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Beaufort Sea Mesoscale Circulation Study - Preliminary Results
K. Aagaard, C.H. Pease, and S.A. Salo

ABSTRACT. The Beaufort Sea Mesoscale Circulation Study was initiated in the autumn of 1986
and included measurements of currents, winds, and ice velocities, as well as observations of state
variables and nutirent distributions in the ocean and state variables in the polar atmosphere, prin-
cipally between Barrow and Demarcation Point along the American Beaufort Sea shelf. This report
describes the preliminary results from observations made during the first year of the project, includ-
ing current velocity results from meters recovered through the ice in April 1987, hydrographic and
nutrient sections completed in October 1986 and April 1987, wind velocity, air pressure and tempera-
ture records recovered continuously through the end of 1987, ARGOS buoy tracks through 1987, and
a representative sample of analyzed weather maps during the first year. Data collection continued
through April 1988. The total data set is extraordinary in the temporal and spatial extent of its
synoptic coverage, and in the variety of its constituent measurements. The data set is also extremely
large, and its full reduction and analysis will provide an exceptional opportunity for improving our
understanding of the shelf circulation and its forcing, as well as conditions important to the marine
ecology of the area.

1. INTRODUCTION

The purpose of this study is to gain a quantitative and dynamically founded understanding
of the circulation over the Beaufort Sea shelf and its atmospheric and oceanic forcing. The study
is within the overall context of a regional environmental assessment related to petroleum explora-
tion and development.

Earlier work under OCSEAP was either concentrated within restricted nearshore areas, or
did not provide sufficiently broad spatial and temporal coverage to define the shelf circulation on
appropriately large scales. A further serious limitation on earlier work was the grossly inade-
quate determination of the wind field, so that relatively little could be said about the atmospheric
forcing of the ocean. Finally, hydrographic sampling on the shelf including nutrients and dis-
solved oxygen had earlier been restricted to a brief period during the summer, giving no idea of
conditions during other times. To substantially remedy this situation, the present study was
designed to provide spatially broad coverage of the circulation and hydrography over the shelf,
together with the synoptic wind field; and to do so over a sufficiently long period that the impor-
tant longer time scales could be defined.

We began by setting up the coastal meteorological stations along the north slope by
aircraft, and then proceeded with an October 1986 ice breaker cruise on board the USCGC
POLAR STAR during the summer-winter transition. On this cruise we occupied six closely-
spaced sections which provided full hydrographic coverage over the entire shelf from Barrow to
the U.S.-Canadian border, including five-channel nutrients. The section locations are shown in
Figure 1. These data have been published by Aagaard ez al. (1987). Moored instrument arrays



were deployed on four of the six sections, including current meters and a prototype new instru-
ment, the SeaCat, which is a very stable conductivity/temperature recorder.

The majority of the instruments were recovered during March-April 1987, using helicopter
logistics, while three more current meters were picked up in September 1987 from the Canadian
research vessel J.P. TULLY (cf. Figure 1 for mooring locations). During April 1987 we also ran
four hydrographic sections across the shelf from Barrow to Barter Island. Section locations are
shown in Figure 2. These are the first full hydrographic sections done during winter. The data
have been published by Aagaard ez al. (1988).

‘ Additionally, during 1986-87 two moored arrays with a total of 16 instruments were

deployed in Barrow Canyon for the purpose of determining the outflow from the shelf of dense
winter water and the fluid mechanical structure of the outflow plume. These matters are of major
importance in understanding the structure of the Arctic Ocean. The project is sponsored by the
National Science Foundation and will provide information complementary to that of the Beaufort
Sea study.

Extensive meteorological and ice drift data were obtained throughout this period, using a
combination of drifting and land based stations transmitting through the ARGOS and GOES
satellite telemetry systems (Figure 3). Three GOES stations were installed to fill gaps in the
primary National Weather Service (NWS) coastal observing network. Stations were established
at Resolution Island in Prudhoe Bay, at the Lonely Dewline site near Pitt Point east of Barrow,
and at Icy Cape southwest of Barrow. Each station in the GOES network transmited hourly
meteorological observations every three hours to the GOES-West satellite. These data are then
rebroadcast to the GOES-West receiving station in Wallops Island, VA, which maintains a
computer database which our laboratory computer interrogated daily. The GOES stations at
Lonely and Resolution were recovered in April 1988. Further data were obtained from the
primary NWS stations at Barter Island, Barrow, Kotzebue, and Nome. A fourth GOES station
funded by the Office of Naval Research was placed at the Cape Prince of Wales navigation
daymarker along Bering Strait. The data from this station will be available for September 1987
through April 1988.

Additional meteorological coverage was provided by deployments of ARGOS buoys and
stations by helicopter onto sea ice floes along the Beaufort and Chukchi coasts. Eleven ARGOS
buoys and three ARGOS stations were deployed over 18 months in support of this study.
ARGOS buoys transmit to the NOAA polar orbiting satellites which rebroadcast to the Service
ARGOS receiving station in Toulouse, France or in Suitland, MD. Positions are calculated from
the doppler shift of the transmissions, and the calculated positions and the sensor data are then
available in preliminary form for daily computer interrogation and through fortnightly distribu-
tion by magnetic tape. Buoys and stations were not recovered from the ice, but were left to drift
until failure.



_ While not included in this interim report, a further set of moored oceanographic instru-
ments and meteorlogical stations were deployed in April and September 1987, and these were
retrieved in March and April 1988. In addition, three ARGOS buoys were deployed in coopera-
tion with the Polar Science Center of the University of Washington and three were deployed for
the ONR FREEZE program. These data will be included in the final analysis, together with
pertinent supporting data from the Chukchi Sea.

