternoon temperatures at lower elevations are often 20°C to
25°C. Maximum temperatures reach 29°C to 32°C on a few days during a given
year; temperatures of 38°C or higher occur infrequently. In winter, tempera-
tures in the Puget Sound lowlands usually range from 3°C to 7°C in the after-
noon and from -2°C to 5°C at night. Almost every winter the temperature drops
to between -7°C and -12°C on a few nights, with the coldest weather occurring
during a few short outbreaks of cold, dry air from the north or the east.

The longest growing season, 190 to 220 days, occurs on the San Juan
Islands and in areas nearest to Puget Sound. Variations of several weeks in
the duration of the growing season can occur within short distances. Near the
water, the average date of the last 0°C temperature in the spring is mid-April,
and the average date of the first 0°C temperature in the fall is near the end
of October (Table 1). Temperatures of -2.2°C or Tower are usually recorded 15
to 30 days later (Phillips, 1968).

2.2. Precipitation

The moist maritime air that reaches the Washington coast in late fall and
winter is approximately the same temperature as the surface waters. Thus,
orographic 1ifting and cooling of these air masses moving inland readily
result in widespread cloudiness and precipitation. The mean annual precipi-
tation chart for western Washington illustrates the extreme horizontal var-
iation in precipitation (Fig. 4). The driest sections of the Sound are to the
northeast of the Olympic Mountains and receive 45 to 75 cm of precipitation
annually. Over most of the lowlands, annual precipitation ranges from 100
to 130 cm, increasing to 190 cm in the foothills and from 380 to 510 cm on the
wettest slopes of the mountains. Due to the mild weather of the Puget Sound
Basin, most of the precipitation below 500 m is in the form of rain. The
yearly cycle of rainfall measured at SEATAC Airport indicates that a large
variability of rainfall can be expected in any given month (Fig. 5). Fifty
percent of the annual precipitation for most of the inland region falls in the
four~month period from November through February. The combined rainfall for
the months of July and August is less than five percent of the annual total.

Since 1900 there has been a decrease and then an increase in the long-
term trend of precipitation. The ten-year mean rainfall for 1901-1910 at
Seattle was 87 cm; the mean then decreased to 70 cm for 1921-1930, and has
increased to 93 cm for the period 1961-1970 (Church, 1974).

Total snowfall in the Puget Sound lowlands is generally less than 25 cm
per year and normally occurs from November to March, with maximum amounts in
January.

2.3. Cloud cover and fog

The Puget Sound climate is characterized by a high percentage of overcast
days (Fig. 6). The number of clear or partly cloudy days each month ranges
from 5 to 7 in the winter, 8 to 14 in the spring and fall, and 17 or more in
the summer. Table 2 gives the average total hours of sunshine and mean daily

total solar radiation (in calories cm-z), by month for SEATAC.



Table 1.--Probability of freezing temperatures for

three stations in the Puget Sound region*

(at 0°, -2.2°, -4.4°C)

Spring Months

Fall Months

Station Temp. 90% 50% 10% 10% 50% 90%
Bothell 0°C Apr 18 May 13 June 7 Sept 12 Oct 5 Oct 28
(1931- -2.2 Mar 19 Apr 13 May 8 Oct 7 Oct 30 Nov 22
1952)
-4.4 Feb 7 Mar 8 Apr 2 Oct 22 Nov 15 -
SEATAC 0°C Mar 15 Apr 9 May 4 Oct 10 Nov 2 Nov 25
(1945- -2.2 Feb 5 Mar 9 Apr 4 Oct 26 Nov 17 Dec 16
1960)
-4.4 - Feb 9 Mar 9 Nov 20 - -
University 0°C Feb 26 Mar 23 Apr 17 Oct 26 Nov 18 Dec 11
of -2.2 - Feb 2 Mar 2 Nov 21 Dec 18 -
Washington -4.4 - Jan 17 Feb 19 Dec 3 - -

(1931-1960)

*After Phillips, 1968.
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Table 2.--Average total hours of sunshine and mean daily total solar
radiation for SEATAC Airport 1966-1975*% (in Langleys, by month)

Hours of 61 122 180 208 274 257 318 287 230 140 75 45
sunshine

Total solar 80 162 266 390 513 531 581 478 353 203 98 62
radiation

*After Critchfield, 1978.
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- Frequently during the summer and fall, fog or low clouds, 300 to 600 m
thick, form over Puget Sound and the Towlands during the night and dissipate
by afternoon (Table 3). In the fall, there is a high incidence of fog because
of radiational cooling at night. In the summer, cool, moist coastal air is
advected into the Strait of Juan de Fuca and northern Puget Sound resulting in
fog formation.

