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1.0 SUMMARY

The most significant environmental issue of the next century will be
systematic changes in the earth's climate due to increases in the atmospheric
burden of carbon dioxide. This secular increase is the result of the
burning of fossil fuels and massive deforestation currently underway.

Since 1958, the gtmospheric CO, concentration has risen from about 315 ppm
to about 343 ppm; an average rate of 0.4%/yr. Current wisdom places the
preindustrial atmosphere at 270 * 10 ppm.

The major repositories for anthropogenic CO, are the oceans and the
atmosphere. Of the total that has been released, approximately 50% resides
in each of these reservoirs. Recent calculations suggest that the terrestrial
biosphere has been a source, approximately equal in magnitude to the
cummulative fossil fuel input during the past 150 years. Potentially the
oceans represent a large reservoir for CO; because of the carbonate equilibria.
However, only the surface layers are in equilibrium with the atmosphere,
the remainder will be slow to come to equilibrium because most of the
oceanic reservior is isolated from the atmosphere. The uptake of CQO, by
the oceans ultimately depends on the rate of vertical convection and
mixing within the ocean thermocline, which in turn is coupled to large
scale wind-driven and thermohaline circulation. Because the ocean thermo-
cline is not stirred uniformly, we believe that the assimilation rate of
€O, will be temporally and spatially variable. Thus, model predictions of
the current CO, inventory as well as the uptake rate depend critically on
the details of near-surface ocean circulation.

The distributions of freon-11, as a surogate tracer, have been combined
with precise measurements of total carbon dioxide, total alkalinity,

oxygen, nutrient and hydrography in order to estimate the amount of excess



CO, in the subarctic waters of the North Pacific gyre. The approach we
employed utilizes the F-~11 profiles to determine apparent vertical mixing
parameters. These parameters were input into a horizontally averaged,
one-dimensional vertical diffusion model along with a carbon dioxide
source function to provide model predictions of anthropogenic (excess) CO,
concentrations. These predictions were compared with observed estimates
of excess COz, based on the back-calculation method using station data.
The results show very good agreement between the modeled profiles and
the calculated data for all stations north of the subartic front. In the
region of the fronf; the model assumptions are apparently not applicable
due to the significance of lateral mixing. Our calculations indicate that

15 g of excess carbon, or about 2% of the total estimated

approximately &4 X 10
fossil-fuel-derived carbon input now resides in the mixed layer and thermocline

waters of the North Pacific gyre.



2.0 INTRODUCTION

The most significant environmental issue of the next century will be
systematic changes in the earth's climate due to increases in the atmospheric
burden of carbon dioxide (NRC, 1979; 1982). This secular increase is the
result of the burning of fossil fuels and massive deforestation currently
underway (Broecker and Peng, 1982). Since 1958, the atmospheric CO,
concentration has risen from about 315 ppm to current levels of 343 ppm,
or an average rate of 0.4%/yr. Present day estimates place the preindustrial
atmosphere at between 260-280 ppm(v) (DOE, 1983).

The major repositories for anthropogenic CO, are the oceans and the
atmosphere. Of the total that has been released, it is believed that
approximately 50% resides in each of these reservoirs (Broecker et al.,
1979). Current wisdom suggests that the terrestrial biosphere was a
significant source, approximately equal in magnitude to the fossil fuel
input (Broecker and Peng, 1982), but the major contribution now is the
burning of fossil fuels. Potentially the océans represent a large reservoir
for anthropogenic CO, because molecular CO, reacts with dissolved carbonate

ions according to the reaction,
CO, + CO%§ + Hy0 = 2HCOj3 . (1)

However, only the immediate surface layers are in equilibrium with the
atmosphere (Broecker et al., 1979). The oceans as a whole will be slow to
come to equilibrium because most of the oceanic reservior is isolated from
the atmosphere (Bolin, 1960; Keeling, 1973; Broecker et al., 1971). The
uptake of CO, by the oceans ultimately depends on the rate of vertical
convection and mixing within the ocean thermocline, which in turn is

coupled to large scale wind-driven and thermohaline circulation (Sverdrup



et al., 1942). Because the ocean thermocline is not stirred uniformly, we
believe that the assimilation rate of CO, will be temporally and spatially
variable. Thus, model predictions of the current CO, inventory as well as
the uptake rate will depend critically on the details of thermocline
circulation.