2. OCEANOGRAPHIC TIME SERIES

Table 1 lists the maximum speed and the vector mean velocity observed at moorings MA1
(in water 1216 m deep), MA2 (168 m), MB1 (1008 m), MB2 (170 m), and MD] (165 m); and
Figures 4-6 show the 35-hr low-passed time series from both the current meters and the SeaCats
at these moorings. All the mooring locations are shown in Figure 1. The time series depictions
of Figures 4-6 are 12-hr realizations of the low-passed data. Each time tick is 3 days, and the
vertical axis units are cm s}, °C, and psu, respectively, for velocity, temperature, and salinity. In
the figures, each current meter record is identified by the mooring designation, the depth, and in
parentheses -the direction of the principal axis (the axis of greatest variance). The latter is in
degrees true, and in practice it is normally nearly parallel with the vector mean direction of the
flow, as can be seen by comparison with Table 1. Note that the SeaCats on MA2 and MB2 were
located within 2 m of the bottom.

Consider first Table 1. In the mean, the flow above about 60-90 m, depending on location,
is westward; but below this the flow is eastward and generally increases with depth. (Note,
however, that the upper westward flow is sufficiently variable that the rms error exceeds the
mean.) The subsurface easterly flow apparent in Table 1 is the Beaufort Undercurrent described
by Aagaard (1984). While maximum speeds in this current normally appear to be in the range
30-70 cm s™! (compare our Table 1 with Table 2 in Aagaard, 1984), long-term mean flows are
much less, typically below 10 cm s1.  Note, however, the extremely high maximum speed
recorded at 143 m at MA2, well over twice as great as any ever observed. Figure 4 shows that
this represents a single event, albeit of over a week’s duration, and we speculate that the event
may represent an intense baroclinic eddy passing the mooring site. Less extreme examples of
such eddies, centered on about the same depth, were first found in the Beaufort Sea in 1972
(Newton et al., 1974). The sequential orientation of the current vectors in Figure 4 suggests that
the hypothesized eddy would have had a CW rotation (cf. Foldvik et al., 1988).

Further comparison of our Table 1 with Table 2 of Aagaard (1984) suggests that at least
near the shelf break, the Beaufort Undercurrent did not extend as close to the surface during
1986-87 as it did during the earlier observations. Specifically, Table 1 suggests that the zero in
the mean velocity profile was at least 60 m deep (MB2) and possibly as deep as 90 m (MA2). In
contrast, mean easterly flows of 3.8 cms™ and 6.4 cms™ were observed during 1978 at about



Table 1. Maximum 35-hour low-passed speed and vector mean velocity, 1986-87. The rms
velocity error is given in parentheses.

Mooring Instrument Maximum speed Mclan Velocity

depth, m cmst cms’ T
MA1 1188 7.1 0.6(+/-0.2) 353
MA2 60 73.5 3.5(+/-4.1)! 291
93 71.1 0.1(+/-0.5)" 219
143 166.0 7.8(+/-4.7) 119
MB1 83 72.8 1.5(+/-1.4) 168
‘148 58.1 6.9(+/-3.0) 097

980 0.6 0.0(+/-0.0)
MB?2 62 34.4 0.3(+/-0.5)} 181
95 442 5.0(+/-2.0) 112
145 55.3 8.0(+/-1.8) 103
MD1 57 70.3 2.6(+-2.7)" 292
90 59.5 4.1(+/-2.6) 095
140 52.0 4.2(+/-2.2) 100

! rms error exceeds mean, so that mean not statistically distinguishable from zero.

65 m depth in water respectively near 100 m and 200 m deep. While the data base at this point is
certainly not sufficient to sustain firm conclusions in this regard, it does point to possible interan-
nual differences in the velocity structure of the upper ocean.

We turn next to Figure 4, which portrays conditions at the three mooring sites along the
165-170 m isobath, distributed over essentially the entire length of the Alaskan Beaufort Sea.
The mooring separation between MA2 and MB2 is ~240 km, and ~210 km between MB2 and
MD1. The records point to very large low-frequency variability over a broad range of time
scales. It is also clear from an inspection of Figure 4 that not only are there vertically coherent
events, but that a large number of events are horizontally coherent over the entire length of the
shelf. Table 2 lists selected vertical and horizontal correlations for lags between 0-24 hours. The
letter T, M, or B by each mooring designates the top, middle, or bottom instrument at that
mooring. For example, A2/T is the instrument at 60 m depth at mooring MA2, A2/M the instru-
ment at 93 m at the same mooring, etc. (cf. Table 1 for instrument depths). The number in
parentheses beneath each correlation is the lag, in multiples of six hours, for which the correla-
tion was a maximum. The sense of the lag is such that the row instrument leads the column
instrument. For example, A2/M leads D1/M by 24 hours. Several points are noteworthy. First,

4



Table 2. Selected correlations for 35-hr low-passed current meter data, 1986-87. Lags are given
in parentheses.

