Updates to this report will be posted on the CDC Web site at the following address:

http://www.cdc.gov/nccdphp/drh/art.htm.

For additional information, send an E-mail to cdcinfo@cdc.gov

(Subject: ART) or write to CDC, ATTN: ARTE Unit; 4770 Buford Highway, N.E.;

Mail Stop K-34; Atlanta GA 30341-3717.

1999 ASSISTED REPRODUCTIVE TECHNOLOGY SUCCESS RATES

NATIONAL SUMMARY AND FERTILITY CLINIC REPORTS

Centers for Disease Control and Prevention

National Center for Chronic Disease Prevention and Health Promotion

Division of Reproductive Health

Atlanta, Georgia

American Society for Reproductive Medicine Society for Assisted Reproductive Technology Birmingham, Alabama

RESOLVE: The National Infertility Association Somerville, Massachusetts

December 2001

U.S. Department of Health and Human Services Centers for Disease Control and Prevention

Erratum

*Please note: The line graph on page 22, Section 2, Figure 10 contains an error in the printed version of the 1999 ART report and the downloadable PDF version on this Web site. The line graph for Figure 10 has inadvertently reversed labels for the legend. "Pregnancy rate" should be the top, dark blue line with higher data points, and "Live birth rate" should be the bottom, gray line with lower data points. The corrections have been made on this Web site for Figure 10; in Section 2, and in both the graphics and text version of the Screen Show, slide 10.

This publication was developed and produced by the National Center for Chronic Disease Prevention and Health Promotion of the Centers for Disease Control and Prevention in collaboration with the American Society for Reproductive Medicine, the Society for Assisted Reproductive Technology, and RESOLVE: The National Infertility Association.

Centers for Disease Control and Prevention

National Center for Chronic Disease Prevention and Health Promotion

James S. Marks, M.D., M.P.H., Director

Division of Reproductive Health

Lynne S. Wilcox, M.D., M.P.H., Director

Women's Health and Fertility Branch

Maurizio Macaluso, M.D., Dr.P.H., Chief Laura A. Schieve, Ph.D. Meredith A. Reynolds, Ph.D. Lilith Tatham, D.V.M., M.P.H. Victoria A. Clay, M.P.H. Robert A. Cicatello

Statistics and Computer Resources Branch

Joy Herndon, M.S., Chief Gary Jeng, Ph.D. Mithi Sunderam, Ph.D. Douglas Cook, M.B.I.S. Margaret Watson

Technical Information and Editorial Services Branch

Christine Fralish, M.L.I.S., Chief Linda G. Elsner

American Society for Reproductive Medicine

J. Benjamin Younger, M.D., Executive Director

Society for Assisted Reproductive Technology

David I. Hoffman, M.D., President James Grifo, M.D., Ph.D. Jacob F. Mayer, Ph.D. Joyce G. Zeitz

Registry Committee

Dale W. Stovall, M.D., Chairman Michael P. Steinkampf, M.D. Lucinda Veeck, M.L.T., D.Sc.

The November Group, Inc.

C. Martin Beaird

Redshift Technology, Inc.

Matthew V. Scott

RESOLVE: The National Infertility Association

Joan Bowen, Executive Director
Diane Clapp

Publication support was provided by Palladian Partners under Contract No. 200-98-0415 for the National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services.

Table of Contents

Preface
Commonly Asked Questions About This Report
1999 National Report
Introduction to the 1999 National Report
Section 1: Overview
Section 2: ART Cycles Using Fresh, Nondonor Eggs or Embryos
Section 3: ART Cycles Using Only Frozen Embryos
Section 4: ART Cycles Using Donor Eggs
1999 Fertility Clinic Tables
Introduction to Fertility Clinic Tables
Important Factors to Consider When Using These Tables to Assess a Clinic 4
How to Read a Fertility Clinic Table
1999 National Summary Table5
Alabama 5
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maryland
Massachusetts
Michigan
Minnesota