2.4. Wind and waves

Puget Sound wind patterns are influenced by mountain barriers and Tow-
level passages (Fig. 7). In southern Puget Sound the strongest winds come
from the south to southwest when the more intense Pacific storms move inland.
During winter, the occasional presence of high pressure over the interior of
British Columbia can produce strong easterly winds blowing down pressure
gradient through the Strait of Juan de Fuca (Reed, 1931). In summer, winds
are generally Tight in the afternoons; a northerly sea breeze develops over
Puget Sound and the lowlands, and a westerly sea breeze develops in the Strait
of Juan de Fuca. Over the Main Basin of Puget Sound, extremes in wind speed can

be expected to exceed 25 m s"1 once in 2 years, 40 m s-1 once in 50 years, and

45 m s 1 once in 100 years (Phillips, 1968). The wind statistics for SEATAC
are given in Table 4; wind statistics for other stations, including Bellingham,
Everett, and Olympia, are given in the Climatological Handbook, Columbia River
Basin States (1968). A study of regional wind patterns for western Washington
and southern British Columbia is given by Schoenberg (1983).

The time series of the N-S wind component and energy spectra derived from
a one-year record (1975-1976) of winds at West Point, a representative location
for the Puget Sound Main Basin, are shown in Fig. 8a (Cannon and Laird, 1978).
The energy spectrum of both the N-S and E-W wind components for winter (Fig. 8b)

shows peaks at 0.25 cycles day 1 (i.e., frequency of storm passage), and the
spectrum for summer (Fig. 8c) has a diurnal peak in the E-W component indicating
the dominant sea breeze/valley breeze influence between the Sound and the
adjacent lowlands to the east.

The height and dominant period of wind-waves are a function of windspeed,
wind duration, and fetch. An annual wave climatology for West Point (fig. 9)
was calculated from windspeed and duration from SEATAC and fetches for Puget
Sound (Skjelbreia, 1981) using relations from the Shore Protection Manual
(1973). The largest waves come from the south along the major axis of the
Sound during storm events. In addition, a large frequency of intermediate
height waves come from the southwest; in this case wave heights are fetch-
lTimited during the strong post-frontal southwesterly winds.

2.5. Air quality

In general, air quality problems are less serious in the Puget Sound
region than in other major metropolitan regions because of the proximity of
the ocean and the tendency for considerable advection north and south through
Puget Sound. However, pollutants accumulate during periods of stagnation when
light winds or stable stratification prevail. Since 1965, the Puget Sound Air
Pollution Control Agency has operated a network of monitoring stations through-
out the Puget Sound region to measure suspended particulates and concentrations
of 502, €0, and 03.
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Figure 8a. One-year time series of the N-S wind component for West Point.
For this chart a positive north component means the wind is from the
south (Cannon and Laird, 1978).
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WEST POINT WIND-WAVE ROSE

— T
MAXIMUM STORM CONDITIONS
HS =43 —_ T
Ts=4.4

]
MAXIMUM STORM CONDITIONS

Hg=4.0
Ts=4.2
MAXIMUM STORM CONDITIONS G\ PERCENT OCCURANGE
Hg=4.I 2 4 6 8 10 2
Ts=4.l
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i Hs=4.9 \T
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Hs=6.o \-——/
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CHARACTERISTIC WAVE
Hg (ft)
Tg (sec)
UP TO 1.0, Tg=2.0 ermecemes
He=1.0, Tg=2.0 TO Hg=2.5, Ts=3.5

OVER Hg=2.5, Tg=35

Figure 9. Annual wave climatology computed for West Point from the wind
climatology at SEATAC (Skjelbreia, 1981).
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Suspended particulate concentrations in the air over the industrialized
Duwamish Valley and the tide flats of Tacoma have regularly exceeded estab-
lished local and national standards since monitoring was initiated (Table 5
and Fig. 10). The long-term trend in suspended particulate concentrations over
the region decreased until 1976 and then leveled off or increased slightly from
1976 to 1979. Increases in particulates were observed in both industrial and
suburban residential areas in 1979, with seven stations exceeding the national

standard of 75 ug m-3. Monthly averages above 160 pg m-3 have been measured

in the two major industrialized areas.

0f the stations monitoring ozone concentrations, four of ten in 1978
and seven of nine in 1979 measured levels that exceeded national standards.
Ozone concentrations are higher in summer months due to more hours of
sunlight per day, with maximum concentration normally occurring 10-30 km
southeast of major urban centers.

Of the stations monitoring CO concentrations, ten of twelve in 1978 and
nine of thirteen in 1979 reported levels that on at least two occasions ex-
ceeded an 8-hour average of 9 ppm, the national standard. High ambient
levels of CO occur near congested areas where there is slow-moving motor
vehicle traffic and when low-level winds are light and stable meteorological
conditions exist.