A. Vertical correlations.

A2M A2/B B2/M B2/B D1/M D1/B

AT 0.95 0.62
©0) ()]
A2/M 1.00 0.60
0)
B2/T 0.50 0.41
¢)) M
B2/M 1.00 0.84
(1)
D1/T 0.73 0.31
©0) ©0)
DI/M 1.00 0.53
0

B. Horizontal correlations.

B2/T B2/M B2/B DT Di/M D1/B

A2/T 0.35 0.65 0.59 0.32 0.52 0.49
4 4 4) 4 4) 4)
A2/M 0.36 0.65 0.60 0.40 0.55 0.47
4) 3) 4 4) 4) 4)
A2/B 0.51 0.61 0.56 0.27 0.38 0.24
4) 4) 4) 4) “ 4)
B2/T 1.00 0.34 0.40 ns
. (2) (2)
B2/M 1.00 0.44 0.50 0.38
(2) (1) 4
B2/B 1.00 0.30 0.40 0.41
(1 0) 4

ns means not signtficant at 95% level.



the vertical structure is different at the three moorings, despite their being sited on the same
isobath. At MA], the correlation between the top and middle instruments is very high, but
degrades considerably between the middle and bottom instruments. In contrast, at MB2, the
primary vertical correlation degradation occurs between the top and middle instruments, with the
correlation between the middle and bottom being high. At MDI, the correlation pattern is
qualitatively like that at MA1, but overall considerably weaker. The vertical correlations are
essentially in phase. The second noteworthy point is that the maximum horizontal correlations
occur for the middle instruments; are as high as 0.65, representing 42% of the variance; and that
the western moorings lead the eastern ones, progressively more as the distance increases. Much
of the low-frequency energy is therefore propagating coherently eastward over long distances
along the shelf margin, with suggested phase speeds of order 5 m s,

Figure 5 shows currents at the two deeper moorings, each sited in water over 1000 m deep.
The flow at MB1 resembles that at MB2 in that in the mean it increases downward from near
zero at about 80 m to marked easterly flow deeper. The depth at which the mean easterly flow
achieves a maximum cannot be determined from the present data, but near bottom it is effectively
zero again. In fact, at that depth the flow is essentially negligible throughout the nearly six
months of record. Superimposed on the mean flow at the upper instruments is a large low-
frequency variability similar to that farther inshore. The top and middle instruments at MB1 are
well correlated (0.89), and the onshore correlation with MB2 is moderate, with slightly less than
one-half the variance being accounted for by the correlation between the middle instruments.
The impression is of a Beaufort Undercurrent which extends out over the slope well beyond the
1000-m isobath, with a mean eastward velocity maximum over the slope at a depth of probably at
least 200 m. There appears to be offshore modal structure in this flow. The near-bottom current
at MAL1 is quite different from that at MBI, in that measurable speeds are found nearly all the
time, with a maximum 35-hr low-passed value of over 7 cm s1. The flow alternates between
approximately northerly and southerly, but with a significant net northerly set. The MAL1 series
is incoherent with that from any other instrument.

The SeaCat records are particularly interesting (Figure 6). They are marked by continual
large low-frequency oscillations (~2° and ~2 psu, respectively in temperature and salinity) in
which warm saline and cold fresher water alternately moves past the sensors. Considering
typical ambient gradients, these oscillations must represent large vertical excursions (upwelling
and dewnwelling) of perhaps 100-150 m. Furthermore, Figure 6 shows the oscillations to be
reasonably coherent with the current record. The correlations vary considerably with the instru-
ments being compared, but at MA2 over one-half the variance in the current records at the upper
and middle instruments is linearly related to the variance of the bottom temperature records. The
current leads the temperature by 12-24 hr, Furthermore, the SeaCat records themselves are quite
coherent laterally, as can be seen in Figure 6. The correlation proves to be 0.78 between the



SeaCat temperatures for a lag of 24 hours, accounting for 61% of the variance, with the western
mooring leading. This again suggests eastward propagation, with a phase speed of the same
order as we calculated earlier. The overall impression from these records is therefore of a
low-frequency current regime in which flow reversals to the west are followed within a day by
geostrophic adjustment, with warm and saline water upwelling along the continental margin as
the adjusting isopycnals tilt upward toward the south. The perturbations propagate eastward with
the coast on their right-hand flank. Such a conceptualization of the upwelling is consonant with
that proposed by Aagaard (1981), but differs from the directly wind-driven coastal upwelling
proposed by Hufford (1974).

3. HYDROGRAPHIC MEASUREMENTS

Figures 7-60 show the fall distributions of hydrographic properties for sections W, A, E, B,
C, and D, and Figures 61-96 the winter distributions for sections W, A, B, and C (locations of all
sections shown in Figures 1 and 2). Several features are of immediate importance and interest.

First, consider Figures 16-24 and 70-78, showing Section A during fall and winter, respec-
tively. During October, the shelf is still substantially occupied by the warm summer water which
has moved in from the Chukchi Sea, and in fact water warmer than 3R extends seaward beyond
the section as a subsurface layer. However, seaward of the shelf break the warm layer is capped
by a cold low-salinity layer of ice melt. A prominent front over the shelf break points to an
intensified eastward current there at the time of the section (with a shear reversal near 30 m).
The oxygen distribution significantly reflects the temperature distribution, with the highest
values in the ice melt water. Nutrients are variably reduced in the upper ocean, with nitrate in
particular being nearly absent, consonant with a nitrogen-limited system. Note, however, that
ammonia has rather large values on the shelf, whereas nitrite concentrations are very low,
suggesting that nutrient regeneration has begun to replace the nitrate depleted during the summer,
but that the process is still at a relatively early stage. The maxima in phosphate, nitrate, and
silicate near 120-150 m represent the general Arctic Ocean nutrient maximum, which has been
attributed to shelf sources (Moore ez al., 1983; Jones and Anderson, 1986).