	Mississippi	. 251
	Missouri	. 253
	Nebraska	. 260
	Nevada	. 262
	New Hampshire	. 266
	New Jersey	. 267
	New Mexico	. 287
	New York	. 289
	North Carolina	. 318
	North Dakota	. 326
	Ohio	. 327
	Oklahoma	. 340
	Oregon	. 343
	Pennsylvania	. 345
	Puerto Rico	. 364
	Rhode Island	. 367
	South Carolina	. 368
	South Dakota	. 370
	Tennessee	. 371
	Texas	. 376
	Utah	. 400
	Vermont	. 402
	Virginia	. 403
	Washington	. 412
	West Virginia	. 419
	Wisconsin	. 420
Aŗ	ppendixes	. 429
	Appendix A: How to Interpret a Confidence Interval	. 431
	Findings from Validation Visits for 1999 ART Data	. 433
	Appendix B: Glossary of Terms Used in this Report	. 437
	Appendix C: ART Clinics that Reported 1999 Data for Publication, by State	. 443
	Nonreporting ART Clinics for 1999, by State	. 469

Preface

For many people who want to start a family, the dream of having a child is not easily realized; about 15% of women of childbearing age in the United States have received an infertility service. Assisted reproductive technology (ART) has been used in the United States since 1981 to help women become pregnant, most commonly through the transfer of fertilized human eggs into a woman's uterus. However, for many people, deciding whether to undergo this expensive and time-consuming treatment can be difficult.

The goal of this report is to help potential ART users make informed decisions about ART by providing some of the information needed to answer the following questions:

- What are my chances of having a child by using ART?
- Where can I go to get this treatment?

The Society for Assisted Reproductive Technology (SART), an organization of ART providers affiliated with the American Society for Reproductive Medicine (ASRM), has been collecting data and publishing annual reports of pregnancy success rates for fertility clinics in the United States and Canada since 1989. In 1992, the U.S. Congress passed the Fertility Clinic Success Rate and Certification Act. This law requires the Centers for Disease Control and Prevention (CDC) to publish pregnancy success rates for ART in fertility clinics in the United States. Since 1995, CDC and SART have worked together to report ART success rates.

The 1999 report of pregnancy success rates is the fifth to be issued under the law. It is published by CDC in collaboration with SART/ASRM and RESOLVE: the National Infertility Association. This report is based on the latest available data collected by SART on the type, number, and outcome of ART cycles performed in U.S. clinics.

The 1999 ART report has four major sections:

- **Commonly asked questions about the U.S. ART clinic reporting system:** This section provides background information on infertility and ART and an explanation of the data collection, analysis, and publication processes.
- A national report: The national report section presents overall success rates and shows how
 they are affected by certain patient and treatment characteristics. Because the national report
 summarizes data from all 370 fertility clinics that reported, it can give people considering
 ART a good idea of the average chance of having a child by using ART.
- **Fertility clinic tables:** Success also is related to the expertise of a particular clinic's staff and the quality of its laboratory. The fertility clinic table section displays results of ART success rates for individual U.S. fertility clinics in 1999.

· Appendixes:

Appendix A contains technical notes on the interpretation of 95% confidence intervals and findings from the data validation visits that were conducted in a sample of fertility clinics.

Appendix B (Glossary) provides definitions for technical and medical terms used throughout the report.

Appendix C includes the names and addresses of all reporting clinics along with a list of clinics known to be in operation in 1999 that did not report their success rate data to CDC as required.

Success rates can be reported in a variety of ways, and the statistical aspects of these rates can be difficult to interpret. As a result, presenting information about ART success rates is a complex task. This report is intended for the general public, and the emphasis is on presenting the information in an easily understandable form. CDC, SART/ASRM, and RESOLVE hope that this report is informative and helpful to people considering an ART procedure. We welcome any suggestions for improving the report and making it easier to use.

Commonly Asked Questions About the U.S. ART Clinic Reporting System:

Background Information, Data Collection Methods, Content and Design of the Report, and Additional Information About ART in the United States

1. How many people in the United States have infertility problems?

The latest data on infertility available to CDC are from the 1995 National Survey of Family Growth.

- Of the approximately 60 million women of reproductive age in 1995, about 1.2 million, or 2%, had had an infertility-related medical appointment within the previous year and an additional 13% had received infertility services at some time in their lives. (Infertility services include medical tests to diagnose infertility, medical advice and treatments to help a woman become pregnant, and services other than routine prenatal care to prevent miscarriage.)
- Additionally, 7% of married couples in which the woman was of reproductive age (2.1 million couples) reported they had not used contraception for 12 months and the woman had not become pregnant.

2. What is assisted reproductive technology (ART)?

Although various definitions have been used for ART, the definition used in this report is based on the 1992 law that requires CDC to publish this report. According to this definition, ART includes all fertility treatments in which both egg and sperm are handled. In general, ART procedures involve surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman. They do NOT include treatments in which only sperm are handled (i.e., artificial insemination or intrauterine insemination) or procedures in which a woman takes drugs only to stimulate egg production without the intention of having eggs retrieved.