The atmospheric concentration of CO, is a function of the rate of
release of CO, to the atmosphere and its subsequent uptake by the oceans,
assuming that the terrestrial biosphere is a source. Since the ocean,
potentially, represents the largest repository for CO,, the question
becomes two-fold. The first is how much anthropogenic CO, is now in the
oceans and secondly, where and at what rate is CO, being transported into
the ocean? Because of complications in ocean circulation, the former may
be easier to answer than the latter. In lieu of direct measurements of
excess CO,, the current inventory has been estimated separately from the
distributions of various transient tracers (Oeschgar et al., 1975; Broecker
et al., 1980). The tracers commonly applied to this problem are the
traditional bomb transients (e.g., 3H, 1%C), but 85Kr and chlorofluoromethanés
may also be appropriate (Broecker et al., 1980; Gammon et al., 1982). The
‘usefulness of these various tracers lies in their known source functions
and predictable behavior in the oceans. Using very simple models (e.g.,
box and continuous), these tracers are capable of defining one or two
dimensional mixing characteristics that are needed to pre&ict CO, coupling
between the ocean and atmosphere (Bolin, 1960; Craig, 1957; Broecker et
al., 1971; Keeling, 1973; Oeschger et al., 1975; and references contained
therein). None of these models attempts to explain the physics of mixing,
but is used diagnostically to predict CO, inventories and uptake rates

based on parameterized transport coefficients.



It is important to note that none of the studies to date has attempted
to correlate model predictions with excess CO, concentrations. The principal
reason that this has not been done is the difficulty in reliably measuring
the anthropogenic CO, signal in the oceans. However, some progress has
been made in recent years on the precise measurement of total CO, and it
is now possible to make estimates of excess CO, (Brewer, 1978; Chen and
Millero, 1979).

In this report we summarize our investigations of the distribution of
excess CO, in the subarctic gyre of the North Pacific. The approach we
used is to estimate the concentration of excess CQO, from precise measurements
of total dissolved inorganic carbon, total alkalinity and nutrient concentrations,
followed by the determination of apparent vertical mixing parameters from
the distributions of F-11. This infofmation is then combined iteratively
to predict the excess CO, concentration in the main thermocline over the

North Pacific (> 40°N).

3.0 METHODS

3.1 Analysis of F-11

Water samples were collected in rosette-mounted syringes (Cline et
al., 1982), fitted with Ni plated brass stopcocks and 13 ga. needles. The
syringe was partially filled with seawater purged of freons to reduce the
blank. Prior to lowering the rosette, the stopcocks were opened and the
"zero'" water forced from the sampler. On completion of the cast, the
stopcocks were closed, needles removed, and samplers placed in a stainless
steel tank filled with fresh seawater. The samples remained in the holding

tank until analysis was complete, typically six hours.



The analytical system is similar to that described by Gammon et al.
(1982). Dissolved gases were purged from 30 ml aliquots of the sample
with purified nitrogen gas (Swinnerton and Linnenbom, 1967). The purged
gases were dried by passage through K,CO; and concentrated in a "U" trap
(0.32 cm o.d. dia. stainless steel tubing) packed with Porasil C and
maintained at -80°C. The trap was heated to approximately 85°C to release
the freons for subsequent GC-EC analysis.

An initial separation of sample gaées was accomplished with a short
(~10 cm) precolumn of Porasil B (50°C). The primary function of this
first precolumn was to partition the chlorofluoromethanes from the more
slowly eluting compounds. This also permitted the quantitative retention
of F-12 and N30 on a 10 cm column of Molecular Sieve 5A (130°C) isolated
by a four port valve, before F-11 had passed through the first precolumn.
Once the F-11 had reached the detector, the column was opened to carrier
flow and the separation of F-12 and N,0 was completed.

. Final separation and detection of the freons were carried out on é
Hewlett Packard 5730A gas chromatograph equipped with a constant current
electron capture detector (15 pC ®3Ni) and a 3 m column of Porasil B.
Detector response was quantified on a Hewlett Packard 3388A integrator.
Standard gases and atmospheric samples were analyzed in the same manner.

The primary standard gas was calibrated by R. Rasmussen (Oregon
Graduate Center) and Paul Goldan (NOAA Aeronomy Laboratory, Boulder).
Cryo-pumped whole air samples were periodically collected at sea and used
as secondary standards.

An examination of more than 100 duplicate analyses indicates a precision

of #0.02 pM/L for F-11 and F-12.



3.2 Analysis for Total Carbon Dioxide, Total Alkalinity and Nutrients

Total carbon dioxide (TCO,) and total alkalinity (AT) were determined
from discrete water samples employing the potentiometric titration
procedure described by Bos and Williams (1982). The method is based upon
techniques developed by Gran (1952) and later modified by Dyrssen and
Sillen (1967) and Edmond (1970). The titrations were performed with 0.25N
Baker analytical grade HCl standardized against gravimetrically prepared
sodium borate decahydrate solutions.