During winter (Figures 70-78) Section A still shows a residue of the summer temperature
maximum between 30-60 m, while above about 30 m the water is near freezing. The upper
thermocline is notably sharp. In the upper layer, salinity gradients have all but disappeared due
to convective mixing during freezing. Oxygen concentrations in the upper ocean have increased
from the same process. Silicate has not changed significantly from fall, and phosphate has
increased only moderately, since neither was apparently seriously depleted the previous October.
However, the nitrogen distributions are substantially different, with a large increase in nitrate and
significantly high values of nitrite as well. On the other hand, ammonia concentrations are near
zero. It is apparent, therefore, that nitrogen regeneration has been substantial, but not complete



by the beginning of the spring production cycle in April. The very high concentrations of nitrate
and silicate near the bottom on the middle shelf, with a maximum at station A4, are probably the
residue of an earlier upwelling event from below 100 m.

Examples of both active upwelling and downwelling are in fact apparent in the sections
themselves. For example, Section C from April (Figures 88-96) shows both the elevated
density-related isopleths (temperature, salinity, and sigma-t) which we would expect to follow a
current reversal toward the west (cf. the discussion in II. above), and the flooding of the shelf
with nutrient-rich waters. Conversely, Section B from October (Figures 34-42) shows a pro-
nounced down-turning toward the shelf of the isopleths of every parameter measured, as we
would expect during eastward motion.

A very important matter is illustrated in Section W from October (Figures 7-15). The
section runs southwest across the continental slope to its shallowest point on the shelf at station
W38 (indicated by the vertical arrow) and then turns more southerly and crosses Barrow Canyon.
Note the warm and relatively fresh water flowing eastward through Barrow Canyon and out of
the Chukchi Sea onto the Beaufort shelf, and note also that this water is relatively nutrient-
depleted, especially in nitrogen. This is the Alaskan coastal water which has moved northward
through eastern Bering Strait (cf. Coachman et al., 1974). The critical point, however, is that
warm water is also seen over the slope seaward of station W8. It is the origin of this water which
is of paramount interest. The most revealing parameter proves to be ammonia (Figure 14), which
shows a remarkably strong core centered between about 50-150 m at station W3. An examina-
tion of all the nutrients, together with their corresponding density ranges, and a comparison of
these values with recent work in the Chukchi and northern Bering seas under the ISHTAR
program (Tripp, 1987), points to the relatively warm nutrient-rich water seen over the slope in
Section W as having come through western Bering Strait, and then northward through the central
Chukchi Sea. This is the Bering Sea water described by Coachman et al., (1974), which the
ISHTAR program has identified as being involved in the enormously high production of the
northwestern Bering Sea, and more recently has also implicated in similarly high production
rates in the central Chukchi Sea. The important point for present purposes is that a major source
of water for the Beaufort Undercurrent lies farther west along the northern Chukchi margin than
the Barrow Canyon input which has been the focus in earlier work (e.g., contrast Mountain,
1974, or Aagaard, 1981). Most likely, the principal point of exit from the Chukchi for this water
is Hope Sea Valley and Herald Canyon, although the depression between Hanna and Herald
shoals may also contribute.

Another point of interest in the fall sections is the contrast between conditions on the
western and eastern portions of the Beaufort shelf. The transition appears to be located near
Section B, which is near where Bames and Toimil (1979) suggested that there is a change in the
direction of the nearshore flow from westerly to easterly, possibly associated with a change in the



mean wind regime. In the fall the eastern shelf is marked by lower upper-layer salinities and
considerably greater stratification, i.e., it has more of the Arctic Ocean character than the shelf
farther west, where the Chukchi influence is strong. For example, contrast Section A
(Figures 16-18) with sections C (Figures 43-45) or D (Figures 52-54). There are also differences
in the nutrient distributions, with distinctly lower values of both ammonia and silicate on the
eastern shelf, possibly reflecting the reduced connection with the Chukchi, although the rela-
tively small data base doesn’t allow firm conclusions in this regard. The following April, the
upper-ocean salinities are again lower in the east and the density stratification greater (contrast
Figures 71-72, Section A, with Figures 89-90, Sectic;n C). At the same time, the nutrients over
the shelf show a marked decrease in going eastward from Section A (contrast Figures 75 with 84
or 93, and Figures 78 with 87 or 96). In this case the difference is most obviously a consequence
of the recent upwelling at the westemn site discussed earlier, and it is conceivable that such events
are more common there than on the eastern shelf and may therefore be responsible for the fall
situation also. In this connection, note in Figure 6 that the temperature and salinity oscillations
recorded at the western SeaCat (MA2) were considerably larger than at the eastern one (MB2).

The point is that there appear to be significant large-scale longshore differences in the hydrog-
raphy, reflecting differences in the governing processes.

4. METEOROLOGICAL TIME SERIES AND ICE DRIFT

We turn next to the meteorology. Table 3 summarizes the deployment positions, times,
and data completeness for the ARGOS buoys and stations, and Table 4 summarizes the deploy-
ment information for the GOES coastal stations and the data acquisition periods for the NWS
coastal stations. All ARGOS buoys were fitted with Y.S.I. thermistors in a gilled vane housing
for a fully ventilated air temperature, typically 30 to S0 cm above the floe surface, with a resolu-
tion of 0.1°C and zero-point calibration to within 0.3°C. Also, each buoy measured air pressure
with an A.LR. digital barometer with a resolution of 0.1 mb and calibrated to within 0.4 mb. The
ARGOS stations had similar temperature and pressure instrumentation; however, the pressure
ports and thermistors were 2 m above the floe surface. The stations also had an R.M. Young
aerovane-type anemometer at 3 m and an InterOcean S4 current meter at 6 m below the estimated
floe bottom. The computer interfaces and tower assemblies were manufactured by Coastal
Climate Co. The ESI and PMEL manufactured buoys used Synergetics ARGOS transmitters,
while the Coastal Climate buoys and stations used Telonics transmitters. A typical station
configuration is given in Figure 97.