The types of ART include

- IVF (in vitro fertilization).
- GIFT (gamete intrafallopian transfer).
- ZIFT (zygote intrafallopian transfer).

These terms are explained above Figure 2 on page 14 and in the glossary, which begins on page 437.

In addition, ART often is categorized according to whether the procedure used a woman's own eggs (nondonor) or eggs from another woman (donor) and according to whether the embryos used were newly fertilized (fresh) or previously fertilized, frozen, and then thawed (frozen). An ART procedure typically is referred to as a *cycle* of treatment. (See "What is an ART cycle?" on page 4.)

3. What is the 1992 Fertility Clinic Success Rate and Certification Act?

This law (Fertility Clinic Success Rate and Certification Act of 1992 [FCSRCA], Section 2 [a] of P.L. 102-493 [42 U.S.C. 263 (a) -1]), which the U.S. Congress passed in 1992, requires all clinics performing ART in the United States to annually report their success rate data to CDC. CDC uses the data to publish an annual report detailing the ART success rates for each of these clinics.

4. How do U.S. ART clinics report data to CDC about their success rates?

CDC contracts with a professional society, the Society for Assisted Reproductive Technology (SART), to obtain the data published each year in the ART Success Rates report. SART is an organization of ART providers affiliated with the American Society for Reproductive Medicine (ASRM). SART maintains a list of all ART clinics known to be in operation in each year and tracks clinic reorganizations and closings. This list includes clinics and individual providers that are members of SART as well as clinics and providers that are not SART members. SART actively follows up reports of ART physicians or clinics not on its list to update the list as needed.

Each year SART distributes a standard database management software system and instructions to all ART clinics. Clinics electronically enter data into the SART system for each ART procedure they started during a given reporting year. The data collected include information on the client's medical history, such as infertility diagnoses, clinical information pertaining to the ART procedure, and information on resulting pregnancies and births.

See below (Why is the report of 1999 success rates being published in 2001?) for a complete description of the reporting process.

5. What is an ART cycle?

Because ART consists of several steps over an interval of approximately two weeks, an ART procedure is more appropriately considered a *cycle* of treatment rather than a procedure at a single point in time. The start of an ART cycle is considered to be when a woman begins taking drugs to stimulate egg production or starts ovarian monitoring with the intent of having embryos transferred. (See Figure 3, page 15, for a full description of the steps in an ART cycle.) For the purposes of this report, data on *all cycles that were started*, even those that were discontinued before all steps were undertaken, are submitted to CDC through SART and are counted in the clinic's success rates.

6. Why is the report of 1999 success rates being published in 2001?

Before success rates based on live births can be calculated, every ART pregnancy must be followed up to determine if a birth occurred. Thus the earliest that clinics can report complete annual data is late in the year *after* ART treatment was initiated (about nine months past yearend, when all the births have occurred). Accordingly, the results of all the cycles initiated in 1999 were not known until October 2000. After ART outcomes were known, the following steps had to be completed before the report could be published:

• Clinics entered their data into an electronic data collection system and verified the data's accuracy before sending the data to SART.

- · SART compiled a national data set from the data submitted by individual clinics.
- CDC randomly selected a sample of the reporting clinics for on-site quality control visits by SART validation teams, who checked the submitted data against the information in the medical records to be sure they matched.
- · CDC data analysts did comprehensive checks of the numbers reported for every clinic.
- Clinic tables, national figures, and accompanying text in both the printed and Web site versions were compiled and laid out.
- CDC, SART/ASRM, and RESOLVE reviewed the report.

These steps are time consuming but essential for ensuring that the report provides the public with correct information and does not misrepresent any clinic's success rates.

7. What quality control steps are used to ensure data accuracy?

To have their success rates published in this annual report, clinics have to submit their data in time for analysis and the clinics' medical directors have to verify that the tabulated success rates are accurate. After the data have been verified, a quality control process called validation begins. This year, 29 of the 370 reporting clinics were selected for site visits. Two members of the SART Validation Committee visited these clinics and compared medical record data for a sample of the clinic's ART cycles with the data submitted for the report. CDC staff members participated as observers in some of the visits. For each clinic, the sample of cycles validated included all cycles that were reported to have ended in a live birth and a random sample of up to 50 additional cycles. In almost all cases, data on pregnancies and births in the medical records were consistent with reported data. Validation primarily helps ensure that clinics are being careful to submit accurate data. It also serves to identify any systematic problems that could cause data collection to be inconsistent or incomplete.