Water samples were collected in 30-L Niskin bottles and immediately
transferred into 1-L glass stoppered bottles to which 1.0 mL of a
saturated solution of HgCl, had been added to retard bacterial oxidation
of organic matter prior to analysis. The samples were stored in a dark,
cold-storage room at 4°C for as much as 12 hours. The samples were
analyzed by the potentiometric method described above using a Brinkman
E636 Titroprocessor linked to a Hewlett-Packard 85 computer. The data
from the titroprocessor were automatically fed into the computer and
processed using the modified Gran equations described in Bradshaw et al.
(1981). Alkalinity contributions from boric, silicic and phosphoric acid
were computed from equations similar to those presented by Takahasi et al.
(1982) in the GEOSECS Pacific Expedition Report. Total borate
concentration was computed using the relation of Culkin (1965). The first
and second dissociation constants of carbonic acid and the first apparent
dissociation constant of boric acid are from Almgren et al. (1977).
Potassium chloride was used to adjust the ionic strength of the sodium
tetraborate decahydrate standards to 0.7. At each station a blank was
determined by titrating aliquots of a KCl solution containing no borate.

The average blank was 4 peq/L.



Figure 3.1 shows the station locations and Appendix 1 gives listings
of the station number, depth, salinity, temperature, oxygen, nutrients, AT
and TCO, for the NOAA data from the western, central and eastern North
Pacific cruises. For the eastern North Pacific TCO, and AT data the
analytical procedures are described fully in Chen (1982).

Samples for nitrate, phosphate and silicate were collected in 250 ml
amber Nalgene bottles and immediately frozen for subsequent colorimetric
analysis by thé methods of Strickland and Parsons (1972) employing a

Technicon Autoanalyzer.

4.0 MODELS

4.1 Vertical Diffusion-Advection Model

The distribution of a time dependent, non-conservative, chemical

tracer is given by the equation (Sverdrup et al., 1942),

C, =‘KH{Cxx + ny} +KC,, -uC - va - wC_ - R, (2)

where the subscripts indicaté the first and second derivatives with respect
to the space variables. The mean velocities in the x, y, z directions are
u, v, and w; the horizontal and vertical eddy diffusivities are given by
KH and Kv. Any internal source or sink term is represented by R. Equation
(2) is rarely solved in the above form because of insufficient temporal
and spatial data, therefore simplifications are required.

The principal objective in the study is to predict the inventory of
excess CO,, using the simplest possible model. The first assumption is
that the downward migration of CO, or freon-11 can be treated as a diapycnal

process in the subarctic gyre. This is a reasonable assumption since deep
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isopycnal outcropping is not prevalent anywhere in. the North Pacific
(Reid, 1973), nor is there deep convection. This is not to say that
vertical diffusion is the most significant process, but rather that the
net effect of all transport terms can be parameterized in terms of a
simple, one-dimensional vertical diffusion model (Broecker and Peng,
1982). 1In reality, gaseous tracers such as freon-11 and CO, are probably
responsive to winter mixing in the western North Pacific. Once injected
below the seasonal thermocline, the tracers then can be recirculated in
the subarctic cyclone (Cline et al., 1984). There also may be lateral
transport of freons at depth from the northern part of the subtropical
gyre, but we cannot evaluate the significance of this process at the
present time. The net result is thaﬁ the one-dimensional model over-
whelmingly simplifies the physics of mixing and transport, but retains its
diagnostic value.

With the assumption that the horizontal terms are either zero or they
uniquely cancel each other, and that freons are conservative, eqn. (2)

reduces to

Ct = chzz - wCz (3)

where C is the concentration of F-11. The solution to equation (3) for

constant Kv and w is

C(z,t) = exp(-wz/2K ) J':; F(t") G(z,t-t )dt” (4)

where G(z,t-t") = TR (:-t')3 exp{-22/4Kv(t-t') - wz(t-t)/4Kv}
v

The initial condition is that C(O,t) = F(t’) and boundary conditions are
the C(z,0) = 0 and C(»,t’) = 0. These initial and boundary conditions are

appropriate, since F-11 has no known natural source in the ocean and its

10



history in the atmosphere is short compared to the ventilation time of the
deep sea (Gammon et al., 1982). To evaluate the integral given in (4) the
source function for F-11 must be known.

Our best estimate of the historical growth of F-11 in the atmoshpere
is that derived from industrial release data (McCarthy et al., 1977) and
the recent measurements of Khalil and Rasmussen (1981). By correcting the
release rate for stratospheric loss, the industrial releases can be made
to coincide with observations made subsequent to 1975 (Gammon et al.,
1982). These results are shown in Fig. 4.1 and are applicable to 45°N
latitude in the eastern North Pacific.