Because the GOES satellite is so near the horizon in northern Alaska, slight variations in
the geostationary orbit cause the stations to drop below the horizon. In addition, the satellite
itself occasionally has transmission failures, resulting in additional data drops. To combat this
problem without giving up the immediate knowledge of the condition of the station and
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providing protection against station loss from bears or humans, the Lonely and Resolution
stations were also set to internally record. Overall data recovery was therefore quite good. The
detailed list of missing and filled data in Table 4 mainly reflects transmission drops from non-
recording stations and data missing since the March 1987 servicing visit. Additional problems
were encountered with an unreliable batch of ARGOS buoys manufactured by ESI Company,
designated as EB in Table 3. As a result, early failures with the first group of buoys deployed on
the ice created an offshore data gap of three months. However, after the first week in March
1987, data coverage over the shelf is generally good, including the buoy data presented in this
report, as well as those from buoys belonging to the Polar Science Center from which data will
be available for our final analysis. Fleet Naval Oceanographic Center surface analyses will be
used to interpolate missing station data.

The GOES station plots are presented in Figures 98-125 for Resolution Island, Lonely, Icy
Cape and Cape Prince of Wales (Bering Strait) through the end of December 1987. ARGOS
drift tracks are plotted in Figures 126-142 through the end of December 1987. Examples of
weather affecting the region are presented in Figures 143-150.

The air temperatures over the coastal Beaufort and Chukchi seas did not cool off until the
third week in November in 1986, nearly a month later than the climatological average. The
September/October cruise of the Coast Guard icebreaker POLAR STAR encountered the least
ice in the coastal Beaufort in thirty years this late in the fall. Low pressure centers passed
through the area with frequencies and intensities typical of mid-latitude early autumn, and one
storm immediately before the cruise caused extensive storm-surge damage in the Barrow area,
including road damage, beach erosion, and destruction of archeological sites. This pattern was
generally repeated in the autumn of 1987. The August/October 1987 cruise of the NOAA ship
SURVEYOR also encountered nearly minimum ice extents. During light-ice summers, the open
ocean plays a major role in affecting air temperatures but not necessarily sea-level pressure
(Rogers, 1978).

During late winter and spring of 1987, the wind persisted from the east, the climatologi-
cally average direction. Approximately by the spring equinox, the solar radiation through
relatively clear skies induced strong diurnal variations in air temperature, and the temperatures
across the slope increased from -30°C at the end of the first week in April to around 0°C by the
end of May 1987. At that time the temperature stabilized and the diurnal variations were
diminished by the onset of persistent Arctic stratus. |

Table 5 shows correlations of the unfiltered 1-hr coastal station data for calendar year
1987. This table shows that North Slope stations are substantially more like each other than like
Kotzebue or Nome in temperature, pressure, and wind speed. Except for Resolution, the pressure
lags are consistent with a picture that, during late summer and autumn, low pressure systems tend
to propagate from the northeastern Bering Sea, northward along the Chukchi coast, and eastward
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Table 5. Maximum correlations/at lag n at or above 95% confidence level for unfiltered, 1-hr
data from six coastal meteorological stations (column lags row). Common time interval is
from 0100 1Jan87 to 2200 31Dec87 with 8758 points. Number of lags is 30 (30 hours).

A. Sea-level pressure (SLP in mb).

Barter Resolution Lonely Barrow Kotzebue = Nome
Barter 1.00/0 0.90/0 091/8 0.96/0 0.82/0 0.68/0
Resolutn 091/5 1.00/0 0.85/15 0.89/5 0.77/0 0.65/0
Lonely 0.88/0 0.81/0 1.00/0 0.89/0 0.65/0 0.53/0
Barrow 0.96/ 1 0.89/0 0.92/9 1.00/0 0.75/ 0 0.61/0
Kotzebue 0.85/8 0.78/5 0.74/17 0.78/ 8 1.00/0 0.96/0
Nome 0.74/12 0.67/9 0.64/21 0.66/13 0.96/ 4 1.00/0
Mean SLP 1014.87 1013.57 1013.13 1015.62 1009.43 1007.11
B. Surface air temperature (SAT in C).

Barter Resolution Lonely Barrow Kotzebue = Nome
Barter 1.00/0 0.96/ 8 0.96/9 0.95/0 0.89/0 0.82/1
Resolutn - 0.96/13 1.00/ 0 0.96/0 0.94/0 0.87/0 0.81/16
Lonely 0.95/0 0.96/0 1.00/0 0.95/0 0.88/0 0.83/16
Barrow 0.96/21 0.95/9 0.97/9 1.00/0 0.90/0 0.84/0
Kotzebue 0.89/22 0.88/ 8 0.89/9 0.90/0 1.00/0 0.94/0
Nome 0.83/23 0.82/9 0.83/30 0.84/0 0.94/1 1.00/0
Mean SAT -11.47 -11.76 -12.26 -12.07 -5.12 -2.15
C. Station wind speed (SPD in m/s).