The data validation process does not include any assessment of clinical practice or overall record keeping. See Appendix A, Technical Notes, for a more detailed presentation of findings from the validation visits.

8. Which clinics are represented in this report?

The data in both the national report and the individual fertility clinic reports come from 370 fertility clinics that provided and verified information about the outcomes of the ART cycles started in their clinics in 1999.

Although we believe that almost all clinics that provided ART services in the United States throughout 1999 are represented in this report, data for a few clinics or practitioners have not been included in this report because they either were not in operation throughout 1999 or did not report as required. Clinics and practitioners known to have been in operation throughout 1999 that did not report and verify their data are listed in this report as nonreporters, as required by law. (See Appendix C, Nonreporting ART Clinics for 1999, by State.) We will continue to make every effort to include all clinics and practitioners providing ART services in future reports.

9. Does this report include all ART cycles performed by the reporting clinics?

This report includes data for the 86,822 cycles performed by the 370 clinics that reported their data as required. A small number of ART cycles are not included in either the national data or the individual fertility clinic tables. All of these cycles are in one of the following two categories:

- Surrogate or gestational carrier cycles, in which a woman receives the embryo transfer and
 carries the developing fetus for another woman. The gestational carrier usually has a contractual obligation to return the infant to its intended parents. In 1999, 821 such cycles were
 reported to CDC; the overall live birth rate for cycles using gestational carriers was 29.8%.
- Cycles in which a new treatment procedure (e.g., cytoplasmic egg transfer) was being evaluated. Only 18 ART cycles fell into this category in 1999.

10. How are the success rates determined?

Two measures of success are presented in this report: (1) **pregnancy** and (2) **birth** of one or more living infants (the delivery of multiple infants is counted as one live birth). The pregnancies reported here were diagnosed using an ultrasound procedure. Live births were reported to the ART physician by either the patient or her obstetric provider. Because this report is geared toward patients, the focus is on the live birth success rates.

Both pregnancy and live birth success rates were calculated based on all cycles **started** by each clinic. As noted throughout the report, success rates were additionally calculated at various steps of the ART cycle to provide a complete picture of the chances for success as the cycle progresses.

11. If a woman has had more than one ART treatment cycle, how is the success rate calculated?

As required by law, this report presents ART success rates in terms of cycles started each year rather than in terms of women. (A cycle starts when a woman begins taking fertility drugs or having her ovaries monitored for follicle production.) Therefore, women who had more than one ART cycle started in 1999 are represented in multiple cycles. Success rates cannot be calculated on a "per woman" basis because women's names are not reported to SART and CDC.

12. What factors that influence success rates are presented in this report?

The national report presents a more in-depth picture of ART than can be shown for each individual clinic. Success rates are presented in the context of various patient and treatment characteristics that may influence success. These characteristics include age, infertility diagnosis, history of previous births, previous miscarriages, previous ART cycles, number of embryos transferred, type of ART procedure, use of techniques such as intracytoplasmic sperm injection (ICSI), and clinic size.

13. Why doesn't the report contain specific medical information about ART?

This report describes a woman's average chances of success using ART. Although the report provides some information about factors such as age and infertility diagnosis, individual couples face many unique medical situations. This population-based registry of ART procedures cannot

capture detailed information about specific medical conditions associated with infertility. A physician in clinical practice should be consulted for the individual evaluation that will help a woman or couple understand their specific medical situation and their chances of success using ART.

14. Does CDC have any information on the age, race, income, and education levels of women who donate eggs?

CDC does not collect information on egg donors beyond what is presented in this report. Success rates for cycles using donor eggs or using embryos derived from donor eggs are broken down by the age of the woman who **received** the eggs or embryos.