The surface concentration of F-11 is directly proportional to its
atmospheric partial pressure, C' = Bp, where B is the Bumnsen solubility
coefficient and p is the atmospheric mixing ratio. The Bunsen coefficients,
a function of salinity and temperature, were calculated from the measurements
of Wisegarver and Cline (1984). Although the solubility dependence on
salinity was not specifically determined, this error is estimated to be
less that 3% for the range of salinities encountered in the North Pacific.
The source function, F(t’), is the product of the atmospheric mixing ratio
(Fig. 4.1) and the Bunsen coefficient. The Bunsen coefficient is largely
a function of temperature, which was chosen at each station from the mean
annual value at the base of the winter mixed layer (Robinson and Bauer,
1976; Levitus, 1982). 1In reality, gas exchange and vertical transport are
enhanced winter by winter cooling and deep wind mixing, hence our choice
of the mean annual temperature at the base of the winter mixed layer is an

attempt to average a seasonal process.

11
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4.2 Vertical Mixing Parameters Derived from the Distribution of F-11

The distribution of F-11 is used as a diagnostic scaler to determine
the apparent vertical eddy diffusivity. This parameter is then used in
conjunction with an estimaté of the anthropogenic CO, source function to
determine vertical profiles of excess CO,. To demonstrate how this is
accomplished, we will calculate Kv for station P’ located in the eastern
North Pacific.

Station P’ was sampled repeatedly between 2-10 December 1980 for the
distribution of F-11 and F-12. The model fit to these observations are
shown in Fig. 4.2. The solid line indicates the best model fit (eqn. &)
to these data for Kv = ~-9.4 X 10+3w + 0.35 (cm®/s), where w is the apparent
vertical velocity (w < 0 upwelling). Unfortumately, the distribution of
freon-11 is not particularily sensitive to specific values of Kv and w,
but rather to their ratio or the scale height. The introduction of additional
tracers not linearly dependent on F-11 might be useful in determining
individual values of Kv and w, but clearly F-12 will not serve this purpose
at P’ (see inset Fig. 4.2). However, our intention is not to detail the
physics of mixing, but rather to predict the net effect of vertical transport.
To accomplish this end we ignore the convective term (i.e., w = 0) and
simply describe the vertical distribution of F-11 with the flux divergence,
which at this station is 0.35 cm?/s.

Using the simple one-dimensional model described above, we fit the
observed distributions of F-11 at the stations shown in Fig. 3.1. The
results of these calculations are shown in Table 4.1. In general, apparent
vertical eddy diffusivities increase toward the south, with the smallest
value (0.04 cm®/s, Sta. WNP-20) found along the southern boundary of the

Alaskan stream. This trend is expected from a2 one-dimensional model

13
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Figure 4.2 Freon-11 distribution at station P' in the North Pacific gyre.
The inset shows a plot of freon-11 versus freon-12 concentrations
at this station.
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Table 4.1. Vertical mix;ng parameters in the North Pacific. The apparent
vertical eddy diffusivity (Kv) and velocity (w) were obtained from a
one-dimensional analysis of F-11. This tracer predicts the relation-
ship Kv = a'w + K;, where a is the scale height. Setting w = 0, the
distribution is uniquely determined by the apparent vertical eddy

diffusivity, K;.

Sta. No. Lat Long. Kv
oN °E/W a'w K'
v
ENP
NP-40 40°01' 134°57'W -9.7 x 103w 0.70
NP-41 42°02" 129°55'W -—- 0.28
P’ 50°10" 140°15'W -9.4 x 103w 0.35
CNP
CNP-1 50°00" 169°59'W -9.5 x 103w 0.19
CNP-2 47°00' 169°59'W -1.2 x 104w 0.33
CNP-4 42°00' 170°03'W -1.4 x 10% 0.58
CNP-5 40°59' 170°01'W 2.7 X 10%w 1.9
CNP-6 40°01" 170°10'W -2.8 X 10%w 1.9
WNP
WNP-16 41°59' 165°03'E -—- -
WNP-18 45°19" 167°17'E -1.4 x 10% 0.54
WNP-20 49°57°' 175°00'E -4.8 x 103w 0.04

15



oOb|

1 1

009l 008l
1 1 1 1

0091
\

*(€961 ‘°T® 30
peawipo( 1913e) 9148 d>1JToed YIION 3Y) UT SwIIsAs Juaiind doflew Juimoys saurweaxls €% aan81g