Barter Resolution Lonely Barrow Kotzebue = Nome
Barter 1.00/0 0.52/0 0.41/8 0.49/0 0.04/30 -0.07/10
Resolutn  0.59/15 1.00/0 0.60/24 0.56/13 0.11/10 -0.08/28
Lonely 0.37/0 0.40/0 1.00/0 0.54/0 -0.02/30 -~ -0.13/28
Barrow 0.50/ 2 0.50/ 0 0.62/ 8 1.00/0 0.12/0 -0.05/12
Kotzebue 0.10/20 0.13/16 0.08/30 02124 1.00/0 0.42/0
Nome  -0.08/5 -0.05/0 -0.10/0 0.07/25 0.43/4 1.00/0
Mean SPD 6.13 5.40 3.58 5.90 5.68 4.68
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along the Beaufort coast (Overland, 1981; Pease, 1987). For example, Barter lags Resolution by
five hours, Lonely lags Barrow by nine hours, Barrow lags Kotzebue by eight hours, and Kot-
zebue lags Nome by four hours. This conclusion is further supported by the observation that all
the North Slope stations lag Kotzebue by four hours less than they do Nome.

In a separate correlation (not shown) for a six-month interval including the spring and
summer of 1987, a period of sustained easterly winds, pressure at Resolution strongly led all
other stations, suggesting the westward propagation of high pressure anomalies. Also, the
Brooks Range foots near Resolution, and there are interactions with the topography during winter
and spring because of the strong capping inversions (Kozo, 1980; Overland, 1985). In the
summer, sea breezes asymmetrically modify the surface wind along the north slope, as well
(Kozo, 1982a,b; Kozo, 1984).

Considering the surface air temperature correlations in Table 5, we see that Resolution and
Lonely lag both Barter and Barrow by 8-9 hours, which supports the idea that warm low pressure
systems from the southwest and cold high pressure systems from the northeast pass over the area.
All the stations have very high temperature correlations at low lags, because the solar diurnal
cycle (especially during the spring months before the summer stratus develops) and the annual
cycle account for a large portion of the variance of the air temperature in the polar and polar-
marine climatic zone (Overland, 1981; Pease, 1987). Due to the prevalence of summer clouds,
short wave radiation peaks in early June (Maykut and Church, 1973).

The wind speeds at Nome are essentially uncorrelated with the wind speeds along the
North Slope, related to the orientation of the topography relative to the station and to the fact that
many low pressure systems felt in the northeastern Bering Sea do not propagate northward into
the Chukchi/Beaufort (Overland and Pease, 1982). Kotzebue wind speeds lag Nome by about
four hours, but the correlation is modest and accounts for less than 20% of the variance at
Kotzebue. Wind speed variance at Kotzebue leads that at all the North Slope stations by 16-30
hours, but only accounts for 4% of the variance at Barrow. In contrast, wind speed variance at
Resolution leads variance at all North Slope stations by 13-24 hours and accounts for about 36%
of the variance at the other stations. In general, however, the wind speed correlations are rela-
tively low among all the stations because topographical and other local effects reduce the correla-
tions (Kozo, 1980) compared to pressure correlations.

In order to evaluate the quality of the FNOC surface analyses for use in filling missing data
and to aid in spatial interpolations, we compared FNOC data with two independent GOES
stations and two non-independent NWS stations along the north slope. Table 6 shows the
correlations for pressure, wind speed, and temperature for the four coastal meteorological sta-
tions compared with point data stripped from the FNOC gridded fields by METLIB and inter-
polated to each site. Table 7 correlates pressure measured at two of the ARGOS buoys with
FNOC pressure. Since FNOC analyses are generated every six hours (twelve hours for
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Table 6. Maximum correlations/at lag n at or above 95% confidence level for 6-hr data from
four coastal meteorological stations and the equivalent FNOC data for the same sites
(column lags row). N stands for NWS station, G stands for GOES station, and F stands for
FNOC equivalent. Common time interval is from 0100 26Sep86 to 2200 31Aug87.
Number of lags is 5 (30 hours).

A. Sea-level pressure (SLP in mb) for 6-hr data.
BarterN BarterF ResoluG ResoluF LonelyG LonelyF BarrowN BarrowF

BarterN  1.00/0 0.99/2 0.93/1 0.99/1 0.98/1 0.98/1 0.96/0 0.96/1
BarterF  0.94/0 1.00/0 0.91/0 1.00/0 0.97/0 0.98/0 0.90/0 0.96/0
ResoluG 0.93/0 0.93/1 1.00/0 0.93/1 0.92/1 0.93/1 0.90/0 0.91/1
ResoluF  0.95/0 1.00/0 0.92/0 1.00/0 0.99/0 0.99/0 0.92/0 0.97/0
LonelyG 0.95/0 097/0  0.92/0 0.99/0 1.00/0 1.00/0 0.95/0 0.99/0
LonelyF  0.95/0 093/0  0.92/0 0.99/0 1.00/0 1.00/0 0.95/0 0.99/0
BarrowN 0.96/0 0.96/2 0.91/1 09772  0.99/2 0.99/2 1.00/0 1.00/2
BarrowF 0.94/0 0.96/0 0.90/0 097/0  0.99/0 0.99/0 0.96/0 1.00/0

B. Station wind speed (SPD in m/s) for 6-hr data.

BarterN BarterF ResoluG  ResoluF LonelyG LonelyF BarrowN BarrowF

BarterN  1.00/0 0.35/2 0.52/1 0.28/1 0.25/1 0.27/1 0.42/0 0.28/1
BarterF  0.26/0 1.00/0 0.33/0 0.93/0 0.23/0 0.77/0 0.33/0 0.67/0
ResoluG 0.45/0 0.35/1 1.00/0 0.31/1 0.41/4 0.30/1 0.40/0 0.28/1
ResoluF  0.23/0 0.93/0 0.31/0 1.00/0 0.15/0 0.92/0 0.35/0 0.81/0
LonelyG 0.21/0 0.23/1 0.35/0 0.15/0 1.00/0 0.14/0 0.36/0 0.13/0
LonelyF 0.22/0 0.77/0 0.30/0 0.92/0 0.14/0 1.00/0 0.39/0  0.97/0
BarrowN 0.42/0 0.43/2 0.44/1 0.43/2 0.44/1 0.47/2 1.00/0 0.48/2
BarrowF 0.24/0 0.67/0 0.28/0 0.81/0 0.13/0 0.97/0 0.41/0 1.00/0