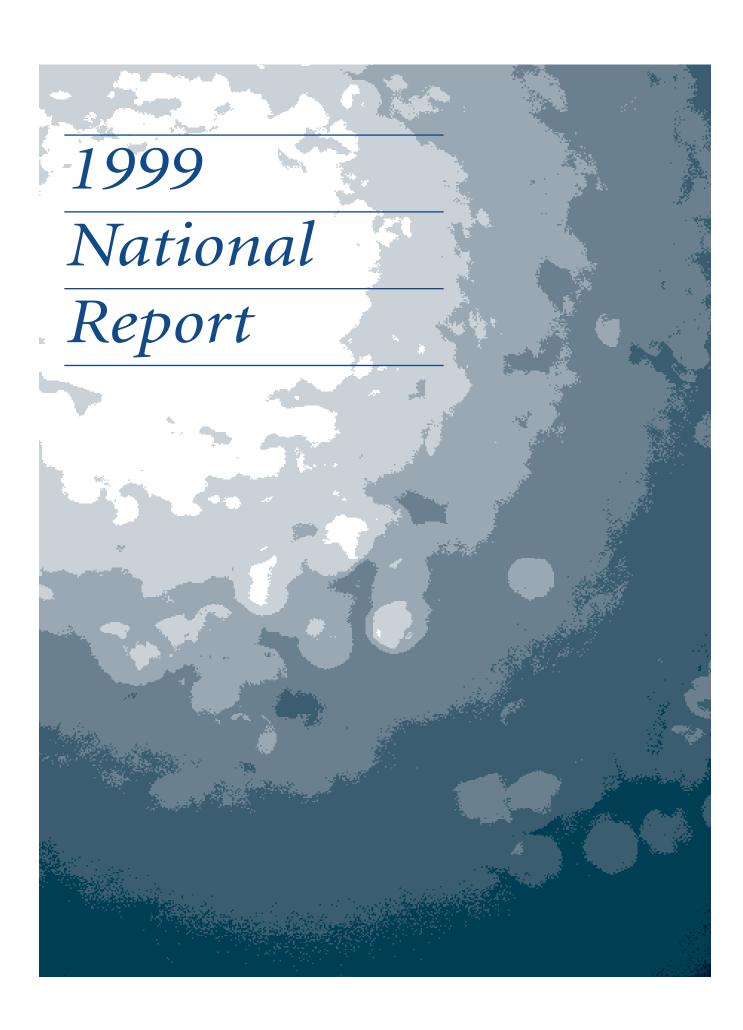
15. Are there any medical guidelines for ART performed in the United States?

The American Society for Reproductive Medicine (ASRM) and the Society for Assisted Reproductive Technology (SART) issue guidelines dealing with specific ART practice issues, such as the number of embryos to be transferred in an ART procedure. Further information can be obtained from ASRM or SART (telephone 205-978-5000 or Web site http://www.sart.org).

16. How can I get information about costs and insurance coverage of ART?

RESOLVE, a major national consumer group supporting people dealing with infertility, provides current information on insurance coverage in each state and guidance on paying for treatment. This information is available on RESOLVE's Web site (http://www.resolve.org) and from its national help line (617-623-0744).

17. What is CDC doing to ensure that the report is helpful to the public?


In 1999 CDC held focus groups of people who were either considering or undergoing ART in four cities in different areas of the country. The groups generally were satisfied with both the format and content of the report. They suggested specific ways to improve the report and additional information to include. Many of these changes have been incorporated into the 1999 annual report. We continually review comments from patients and providers on issues to consider for future reports.

18. What information should I ask for when I go to an ART clinic?

For a list of some of the questions you may want to ask when you meet with an ART practitioner, visit RESOLVE's Web site at http://www.resolve.org or contact its help line at 617-623-0744.

19. Where can I get additional information on U.S. fertility clinics?

For further information on specific clinics, contact the clinic directly. In addition, SART can provide general information on its member clinics (telephone 205-978-5000, extension 109).

Introduction to the 1999 National Report

Data provided by U.S. clinics that use assisted reproductive technology (ART) to treat infertility are a rich source of information about the factors that contribute to a successful ART treatment—the delivery of a live-born infant. Pooling the data from all reporting clinics provides an overall national picture that could not be obtained by examining data from an individual clinic.