3.0¥1

~

WY3YHlS
NYISVYIV

(|.o 21415vd °'N

~ A4y,

=~ vang

*d J110dvans

OIHSOUNY —a—

/ ~ OIHSVAD

e

loOmm

—oOb

16



because diapycnal processes are relatively more important within the
subarctic gyre, whereas to the south near the subarctic front downwelling
and isopycnal mixing become more significant (Roden, 1981). Because the
latter processes are more energetic, Kv must be scaled upward to account
for deeper penetration of the tracers. An apparent increase in Kv toward
the south is expected, based on circulation and salt budget considerations
within the North Pacific Gyre (Reid, 1965). There, the freshening of the
surface layers from surface precipitation and runoff must be balanced by
the vertical transport of salt if the salinity field is to remain stationary.
Salt is also transported laterally into the upper thermocline from the
subtropical gyre via the west wind drift and its northern extension, the

Alaska stream (Fig. 4.3).

4.3 (O, Source Function

The uptake of CO, by the oceans is more complex than that of freonms.
This complexity arises because gaseous CO, reacts with water to form the

aqueous species H5COj3, HCO;, co§, and dissolved CO,, or (pCO,) The

aq’
relative proportions of each are functions of the carbon dioxide and

borate equilibria (Mehrbach et al., 1973; Lyman, 1956; Millero, 1979;
Almgren et al., 1977). In practice, the concentration of each species can
be estimated from measurements of total carbon dioxide (TCO,) and alkalinity
and, of course, the equilbrium constants (Bradshaw et al., 1981). We are
principally interested in the partial pressure difference in CO, (i.e.,
ApCO,) across the air-sea interface, because it is this quantity that
determines the flux.

Seasonally and spatially, the magnitude and direction of the flux of

CO, is highly variable. This is due to local biological effects and to

17



surface warming and cooling, both of which influences the flux of gaseous
CO,. Thus, calculating a mean ocean flux of CO,, even locally, would
require a large data base. A more tractable approach is to assume that
the ocean surface is near equilibrium with the atmosphere, so long as a
suitable time average is taken. For our purposes here, that time need not
be less than one year, since shorter term changes couldlnot be tested
observationally (see below). In essence then, if the atmospheric growth
of CO, is known, then the partitioning of that CO, between the atmosphere
and the ocean can be calculated from known thermodynamic qﬁantities
(Takahashi et al., 1980).

Partitioning of CO, (equilibrium) between the ocean and the atmosphere

is given in terms of the Revelle factor, R, where,

1 d{gcozgl= dzTCOzE. 5)
R {pCO, TCO,
In this expression, TCO, is the sum of all carbon dioxide components.
Although R is a function of temperature and the carbon dioxide components,
we can assume that it has been relativley constant since pre-industrial
times for water masses of constant temperature. Under these conditions,

eqn (5) can be integrated over the interval of interest and yields the

expression

%gcozg /R _ %Tcozi, (6)
pCOz 0 TCOz 0

where the subscript 'o' reflects the initial boundary conditioms, i.e.,

the value of pCO, and TCO, in 1825. However, what we are actually interested
in is the change in fossil fuel CO, in the atmosphere since 1825, rather
than the whole of the CO, signal. Changing to a A-notation requires that

we substitute the following relationships into eqn (6)

18



{pC02} - {pCOz}¢ 7)

{TCO2} - {TCOs}o. (8)

{ApCO2}

{ATCO,}

We obtain after simplification and approximation the following:

_ 1 {Tco '
ATCOz = 3 {pC0-To ApCO, 9)

This equation predicts a linear relationship between the incremental
increase in atmospheric pCO, and dissolved TCO, in the ocean. As more and
more CO, is added to the atmosphere, R increases and the ocean's ability
to assimilate CO, is diminished. It should be emphasized that the reiation-
ship depicted in eqn. 9 holds only for a constant R.

Armed with the CO, source function and estimates of the vertical
mixing parameters, we are now in a position to calculate ATCO, profiles
for the North Pacific (>40°N) and compare them to observations derived
from TCO, and total alkalinity measurements. First, however, we describe

the method by which excess TCO, (ATCO;) concentrations are determined.