C. Surface air temperature (SAT in C) for 12-hr data.
ResoluG  ResoluF LonelyG LonelyF

ResoluG 1000 0972  096/0  0.96/2
ResolwF 037/0 1000 0350  1.00/0
LonelyG 096/0 0950 10000  0.96/2
 LonelyF 0360 1000 0360  1.00/0
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Table 7. Correlation between pressure measured at two of the ARGOS buoys and pressure from
the FNOC fields at the position of the buoys. The analysis was carried out for the lifetime
of the buoy: from 1 March to 12 June 1987 for buoy 7422 and from 7 March to 11 April,

1987 for buoy 7423.

7422A 7422M 7423A 7423M
7422A - .99(0) 7423A -—-- 1.0(0)
7422M 99(0) -——- 7423M 1.000) -—--

temperature fields), we subsampled the hourly station data at the appropriate intervals. In general,
temperatures and pressures were well modeled by the FNOC analyses with one caveat: the FNOC
analyses were lagged six to twelve hours from the stations data, although they were in phase with
the ARGOS data. For example, both Barter and Barrow pressure and wind speed led the FNOC

data by 12 hours.

5. SUMMARY

During the period from October 1986 to April 1987, near-surface currents over the Beaufort
Sea continental shelf and margin were westward, although the vector mean magnitude at many
moorings was smaller than the RMS error. The depth at which the mean flow became easterly,
i.e., the depth at which the Beaufort Undercurrent began, was between 60-90 m. This depth varied
spatially and also appears to change from year to year. Flow reversals in the undercurrent to
westerly motion occurred frequently, and these reversals may have driven upwelling of warm,
saline water onto the shelf. Vertical excursions were in the range of 100-150 m. Such upwelling
events were evident both in the time-series records and in the hydrographic sections.

An important point is evident from the October occupation, of section W, viz. that a major
source of water for the Beaufort Undercurrent must lie farther west than had previously been
considered. Most likely, this other injection occurs in the vicinity of Herald Canyon.

Many low-frequency flow events were coherent vertically and over large horizontal dis-
tances. Maximum horizontal correlations over the outer shelf were measured at depths of
90-100 m. Variance at the western moorings led that at the eastern ones, and the phase difference
suggests an eastward propagation rate of about S m s,

The hydrographic data provide extensive coverage of both fall and winter conditions. A
possibly important feature in the data is the longshore variability in the hydrography of the
Beaufort Sea shelf, including possible major hydrographic differences between the western and
eastern Beaufort. The latter transition appears to occur in the vicinity of Prudhoe Bay.

With respect to the meteorology, both the autumns of 1986 and 1987 were abnormally
warm, and an unusual number of low-pressure centers passed through the Beaufort Sea. The
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autumn ice extents were well below average. The late winter and spring of 1987 were more
climatically normal.

Pressure and air temperature measured at the GOES stations were generally better spatially
correlated than was wind speed, because of topographic and other effects. Pressure and tempera-
ture fields were well modeled by the FNOC analyses, which can therefore be used to fill in miss-
ing data. Correlation coefficients and lags suggest that warm low-pressure systems propagate up
the Chukchi Sea coast and then eastward along the Beaufort Sea coast, while cold high-pressure
systems originate farther east and propagate towards the west.

The total data set is extraordinary in the temporal and spatial extent of its synoptic coverage,
and in the variety of its constituent measurements. The data set is also extremely large, and its full
reduction and analysis will provide an exceptional opportunity for improving our undérstanding of
the shelf circulation and its forcing, as well as conditions important to the marine ecology of the
area.

At the same time, the size of the data set provides a genuine challenge in processing and
analysis. Major processing tasks remain. For example, the numerous long current and pressure
records for April 1987-April 1988, and just now recovered, have not yet been processed and
reduced. Likewise, the ARGOS data from 1988 have not been analyzed, and in fact some of the
ARGOS buoys are still transmitting. As the various meteorological and oceanographic compo-
nents of the composite data set become available in a fully processed form, their synthesis prom-
ises new insights into the processes governing conditions over the Beaufort Sea shelf.
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Figure 4. Current vectors from the instruments deployed in October 1986 at the moorings in water 165-170 m deep.
Currents were 35-hour filtered.
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Figure 5. Current vectors at the deeper moorings deployed in October 1986. Mooring MB2 is repeated from Figure 4
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27



Station WI

W2 W3

W4 W5 W6 W7 W8

DEPTH (m)

180+

2001

220

240+

260

W9 WIO Wi 12
L 1 ___7 | L

Temperature (°C)
Section W
03 - 04 Oct., 1986

057 g

Figure 7. Temperature at section W in October 1986.
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Figure 8. Salinity at section W in October 1986.
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Figure 9. Density at section W in October 1986.
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Figure 11. Phosphate at section W in October 1986.
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Figure 13. Nitrite at section W in October 1986.
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Figure 14, Ammonia at section W in October 1986.
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Figure 17. Salinity at section A in October 1986.
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Figure 18. Density at section A in October 1986.
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Figure 19. Dissolved oxygen at section A in October 1986.
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Figure 20. Phosphate at section A in October 1986.
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Figure 21. Nitrate at section A in October 1986.
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Figure 22. Nitrite at section A in October 1986.
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Figure 23. Ammonia at section A in October 1986.
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Figure 24. Silicate at section A in October 1986.
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Figure 25. Temperature at section E in October 1986.
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Figure 26. Salinity at section E in October 1986.