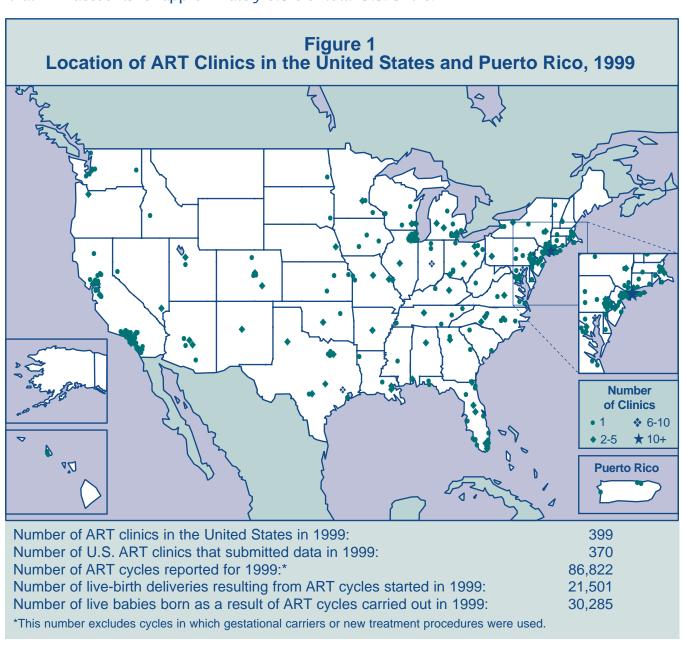
A woman's chances of having a pregnancy and a live birth by using ART are influenced by many factors, some of which (e.g., the woman's age, the cause of infertility) are outside a clinic's control. Because the national data set includes information on many of these factors, it can give potential ART users an idea of their average chances of success. Average chances, however, do not necessarily apply to a particular individual or couple. People considering ART should consult their physician to discuss all the factors that apply in their particular case.

The data for this national report come from the 370 fertility clinics in operation in 1999 that provided and verified data on the outcomes of all ART cycles started in their clinics. The 86,822 ART cycles performed at these reporting clinics in 1999 resulted in 21,501 live births (deliveries of one or more living infants) and 30,285 babies.

The national report consists of graphs and charts that use 1999 data to answer specific questions related to ART success rates. These figures are organized according to the type of ART procedure used. Some ART procedures use a woman's own eggs, and others use donated eggs or embryos. (Although sperm used to create an embryo also may be either from a woman's partner or from a sperm donor, information in this report is presented according to the source of the egg.) In some procedures, the embryos that develop are transferred back to the woman (fresh embryo transfer); in others, the embryos are frozen (cryopreserved) for transfer at a later date. This report includes data on frozen embryos that were thawed and transferred in 1999.

The national report has four sections:

- Section 1 (Figures 1 and 2) presents information from all ART procedures reported.
- Section 2 (Figures 3 through 27) presents information on the 65,751 ART cycles that used only fresh embryos from nondonor eggs or, in a few cases, a mixture of fresh and frozen embryos from nondonor eggs.
- Section 3 (Figure 28) presents information on the ART cycles that used only frozen embryos (12,005 cycles resulting in 10,532 transfers).
- Section 4 (Figures 29 and 30) presents information on the ART cycles that used only donated eggs or embryos (9,066 cycles resulting in 8,132 transfers).

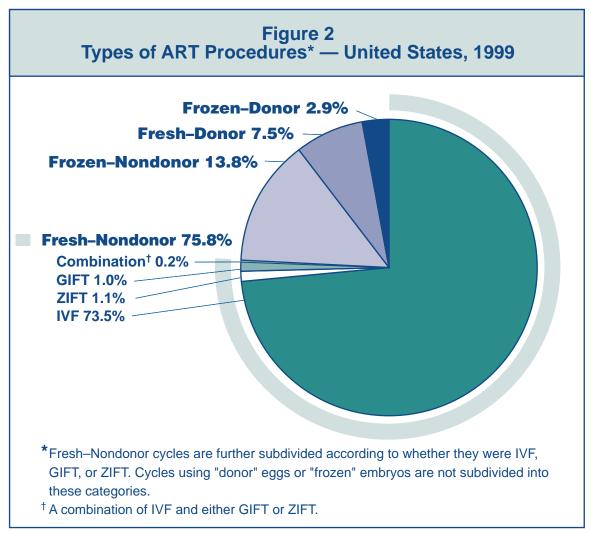

The 1999 national summary table, which is based on data from all clinics included in this report, is on page 57, immediately preceding the individual clinic tables. An explanation of how to read these tables is on page 51.

SECTION I: OVERVIEW

Where are U.S. ART clinics located, how many ART cycles did they perform in 1999, and how many infants were born?

Although ART clinics are located throughout the United States, the greatest number of clinics is in the eastern United States. Most clinics are in or near major cities. Figure 1 shows the locations of the 370 reporting clinics. The fertility clinic section of this report, arranged in alphabetical order by state, city, and clinic, provides specific information on each of these clinics.