4.4 Back-Calculation Method for Excess CO,

Over the past few years several authors have employed a variety of
different techniques to directly measure or estimate the oceanic CO,
increase (Brewer, 1978; Chen and Millero, 1979; Chen and Pytkowicz, 1979;
Takahashi et al., 1983). The methods fall into two distinct categories.
The first method involves direct measurements of CO, increases in surface
waters from pCO, measurements made over time spans of several years to
tens of years (i.e., Takahashi et al., 1983). This method requires that

accurate and precise pCO, measurements be made at the same location over

19
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long time intervals which, with the possible exception of the data for the
North Atlantic, are not available in sufficient quantities to be useful

for this purpose. The second less direct method involves a back-calculation
of the CO, concentration of a parcel of water to its initial concentration
at the sea surface after corrections have been made for changes due to
biological decomposition of organic matter and dissolution of carbonate
tests (i.e. Brewer, 1978). Specifically, the method assumes that a water
parcel maintains a fixed degree of saturation with respect to atmospheric
CO, at the sea surface. When the water parcel sinks, total CO, (TCOp) is
added by respiration and carbonate dissolution. The respiration-induced
change in CO, can be calculated from the oxygen data employing the well-
known Redfield ratios (Redfield et al., 1963). The changes due to carbonate
dissolution are calculated from the alkalinity changes. By correcting the
data for these changes as well as for the preformed values of TCO, and

total alkalinity, estimates can be made of the CO, concentration of the
water parcel when it was last in contact with the atmosphere. These
back-calculated CO, concentrations are then compared to obtain the oceanic
€O, increase.

Both measurements suffer from relatively large uncertainties associated
with the quality of the data and, in the case of the back-calculation
method, natural deviations from the Redfield ratios (Shiller, 1981).
However, it is possible to combine models of atmospheric input along with
the direct measurement methods to make reasonable estimates of the fossil
CO, inventory in the oceans.

The method for back-calculating the excess CO, signal is similar to

the method reported by Chen (1982) and is summarized as follows:
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ATCO,° (pmol/kg) = TCO,° (present) - TCO,° (old)
= TCO,° (present)-[TCO, (measured) - 0.5 TA (measured)

- o AOU + 0.5 TA° (present)] (10)

where all quantities except AOU (Apparent Oxygen Utilization) are normalized
to 35% S; ATCO,° is a measure of the excess CO, signal; TCO,° (old) and

TCO,° (present) are, respectively, the preformed total CO, values for a
parcel of water formed sometime ago and for a water parcel formed at

present; TCO, (measured) and TA (measured) are the measured concentrations

of total CO, and titration alkalinity, respectively; TA° (present) is the
present day preformed TA value; o is derived from the carbon-oxygen
relationship for the data set presented in the manner prescribed by Chen

and Pytkowitz (1979). The calculation of ATCO, using the equation above

is subject to large uncertainties (Chen and Millero, 1979; Chen and Pytkowicz,
1979; Shiller, 1981; Chen et al., 1982). The largest uncertainty is in

the calculation of the TA® (present) and TCO,° (present) values. The data
from ENP, CNP, WNP (Appendix 1) indicate that TA° and TCO,° can be represented
by the following equations:

TA® (peg/kg) = 2361 - 1.2 6 (£10) 6 < 25°C (11)

IA

TCO$ (pmol/kg) = 2246 - 11 & (¥10) ©

IA

24°C (12)

where 8 is the potential temperature and the numbers in parentheses give

one standard deviation of the least-squares fit for the above equations.

These equations are valid only for the North Pacific gyre.
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4.5 Excess TCO, Model and Source Function

The one-dimensional model used to describe the vertical distribution
of freon-11 is simplistic and is not intended to describe the actual
mechanisms of vertical transport. At best, the model simply decribes the
sum total of all processes‘leading to the vertical propagation of freon-11
in terms of an apparent eddy diffusivity (Broecker and Peng, 1982). This
simple goal is, however, what we desire to accomplish, because our purpose
here is to predict how much excess TCO, is in the North Pacific, not
precisely how it got there. A much more elaborate model would be needed
to accomplish that purpose.

The model we will use to predict the vertical distribution of excess
TCO, is the same as that adopted for F-~11, except the atmospheric source
function is different. The assumption is that freons and ATCO, are conservative
tracers, and that their respective source functions are spatially uniform
between 40-55°N. This provides the freons with a unique characteristic
because both bomb transients were not introduced into the North Pacific in
a uniform way. This means that fhe source function for bomb-derived 3H
and 14C are both space and time dependent, whereas those for freons and
ATCO, are only time dependent, and better known.

To estimate the ATCO, profile for any specific location we need to
have an estimate of the amount of anthropogenic CO, added since pre-industrial
times as well as the rate at which it was added. The first of these can
be derived from an estimate of the pre-industrial pCO, concentration and
the Revelle faétor, while the second is obtained by an iterative procedure
until a match between the model curves and the observed ATCO, profiles are
obtained. We begin by calculating the amount of excess TCO, present in

the surface layers of the North Pacific subarctic gyre in 1980. This
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quantity is independent of biological cycling, although to determine it
analytically, one must account for seasonal changes in the TCO, pool.