Table 5.--Annual average concentration of suspended particulates!
for stations in the Puget Sound region 1972-1979*

Year Everett Duwamish Tacoma Auburn
1972 60 97 94 55
1973 53 111 82 63
1974 40 77 69 51
1975 36 66 54 38
1976 45 83 87 49
1977 43 94 91 54
1978 45 100 98 54
1979 50 101 107 62
t(ug m 3).

*(Puget Sound Air Pollution Control Agency, 1972-1980).
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2.6. Surface hydrology

- The mean annual flow for the major rivers of the Puget Sound region
varies greatly with Tocality (Williams et al., 1982). By far the largest
input is from the northern tributaries, with the Skagit River being the
largest single source (Fig. 11).

There are two periods of high stream flow each year (Fig. 12). One
occurs during the fall and winter, coinciding with the season of maximum pre-
cipitation. The other, in late spring and early summer, is caused by snow
melt in the mountains, augmented by rainfall. Streams rise to near or above
flood stage several times during each rainy season; the highest flood crests
occur in late fall and early winter. Stream flow also shows large variability
from year to year (Fig. 12b).

3. Large-scale Meteorological Characteristics

Throughout the winter the synoptic (large-scale) meteorology over Puget
Sound is characterized by a sequence of cyclonic (low sea-level pressure) dis-
turbances (Klein, 1957) that move over or to the north of the region. This
sequence is interrupted infrequently by anticyclones (high sea-level pressure
regions). Spring and autumn are transition periods when the frequency and
intensity of cyclones diminish and increase respectively. Summer is marked
by 1ight cyclonic activity and by long periods of anticyclonic influence due
to the intrusion of a high-pressure region from the north Pacific.

Winter cyclone tracks for the Northeast Pacific indicate that most of
the air masses affecting Puget Sound have their origin in the central Pacific.
While it is difficult to generalize all synoptic weather charts, two typical
storm types suggest themselves (Reed, 1932). In the first type, designated
L1 (Fig. 13a), pressure patterns are associated with a large and extensive
low-pressure area in the Gulf of Alaska and a series of accompanying cold
frontal systems. The center of the low pressure usually drifts slowly,
whereas the frontal systems advect rapidly across the Pacific, rotating
about the center of the low. The warm sector ahead of the front is usually
of small extent by the time it is in the vicinity of the coast; therefore,
classical warm fronts are often weak and diffuse although they are still
associated with stable air masses.

As the storms approach the coast, they are modified by the effect of the
continent (Lau, 1979). The surface features of the cold front in L1 often
rapidly approach the coast and slow, while higher level features continue to
move over Puget Sound. The severity of the weather associated with the front
is not always as great as it is when the storm system is over the Pacific.
Thus, it is often difficult to forecast the timing and severity of frontal
features over Puget Sound by extrapolating the speed of the storm while it
is over the Pacific. The CYCLES project is an extensive study of the meso-
scale and microscale organization and structure of clouds and precipitation
in storms affecting western Washington (Hobbs, 1978; Hobbs et al., 1980;
Parsons and Hobbs, 1982).
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Figure 12a. Mean annual cycle of discharge for Puget Sound's three major
tributaries (Williams et al., 1982). The period of record for the Skagit
was 1941-1979, the period for the Snohomish was 1963-1979, and the period
for the Puyallup was 1914-1979.
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C

Figure 13. Typical weather patterns affecting the Pacific Northwest
a) L1, b) L2, c) H1, d) H2 (Maunder, 1968; Overland, 1981).
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In the second type of storm, L2 (Fig. 13b), small disturbances form in
the central Pacific and move across the Pacific on a northeast trajectory,
commonly passing parallel to the coastline or crossing over British Columbia.
Such systems can rapidly intensify as they propagate north, seaward of the
coastline, and produce some of the most severe Puget Sound weather, such as the
Columbus Day storm in 1962 (Lynott and Cramer, 1966). A subset of this type
is small synoptic-scale cyclones or "vortices" that form in the western Pacific
behind major frontal bands such as L1 (Reed, 1979; Mullen, 1979; Locatelli et
al., 1982).

At some time during most winters an upper-level blocking ridge of high
pressure will develop over northwest Canada, accompanied by high pressure
over the Puget Sound region, Hl (Fig. 13c). As a result, there are clear
skies due to air mass subsidence induced by the high-pressure area, near-
freezing temperatures, and very stable air in the surface layer of the atmos-
phere (Overland and Walter, 1981).

The summer season in Puget Sound is influenced by marine air from the
Pacific moving over the region by way of the Strait of Juan de Fuca (Mass,
1982). From the end of June through August the synoptic situation is char-
acterized by a marine high-pressure system influencing the area, H2 (Fig. 13d).
This high-pressure influence leads to a dry season with many clear days, warm
temperatures, and prevailing winds from the west to northwest. Cyclonic
disturbances may still occur, but their severity is greatly lessened and their
frequency is likewise diminished compared to winter.