The number of clinics, cycles performed, live-birth deliveries, and live babies born as a result of ART all have increased steadily since CDC began collecting this information in 1995. Because in some cases more than one infant is born during a live-birth delivery (e.g., twins), the total number of live babies born is greater than the number of live-birth deliveries. CDC estimates that ART accounts for approximately 0.8% of total U.S. births.



What types of ART procedures were used in the United States in 1999?

More than 75% of the 86,822 ART cycles carried out in 1999 used fresh, nondonor eggs or embryos. These cycles are further subdivided according to the specific procedure used:

- **IVF** (**in vitro fertilization**) involves extracting a woman's eggs, fertilizing the eggs in the laboratory, and then transferring the resulting embryo(s) into the woman's uterus through the cervix.
- **GIFT** (**gamete intrafallopian transfer**) involves using a fiber-optic instrument called a laparoscope to guide the transfer of unfertilized eggs and sperm (gametes) into the woman's fallopian tubes through small incisions in her abdomen.
- **ZIFT** (**zygote intrafallopian transfer**) involves fertilizing a woman's eggs in the laboratory and then using a laparoscope to guide the transfer of the fertilized eggs (zygotes) into her fallopian tubes.

A very small number of cycles used a combination of the procedures described above. Most of these **combination cycles** used fresh, nondonor eggs or embryos and usually involved IVF plus either GIFT or ZIFT.

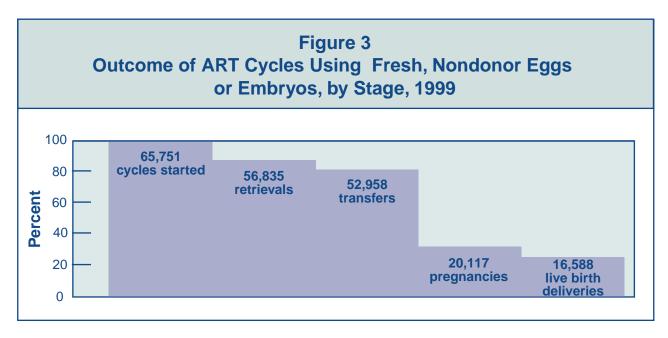
SECTION 2: ART CYCLES USING FRESH, NONDONOR EGGS OR EMBRYOS

The results of all ART (IVF, GIFT, and ZIFT) cycles that used fresh, nondonor eggs or embryos are presented together throughout this report, except where indicated in Figure 19, because the numbers of ZIFT and GIFT procedures are relatively small.

What are the steps for an ART procedure using fresh, nondonor eggs or embryos?

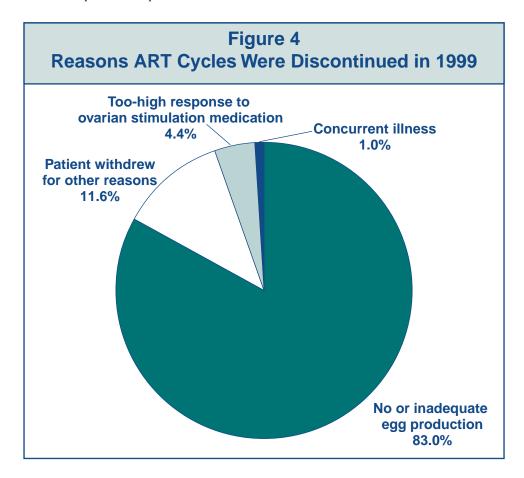
Figure 3 presents the steps for an ART cycle using fresh, nondonor eggs or embryos and shows how ART users in 1999 progressed through these stages toward pregnancy and live birth.

An ART **cycle is started** when a woman begins taking medication to stimulate the ovaries to develop eggs or, if no drugs are given, when the woman begins having her ovaries monitored (using ultrasound or blood tests) for natural egg production.


If eggs are produced, the cycle then progresses to **egg retrieval**, a surgical procedure in which eggs are collected from a woman's ovaries.