We assume that the pre-industrial (1820) concentration of atmospheric
CO, was 270 ppm. In 1980 it was 340 ppm, hence the change has been about
70 ppm. The fraction of this CO, that now resides in the ocean can be
calculated from the equation (9) (Broecker et al., 1971). Setting R =
11.5 (5°C < T < 10°C), ApCO, = 70 ppm, [pCO,]° = 270 ppm, and [TCO,]° =
2010 pm/kg (see below), the concentration of excess CO, in the North
Pacific gyre is about 45 pm/kg. Having established theoretically and
observationally the present day concentration of ATCO,, we now only need
to determine how pCO, has changed historically to calculate the inventory
of excess CO, in the North Pacific gyre.

The time-dependent source function for pCO, is not known precisely
and must be estimated from other tracer data. Broecker and Peng (1982)
used a modified Oeschger model to determine the separate contribufions
from fossil fuel and forest and soil as a function of time. Their prediction
results in a near-linear increase in pCO, since 1825 after combining the
terrestrial and fossil fuel sources.

In this study we tested the pCO, curve postulated by Broecker and
Peng (1982) by fitting model ATCO, profiles to the measured distributions.
The source function we used is shown in Fig. 4.4 and is similar in shape
to that proposed by Broecker and Peng. The only difference is the
pre-industrial intercept, which we set to 270 ppm instead of 250 ppm.
Raising the pre-industrial value to 270 ppm together with an assumed
Revelle factor of 11.5 gives a better fit to the observed excess CO,

concentrations in the mixed layer. However, uncertainties in observed
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quantities as well as model assumptions do not permit us to be precise

about the pre-industrial pCO, concentration.

5.0 RESULTS AND DISCUSSION

5.1 Excess CO, Model Predictions

Comparisons were made between the amount of excess CO, (ATCO,) measured
and the concentration predicted from the one-dimensional, time dependent
diffusion model (see eqn. 3) at six stations in the subarctic gyre for the
North Pacific. These are the only stations for which both excess CO, and
freon observations were made simultaneously.

The results of the comparisons are shown in Fig. 5.1 for the ATCO,
sources function given in Fig. 4.4. To make the correlation, we used the
average mixed layer depth defined by the near-surface maximum in the
observed ATCO,, but relied on the model calculation (egqn. 9) to estimate
the present day anomaly. As shown above, the calculated ATCO, concentration
is about 45 pM/kg. The average of the observed mixed layer concentrations
(see Fig. 5.1) is about 38 pM/kg, although the uncertainty is large.
Photosynthesis and respiration in the mixed layer complicate an accurate
measure of the present day surface ATCO$ concentration, hence we used the
calculated value of 45 uM/kg as the mixed layer value.

Given that the concentration of excess CO, and the mixed layer depth
appropriate to the total CO, concentration are not known precisely,lthe
model fits to the observations shown in Fig. 4.1 are quite good. This is
particularly surprising in view of the fact that the vertical eddy diffusivity
varied from 0.04 cm?/s to 1.2 cm?/s. The profiles of ATCO,, shown in
Fig. 5.1, indicate a sliéht deepening of the profiles from north to south,

which corresponds with the increase in apparent vertical mixing towards
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the subarctic boundary (Table 4.1). Station WNP-16 notwithstanding, the
model profiles were similar in shape to the observed profiles. By increasing
the surface concentration of excess CO, or by increasing the TCO, mixed

layer depth, or both the model fits could be improved at most stations.

There also may be a bias in the way in which the ATCO, was calculated

because they are not seasonally averaged, consequently further tinkering
with model parameters would be non-productive.

The poorest fit was obtained at WNP-16, where the ATCO, concentration
was observed to decrease more rapidly with depth than predicted by the
model. We ascribe this to complex mixing along the northern boundary of
the Kuroshio Extention, which precludes either a simple explanation or
accurate calculation of the excess CO, profiles. Salinity, temperature
and freon-11 all suggest deep ventilation along the front in winter, hence
the lack of agreement shown in Fig. 5.1 indicates that the back-calculation
method may not be accurate in frontal regimes where complex water mass
interactions occur.

The excess CO, source function and atmospheric pCO, curve are shown
in Fig. 4.4. A pre-industrial value of 270 ppm was assumed and a smooth
curve was arbitrarily drawn that passes through the observations since
1958 (Keeling, 1980). Minor changes in the source function prior to 1958
were tried, but none made any significant changes in the model profiles.
Specifically, we imposed arbitrarily a 5 pM/kg TCO, change in 1920 to
mimic the terrestrial contribution shown by Broecker and Peng (1982) with
no significant change in any of the vertical profiles. We conclude that
the model profiles are relatively insensitive to minor changes in the pCO,
source function, and that the function derived by Broecker and Peng (1982)

gives an adequate fit to the observations, the preindustrial intercept
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notwithstanding. Subtle changes in the pCO; source function, such as
those depicted by Broecker and Peng (1982), could not be discerned by our

procedure unless significant improvements were made in the ATCO, calculation.