The spring season is not significantly different from winter except that
temperatures are higher due to increased insolation; the frequency of cyclonic
disturbances decreases, and their distribution over time is irregular. The
strength of the upper-level flow diminishes in intensity as spring progresses.

Autumn is another transition period. A common characteristic of early
autumn is the continuing influence of the Pacific high-pressure system in the
area. The high-pressure ridge eventually breaks down, shifting the prevail-
ing winds to southwesterly and strengthening the upper-level flow. With this
shift come the cyclones and fronts associated with winter.

The frequency of occurrence of these major map types is summarized by
Table 6 derived from Maunder (1968). During winter months, December through
February, lows predominate over highs by 3:1; type L1 forms 62% of the observed
lows. By contrast, for the summer months, July through September, type H2
dominates on 48% of the days. Further discussion of typical synoptic weather
situations for western Washington is given in Halladay (1970).
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Table 6.--Number of days per month with synoptic weather

patterns L1, L2, H1, H2*

Weather Month
pattern
J F M A M J J A S 0 N D YEAR
L1 14 10 7 12 7 4 5 5 5 14 10 13 106
L2 9 4 11 10 6 6 4 7 6 4 13 11 91
H1 4 2 3 0 1 1 1 1 3 6 3 4 29
H2 3 14 8 7 13 15 16 14 16 5 2 3 116

*Adapted from Maunder, 1968.
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4. Regional Meteorological Phenomena

4.1. Overview

Regional weather phenomena are the result of the superposition of forcing
on synoptic (1000 km), meso- (50 km), and local (5 km) scales. The inter-
action of synoptic-scale weather patterns and the topography of the region
determines mesoscale and local meteorological features. For example, the
Olympic Mountains affect wind and precipitation patterns because air mass
stability confines airflow to the Tow-level marine channels, the N-S-oriented
Cascade Mountains have a blocking effect on large-scale weather systems, and
the proximity of the inland waters to the Pacific Ocean to the west and the
highlands to the east of Puget Sound produces a strong diurnal variation of

the summer wind pattern due to generation of land and sea breezes and valley
winds.

The mountains restrict the free movement of air at sea level, which
prevents geostrophic adjustment between pressure and wind, so that the earth's
rotation has little effect on the direction of the wind; winds blow predom-
inantly from high- to low-pressure in a direction dictated by the orientation
of the low-level channels. Since Puget Sound is oriented at approximately a
right angle to the Strait of Juan de Fuca, high pressure to the east gives
easterly (i.e., down-gradient) winds in the Strait of Juan de Fuca and light
winds in Puget Sound, while low pressure to the north gives strong southerly
winds in Puget Sound and Tight winds in the central part of the Strait of Juan
de Fuca. Wind speed (in knots) for the Strait of Juan de Fuca is roughly ten
times the difference in the sea-level pressure (in millibars) at Bellingham
and Quillayute; the wind speed for Puget Sound is roughly ten times the dif-
ference in pressure at Olympia and Bellingham (R. Anderson, personal communi-
cation; Overland, 1981).

Because of the different orientation of Puget Sound and the Strait of
Juan de Fuca, a frontal passage can lead to differing time sequences of winds
in the two regions (Church, 1938). For a typical example (Fig. 14), at 0500
Pacific Daylight Time (PDT), the Towest sea-level pressure is at the coast,
which creates east winds in the Strait of Juan de Fuca. By 1100 PDT, the
front has passed over the inland waters, and pressures are beginning to in-
crease to the south behind the front giving rise to southerly winds in Puget
Sound. By 1700 PDT, the front has passed to the northeast of Bellingham, and
pressures have increased at the coast reversing the wind direction to westerly
in the Strait of Juan de Fuca. Thus, the winds in Puget Sound have increased
and then decreased from the south during the frontal passage, while the wind
direction in the Strait of Juan de Fuca has reversed from east to west.

The following sections review studies that have recently led to a consider-

able increase in understanding of the factors affecting the meteorology of the
Puget Sound region.
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4.2. Gap winds and bora

Several times during most winters a cold high-pressure area is es-
tablished east of the Cascade Mountains with a Tow-pressure system offshore
(Fig. 15a). This situation results in a large east-west pressure gradient
over the Puget Sound region and the formation of locally strong and at times
destructive winds. Reed (1931) applied the term "gap winds" to the strong
easterly winds observed in the Strait of Juan de Fuca under these conditions
and characterized these winds as "not being, properly speaking, gradient winds
in that geostrophically balanced pressure gradients are totally inadequate
alone to account for the velocities observed." He defined "gap winds" as the
flow of relatively homogeneous air in a sea-level channel with a source region
or reservoir at one end. A component of the pressure gradient parallel to the
channel causes the flow to accelerate along the channel. Reed also concluded
that the high velocities in the Strait of Juan de Fuca were due to a venturi
effect caused by the converging sides of the channel.