47



Station E7 E6 E5 E4 E3 IE2 El
l | l 1 l

0 N
20 24 3
40" \25 0/
~~25.5
60 -
—26.0" \
80 - t
N
100 - /2}.5\ S
=y N\
E 120- \
- ~27.0— R
i 140 - \
& \
N
160 ~ 27:5_ \
180 \
N
N
200 R
N
220+ S
Density (c;)
240 - Section E
16 - 17 Oct., 1986
260 T T
0 [0 20km

Figure 27. Density at section E in October 1986.
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Figure 28. Dissolved oxygen at section E in October 1986.
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Figure 29. Phosphate at section E in October 1986.
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Figure 31. Nitrite at section E in October 1986.
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Figure 32. Ammonia at section E in October 1986.
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Figure 33. Silicate at section E in October 1986.
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Figure 34. Temperature at section B in October 1986.
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Figure 35. Salinity at section B in October 1986.
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Figure 36. Density at section B in October 1986.
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Figure 37. Dissolved oxygen at section B in October 1986.
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Figure 38. Phosphate at section B in October 1986.
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Figure 39, Nitrate at section B in October 1986.
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Figure 40. Nitrite at section B in October 1986.

61




DEPTH (m)

Station BI0O B9 B8 B7 Bé BS B4 B3 B2 BI

L l |

0 . 3 ° : . E - \50\}00
| ) » i . 0.75—
20 50 . _ \/\ .00,
, ¢ J 7\
40 . 0.50
60
80 -
100
120
140 - ' .
. ’ Section B
A 08 - 09 Oct., 1986
[ \ N
| 4 N
180 - l 0.00 |
A
200- B
| \
bR
220 I I
\
240 1 \
260 | | | |
0 10 20km

Figure 41. Ammonia at section B in October 1986.

62



DEPTH (m)

Station BIO B9 B8 B7 Bé BS B4 B3 B2 Bl

I ] 1 1 ]

0
20-
40-
60
80 -
100-
120
140
160-
180-
200
220-

240 -

Section B
08 - 09 Oct., 1986

260

0

T T 1
10 20km

Figure 42, Silicate at section B in October 1986.
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Figure 43. Temperature at section C in October 1986.
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Figure 44. Salinity at section C in October 1986.
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Figure 45. Density at section C in October 1986.
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Figure 46. Dissolved oxygen at section C in October 1986.
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Figure 47. Phosphate at section C in October 1986.
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Figure 49. Nitrite at section C in October 1986.
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Figure 50. Ammonia at section C in October 1986.
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Figure 51. Silicate at section C in October 1986.
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Figure 52. Temperature at section D in October 1986,
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Figure 53. Salinity at section D in October 1986.
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Figure 54. Density at section D in October 1986.
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Figure 55. Dissolved oxygen at section D in October 1986.
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Figure 56. Phosphate at section D in October 1986.
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Figure 57. Nitrate at section D in October 1986.
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Figure 58. Nitrite at section D in October 1986.
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Figure 59. Ammonia at section D in October 1986.
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Figure 60. Silicate at section D in October 1986.
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Figure 61. Temperature at section W in April 1987,
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Figure 62. Salinity at section W in April 1987.
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Figure 63. Density at section W in April 1987.
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Figure 64. Dissolved oxygen at section W in April 1987.
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Figure 65. Phosphate at section W in April 1987.
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Figure 66. Nitrate at section W in April 1987.
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Figure 67. Nitrite at section W in April 1987.
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Figure 70. Temperature at section A in April 1987.
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Figure 71. Salinity at section A in April 1987.
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Figure 72. Density at section A in April 1987,
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Figure 73. Dissolved oxygen at section A in April 1987.
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Figure 74. Phosphate at section A in April 1987.
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Figure 75. Nitrate at section A in April 1987.
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Figure 76. Nitrite at section A in April 1987.
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Figure 77. Ammonia at section A in April 1987.

98




Station A9 A8 A7 Ab AbS A4 A3 A2
0 |
30—
60 TR0~
=15
904 ___ :
20-—~ SiO, (um I™)
Section A
T 120- . I8 - 21 April, 1987
I
e
m L ]
0 150+

180 - N
X
210 R
3
240
270 ] j T ]
0 10 20km

Figure 78. Silicate at section A in April 1987.
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Figure 79. Temperature at section B in April 1987.
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Figure 80. Salinity at section B in April 1987,
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Figure 81. Density at section B in April 1987,
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Figure 82. Dissolved oxygen at section B in April 1987.
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Figure 83. Phosphate at section B in April 1987.
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Figure 84. Nitrate at section B in April 1987.
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Figure 85. Nitrite at section B in April 1987.
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Figure 86. Ammonia at section B in April 1987.
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Figure 87. Silicate at section B in April 1987.
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Figure 88. Temperature at section C in April 1987.
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Figure 89. Salinity at section C in April 1987.
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Figure 90. Deasity at section C in April 1987.
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Figure 91. Dissolved oxygen at section C in April 1987.
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Figure 92. Phosphate at section C in April 1987.
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Figure 93. Nitrate at section C in April 1987.
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Figure 94. Nitrite at section C in April 1987.
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Figure 95. Ammonia at section C in April 1987.
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Figure 96. Silicate at section C in April 1987,
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Figure 97. Section view of an ARGOS station,
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