5.2 Model Predictions of Excess CO, in the North Pacific Gyre

The curves shown in Fig. 5.1 were integrated from the surface to
about 1000 m to calculate the water column inventory of excess CO,. The
area of interest lies between 40°N and 57°N (16.5 X 10® km2?; Levitus,
1982). The mixed layer, assumed here to be the upper 150 m on the average,
contained about 1.1 X 1014 moles of excess CO,, whereas below 150 m the
amount was 1.9 X 1014 moles. The total amount of excess CO, in the North
Pacific subarctic gyre is therefore about 3.0 X 1014 moles or about 18.2
moles/m2.

How do these estimates compare to the total amount of CO, released?
Broecker and Peng (1982) give an integrated CO, production of 33 x 1015
moles since 1825. If our estimate of the CO, uptake in the North Pacific
subarctic gyre were representative of the global ocean, which it is not,
we would predict an oceanic uptake of 6.7 X 1015 moles, or about 20% of
the total. The North Pacific subarctic gyre is only about 4.5% of the
total ocean surface. In all likelihood, the above percentage is small
because the North Pacific is not characterized by deep convection mixing
as is the case in the North Atlantic and the Southern Ocean. Moreover, we
have not included the subtropical gyres, which are apt to contain larger
amounts of excess CO, because lateral mixing brings CO, saturated water
into the main thermocline.

The effect of downward transport along isopycnal outcrops is clearly

shown by the inventories of bomb-derived 31 and 14C (Broecker and Peng,

28



1982). Comparing the north temperate ocean with the North Atlantic and
Pacific, after adjusting for area, it is seen that about 34% more 14¢
resides in the subtropical gyres. This percentage would be even larger if
the comparison was made for the North Pacific, because there is not deep
water mass formation, which tends to increase the North Atlantic inventory
of bomb carbon, and by analogy the amount of excess CO, as well.

The relatively small amount of excess CO, found in the North Pacific
is due largely to the small apparent diffusion coefficient derived from
the distribution of F-11. The global model used by Broecker and Peng
(1982) and others assumed a mean diffusion coefficient of about 1.6 cm?/s
compared to a mean value assumed here of 0.7 cm?/s. Since the vertical
inventory of excess CO, is proportional to the Ji; in the 1-D model, our
prediction is about 50% less than would have been predicted from the
global ;veraged model. However, fine structure and vertical heat transfer
measurements suggest that Kv is indeed small for the North Pacific subarctic
gyre (Gargett, 1984) and further indicates the need for regional modeling
of excess CO, rather than using a global-averaged 1-D model. In this
regard, the next step to be taken to improve the estimate of excess CO, in
the oceans is to increase the precision and accuracy of the excess CO,
calculation and to test it against the predictions of other tracers (e.g.
freons, 3H, 14C, and 85Kr). The permanent thermocline of the subtropical

gyre of the North Pacific should be the region examined.

6.0 CONCLUSIONS

The distributions of freon-11l were combined with precise total
carbon dioxide, total alkalinity, oxygen, nutrient and hydrographic measure-

ments to estimate the amount of excess CO, in the subarctic waters of the
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North Pacific gyre. The approach we employed utilizes the F-11 profiles
to determine the apparent vertical eddy diffusivity. These parameters
were input into a zonally averaged, one-dimensional vertical diffusion
model along with a carbon dioxide source function to provide vertical
profiles of anthropogenic CO, concentrations. The model predictions were
then compared with estimates of excess CQs based on the back-calculation
method, which relies on precise measurements of TCOy, alkalinity, O,, and
nutrients.

The results generally show good agreement between the model profiles
and the calculated data for all stations north of the subarctic front. In
the region of the front, the model assumptions are apparently not applicable
due to the complexity of water mass interactions. Our estimate indicates
that approximately 3 x 1014 Moles (3.6 x 1015g C) of excess carbon has
been assimilated by the mixed layer and thermocline waters of the North
Pacific gyre. Of the total amount released (about 33 X 1015 Moles or
4 x 1017g C), the North Pacific gyre only harbors about 1% of it, although
the study area was 4.5% of the total surface area of the ocean. This is
equivalent to about 2% of the fossil-fuel-derived carbon input to the
atmosphere. The distributions of the bomb transients (e.g. 3H, 14C) also
suggests that the North Pacific subarctic gyre is a relatively small
reservoir of excess CO, and that the temperate ocean (15° to 40°) will be

a more significant reservoir.
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