In a more recent investigation of gap wind conditions, Overland and
Walter (1981) combined high-resolution, Tow-Tevel (50-m) wind fields derived
from aircraft flights over the Straits of Juan de Fuca and Georgia with surface
data and upper-air soundings. It was found that the presence of converging
sides of the channel was incidental to the increased wind speeds and that
acceleration due to the pressure gradient along the channel alone was suffi-
cient to explain the observed wind magnitudes. An example for the period
2040-2400 GMT 23 February 1980 is shown in Fig. 15b. Winds in the Strait of
Georgia were light and variable where the pressure gradient was flat; in the
eastern part of the Strait of Juan de Fuca the flow was generally disorganized
but tended to have an easterly component. In the central and western portion
of the Strait of Juan de Fuca the component of the pressure gradient along the
axis of the channel remained nearly uniform, while the winds increased to

14 ms 1 at the entrance to the Strait. Vertical wind speed measurements from
the aircraft indicated that subsidence was occurring over the inner part of
the Strait of Juan de Fuca and the Strait of Georgia, whereas vertical motion
was upward west of 124°20'W.

For the inland waters of Puget Sound and the Strait of Juan de Fuca, the
acceleration of the wind provides the primary balance to the component of the
sea-level pressure-gradient force imposed by the synoptic weather situation
along the direction of the various channels. For flow at constant height the
increase in wind speed due to a constant sea-level pressure gradient is given
by the Bernoulli equation:

2
uz_ Y% _ ap
277 p° )

where u is velocity, u

is an initial velocity, Ap is the pressure difference,
and p is a density.

0

A situation similar to 23 February occurred on 13 February 1980, but in
this case the major pressure gradient was situated over southern British
Columbia (Fig. 16a). The pressure gradient accelerated the cold, dry contin-
ental air from the interior of British Columbia through the Fraser River
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Figure 16. (c) Wind and dewpoint fields from surface and aircraft
reports 21-24 GMT 13 February 1980 (Overland and Walter, 1981).
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Valley near Vancouver (Fig. 16b). This dry air displaced the more moist,

marine air as it flowed across Georgia Strait and was ultimately channelled

out the Strait of Juan de Fuca (Faulkner, 1980). The change of dewpoint
temperature marked the air mass boundaries (Fig. 16¢c). The dry air maintained
an essentially constant velocity while spreading laterally and growing in

depth, as shown by a downstream increase in inversion height. The momentum
contained in the jet increased with downstream distance due to the presence of

a pressure gradient along the flow direction. The eddy-~like feature beyond

the entrance to the Strait of Juan de Fuca, which had 1ight SE winds to the west

of its boundary and strong (10-12 m s'l) winds from the E to the east of the
boundary, may have been due to the presence of a hydraulic jump. Vertical

wind speeds as recorded by the aircraft were downward at 1 m s_1 on the east
side and upward at 0.4 m s-1 on the west side of the boundary.

Another response of the flow in Puget Sound to pressure differences is
the creation of a downslope wind called a bora, which blows out of the passes
in the Cascade Range when high pressure exists to the east of the mountains.
Since the source region for the air in eastern Washington is often very cold,
the adiabatic heating of the air upon descent out of the passes is not suf-
ficient to raise the temperature to levels equal to ambient conditions in the
Puget Sound Basin, so the cold air spreads out over the lowlands. Reed (1981)
discussed a windstorm that led to a bora-1ike flow in Stampede Pass and gap
winds in the Columbia River Gorge. Figure 17 shows the extremely large
gradient of sea-level pressure in the vicinity of the Cascades for 28 Novem-
ber 1979. This gradient was for the most part fictitious, merely indicating
that the mountain barrier sustained a large pressure difference between the cold
air in central and eastern Washington and the warm air over western Washington.
An E-W cross section (Fig. 18) of potential temperature across the State of
Washington from Spokane (GEG) to Quillayute (UIL) showed the intense horizontal
temperature gradient that developed over and to the lee of the mountains as
the upper-level inversion tilted and lowered in the subsiding airflow.
Rewriting (1) using pressure coordinates gives:

u? u2 aD
2—='2'Q"ga—X'AX, (2)

where g is gravity, D is the geopotential height deviation from the standard
value for a particular pressure level and Ax is the difference in horizontal
distance between the end points of the trajectory. Calculations using Eq. (1)
in the Columbia River Gorge and Eq. (2) for flow in the lee of Stampede Pass
estimated sufficient wind magnitudes to account for those observed.

4.3. Orographic low-pressure formation in the lee of the Olympic Mountains

During the winter (December-February), synoptic weather patterns give
rise to S-SW flow conditions over the Puget Sound region 75% of the time.
When synoptic-scale winds are from the south-to-southwest, the Olympic Moun-
tains can induce the formation of a low-pressure area directly in the lee"
of the mountains over Puget Sound or the Strait of Juan de Fuca (Overland et
al., 1979), and Vancouver Island can induce low pressures over the Strait of
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Georgia (Myers, 1966). The importance of the presence of such a low-pressure
area was dramatically demonstrated on 13 February 1979 when the Hood Canal Bridge

sank during surface winds in excess of 50 m s 1. Reed (1980), who analyzed the
meteorological conditions for this event, found that although the gradient of
sea-level pressure at the bridge was strong due to the synoptic pressure
gradient, it was greatly enhanced by the formation of a mesoscale low-pressure
area in the lee of the Olympics (Fig. 19). In the restricted channels of
Puget Sound the air flow at the surface accelerated toward the low pressure
producing the observed high wind speeds. In contrast, Walter and Overland
(1982) made measurements with the NOAA P-3 aircraft on three days during

S-SW conditions in February and March 1980 (Fig. 20a-f) and found a region

of light wind speed and flat pressure gradient in the lee of the Olympic
Mountains and only slight troughing in the pressure field over the eastern
Strait of Juan de Fuca.

To explain this difference one needs to consider a non-dimensional number,
the internal Froude number, F, which compares the momentum of the incident
flow to the stratification of the flow. This number is the critical parameter
in determining whether the upstream air will go over (large F) or around
(small F) an isolated obstacle such as the Olympic Mountains. For a fluid
having continuous stratification the Froude number is given by

_V
F_h—'9 (3)

where V is upstream flow velocity, h is the height of the mountain, and N
the stratification parameter, the Briint-Vdisdld frequency,

de
=9 _¢€
Ne2 ee dz °® (4)

where g is gravity, 6_ is the equivalent potential temperature, and z is the
vertical coordinate. -~ The vertical derivative of equivalent potential tempera-
ture accounts for stratification due to moisture as well as ambient temperature.
On the three days discussed by Walter and Overland (1982), the boundary layer
was slightly stable throughout its depth with the internal Froude number in

the range F = 1.0-1.4. For the Hood Canal Bridge storm a smaller value of N
together with high upstream winds led to a calculated value for F of 4.6.

For strong relative stratification, the primary flow about an obstacle
is in quasi-horizontal planes (Fig. 2la and b) where the flow in each plane
is given by a two-dimensional potential solution defined by the contour of
the terrain at that level (Drazin, 1961; Riley et al., 1976; Hunt and Snyder,
1980). Small vertical displacements of the streamlines passing around the
side of the obstacle are due to the need for the potential energy to decrease
in order to balance the increase in kinetic energy of the flow around the
obstacle. Although the Froude numbers for the low wind studies in Walter and
Overland (1982) were in the range of 1.0-1.4, the pressure and wind fields
(Figs. 20 b,d,f) show qualitative agreement with experimental results for
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Figure 19. Regional surface map for 12 GMT 13 February 1979 (after Reed,
1980). Isobars are drawn at one millibar intervals (dashed at higher
elevations). Winds are in knots. Maximum gusts (G) at observation time
and in preceding hour are plotted below stations.
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lTow Froude number flow. However, from the magnitude of the isotherm displace-
ment in cross-section plots of constant 8 surfaces along the east side and in
the Tee of the Olympics, it was evident that the flow was approaching the
transition region between small and large Froude number theory.

For the case where F >> 1, Smith (1980) developed a hydrostatic linear
model for stratified flow over an isolated mountain. His results for a bell-
shaped mountain showed an asymmetric perturbation surface pressure field with
high pressure over the windward slope and low pressure on the lee side. This
pressure distribution caused the surface streamlines to be deflected around
the sides of the mountain and to maintain a permanent outward deflection
downstream. Horizontal divergence in the lee of the mountain caused a sinking
of warm air from aloft and a decrease in the vertical distances between down-
wind, low-level, constant-density surfaces. When this perturbation pressure
field is added to the background synoptic-scale pressure field (Smith, 1981;
Fig. 22), the result is in agreement with the sea-level pressure analysis for
parameters from the Hood Canal storm (Fig. 19).

Reed (1980) indicated that in the vicinity of the Hood Canal Bridge on
13 February 1979 the pressure gradient was a maximum of 6 mb in 15 km or

0.4 mb‘km_l. Comparison of the observed winds at the time of the bridge col-

lapse (from Reed, 1980, Table 2) with those calculated for a confined channel

from Eq. (1) and a value of the pressure gradient of 0.4 mb km_1
agreement (Table 7).

When the internal Froude number has a value on the order of 0.5-1.5, the
flow response in the lee of the Olympics will be relatively benign with 1ight
and variable winds. However, when the Froude number is of order 4-5, a closed
mesoscale low-pressure region will be induced in the lee of the mountains.

The flow at the surface in the restricted channels of Puget Sound responds by
a rapid acceleration toward low pressure to give extreme wind speeds in a
localized area.

shows good

4.4, Effects of orography on precipitation--the Puget Sound convergence zone

The surrounding mountains not only have a strong effect on the wind
fields but also on the precipitation patterns in Puget Sound as shown by Mass
(1981) and Parsons and Hobbs (1982). In the spring transition months (April-
June), when high pressure builds northward into the eastern Pacific Ocean, the
coastal winds change from a predominantly southerly to a northwesterly direc-
tion. As southerly winds veer to the northwest after a frontal passage at the
coast, there is a narrow range of wind directions and speeds (Fig. 23) where
the air will simultaneously flow eastward both north and south of the Olympic
Mountains. This flow pattern results in the formation of an area of con-
vergence over Puget Sound (Fig. 24). Mass (1981) studied 25 cases of this
convergence phenomenon and concluded that the controlling parameters were the
wind direction and speed on the Washington coast, aithough most convergence
zone events were also associated with weak atmospheric stability typical of
spring. He found that a convergence event was most 1ikely to occur when, for
four continuous hours, the Hoquiam wind direction was between 260° and 320°

and the wind speed ranged from 2 to 7 m s_l. Although convergence events can
occur any time of the year, they are most probabie from April to June when two
to four major events per month are expected.
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Table 7.--Comparison of winds reported by Reed (1980) in Hood Canal
14-15 GMT 13 February 1979 and those calculated from Eq.1*

Observed Calculated
Bridge 40 m s_1 40.5 m s_1
9.25 km SSW 30 33
18.5 km SSW 22.5 22.5 (assumed)

*Initial velocity used for the calculation is 22.5 m s L.
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Figure 23. Polar representation of the wind speed and direction at
Hoquiam, Washington, during ten convergence zone events (Mass, 1981).
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Figure 24. Streamlines over the Puget Sound area during the con-
vergence zone event of May 2-3, 1978 (Mass, 1981). The position of
the surface convergence line is indicated by a dashed line.
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A composite vertical structure of the convergence zone was constructed by
Mass (1981), who indicated that it is similar to that of a classical front.
Northerly winds enter Puget Sound and propagate as a wedge into the pre-exist-
ing southerly winds (Fig. 25). The windshift 1ine separating the opposing
flows slopes upward to the north. Enhanced clearing is observed both north
and south of the main convergence zone cloud band. Mass (1981) indicated that
the clear area north of the zone is due to subsidence associated with the
surface divergence created as air flow in the eastern Strait of Juan de Fuca
splits and moves both north into the Strait of Georgia and south into Puget
Sound. The clear region to the south of the zone is due to subsidence of air
in the mesoscale circulation set up above the convergence line.

The presence of the convergence zone has pronounced effects on the cloud-
iness, temperature, and precipitation patterns over the region, and its effects
can be seen in Figures 26 a-c, which are composites of these parameters for
the cases studied by Mass (1981) plotted with reference to the location of the
convergence line. Most of these convergence events showed a band of clouds
across central and northern Puget Sound with the southern boundary close to
the windshift Tine. These clouds were generally shallow, with tops between
1500 and 2500 m in the central Sound and 3000 m near the mountains. The
Towest cloud deck in the Sound frequently reached to the ground.

The effect of the convergence zone on precipitation can be seen in the
long-term climatology. Mass (1981) constructed a N-S cross section of monthly
precipitation for Puget Sound (Fig. 27). There is a normal annual cycle at
all stations except in the northern Sound where there was sustained precipita-
tion through May and June caused by convergence zone precipitation.

Parsons and Hobbs (1983) studied the effects of orographic features in
the Puget Sound region on mesoscale structures and precipitation processes in
different types of rainbands embedded in synoptic-scale storms as they pass
across the region. They studied warm-frontal, warm-sector, narrow and wide
cold-frontal, and post-frontal rainbands and found that the influence of
orography was dependent on the rainband type, the size of the orographic
feature, and the airflow. Figure 28 shows that a large percentage of precip-
itation from warm-sector (i.e., pre-frontal) rainbands occurs at three coastal
stations due to slight 1lifting of the airmass and from post-frontal rainbands
at three stations about 100 km inland, where precipitation is considerably
enhanced over the windward slopes of the Cascades. Local airflow convergence
caused by the restricted flow in channels of the Puget Sound Basin also played
an important role in enhanced post-frontal precipitation.

4.5, Diurnal wind variations--the sea breeze and valley breeze

In the warm months of the year the wind field shows a strong diurnal var-
iation that is related to differential heating between the land and adjacent
waters and heating on the mountain slopes. Staley (1957) presents hodographs--
plots of the rotation of wind vector end points with time of day (Fig. 29)--
for July 1950, where resultant winds were derived by averaging components of the
wind observed at each hour during the day over a month. In the Strait of Juan
de Fuca, Port Angeles showed W-NW flow and counterclockwise rotation while
Victoria showed southerly and southwesterly flow with clockwise rotation.
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Figure 26. (a) Summary of the number of times the lowest cloud deck in
Puget Sound occurred in each composite zone during five convergence zone
events (Mass, 1981). (b) Temperature deviations (°F) from the Puget
Sound mean for each composite zone (Mass, 1981). (c) Summary of the
number of precipitation events that occurred in each composite zone
during ten convergence zone events (Mass, 1981).
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Figure 27. Annual variation of precipitation for the rain shadow and
northern, central, and southern Puget Sound regions (Mass, 1981).
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Figure 28. Percentage contributions to total precipitation at three
coastal stations (Long Beach, Moclips, Pt. Brown) and three inland sta-
tions (Chehalis, Elma, Olympia) from warm sector, narrow cold-frontal, _
wide cold-frontal, and post-frontal rainbands on 8 December 1976 (Parsons
and Hobbs, 1982). Note the large contribution from warm-sector rainbands
at the coastal stations and the large contribution from post-frontal rain-
bands at the inland stations.
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Figure 29. Resultant wind hodographs for stations in the Strait of
Juan de Fuca, north, central, and south Puget Sound for July 1950
(Staley, 1957).
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Analysis of the pressure oscillations at several stations (Staley, 1957;
Fig. 30) showed a diurnal component that reached its maximum and minimum later
at Tatoosh Island on the coast than at the eastern end of the Strait of Juan
de Fuca or in Puget Sound. Pressure differences between stations were greatest
in the afternoon and early evening driving the westerly sea breeze, but the
exact time of maximum pressure difference varied as different pairs of stations
were considered. For example, the pressure difference between Port Angeles
and Bellingham reached a maximum three to six hours after the maximum pressure
difference between Port Angeles and Everett.

Ideally, hodographs should be elliptically shaped, rotate clockwise with
time, and fall in strength during the night and increase during the day reach-
ing a maximum between 1330 and 1830 Local Time (LT). Superposition of other
factors related to topography, mean flow field, and valley or slope winds upon
the sea breeze, however, leads to distortion of this ideal shape and behavior
(Mass, 1982); the existence of counterclockwise hodographs must be attributed
to topographic constraints. For example, the maximum wind component toward
the Cascades during the day and toward Puget Sound at night would be expected
on the basis of upslope and drainage winds regardless of sea breeze. In cen-
tral and northern Puget Sound the winds turn clockwise on the eastern side and
counterclockwise on the western side of the Sound. A similar situation exists
in the Strait of Juan de Fuca, where Port Angeles on the Olympic Peninsula
shows counterclockwise turning while Victoria on Vancouver Island has an
oppositely directed hodograph. The figure-eight-shaped hodograph at Olympia
is interesting because Olympia is situated at the boundary between two
regional sea breeze circulations; it is influenced by the Chehalis Gap to
the south and Puget Sound to the north.

5. Summary

The mid-Tatitude west coast marine climate of the Puget Sound region is
typified in summer by a pattern of high pressure and in winter by a sequence
- of storms that originate over the ocean to the west. Local variations in
climatic indicators such as precipitation and wind are substantially influ-
enced by the region's topography. The maximum precipitation occurs in early
winter which results in a bimodal distribution of runoff into Puget Sound:
there is a winter maximum associated with increased rainfall and a late spring
maximum associated with snow melt. The proximity to the Pacific Ocean and the
presence of Puget Sound has a moderating influence on extreme temperatures in
both summer and winter. Over the waters of Puget Sound the winds near the
surface flow from high to low sea-level pressure as imposed by the large-
scale or regional weather pattern. Several local wind phenomena are important,
the most notable being the formation of an orographically induced, mesoscale
low-pressure region in the lee of the Olympic Mountains during strong onshore
winds associated with major coastal storms. Such an event produced winds in

excess of 50 m s-1 in a localized area of Puget Sound at the time of the
destruction of the Hood Canal Bridge.
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Figure 30. Average sea-level pressures at each hour of the day for
July 1950 at Tatoosh Island (TTI), Port Angeles (PAE), Everett (EVE),
Bellingham (BLI) (upper four curves); and sea-level pressure differences
"between Port Angeles and Bellingham, Port Angeles and Everett, and
Tatoosh Island and Port Angeles (Staley, 1957).
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