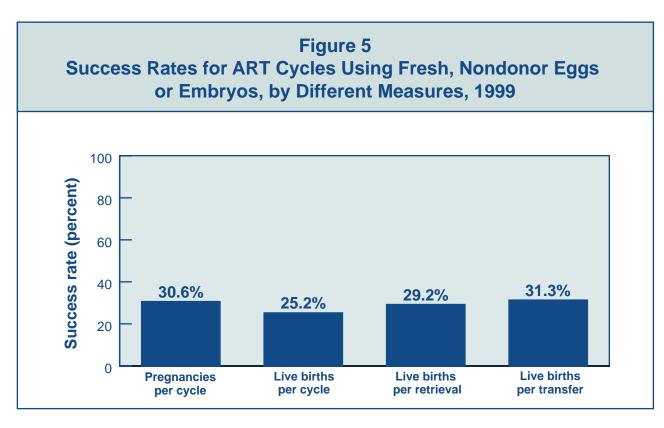
Once retrieved, eggs are combined with sperm in the laboratory. If fertilization is successful, one or more of the resulting embryos are selected for **transfer**, most often into a woman's uterus through the cervix (IVF).

If one or more of the transferred embryos implants within the woman's uterus, the cycle then progresses to clinical **pregnancy**.


Finally, the pregnancy may progress to a **live birth**, the delivery of one or more live-born infants. (The birth of twins, triplets, or more is counted as *one* live birth.)

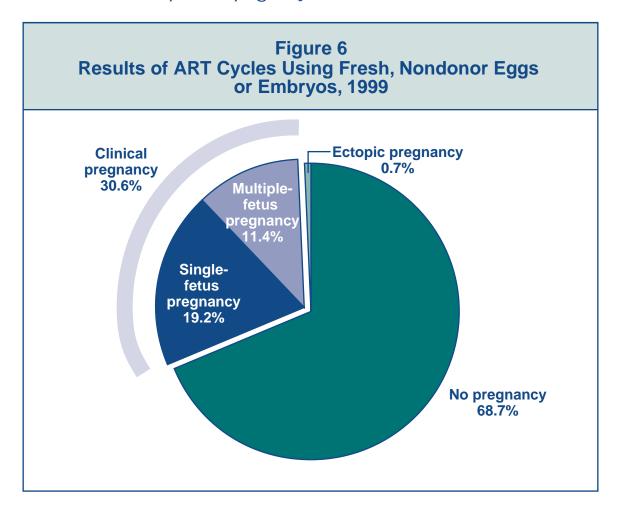
A cycle may be discontinued at any step for specific medical reasons (e.g., no eggs are produced, the embryo transfer was not successful) or by patient choice.

Why are some ART cycles discontinued?


In 1999, 8,916 ART cycles (13.6%) were discontinued before the egg retrieval step (see Figure 3). Figure 4 shows reasons why the cycles were stopped. For 83% of these cycles, there was no or inadequate egg production. Other reasons included too high a response to ovarian stimulation medications (i.e., potential for ovarian hyperstimulation syndrome), concurrent medical illness, or a patient's personal reasons.

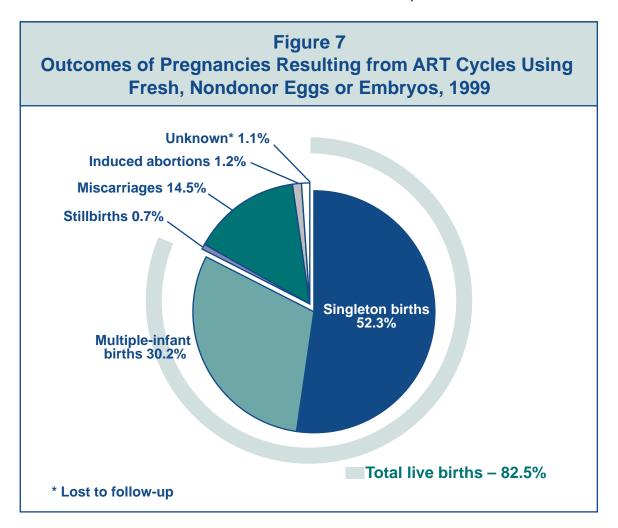
How is the success of an ART procedure measured?

Figure 5 shows ART success rates using four different measures, each providing slightly different information about this complex process. All of these rates have increased slightly each year since CDC began monitoring them in 1995; for example, the live birth per cycle rate was 19.6% in 1995 and 25.2% in 1999. Age-specific success rates using each of these measures are shown in the National Summary on page 57.


- **Pregnancy per cycle rate:** the percentage of ART cycles started that produced a pregnancy. This rate is higher than the live birth per cycle rate because some pregnancies end in miscarriage, therapeutic abortion, or stillbirth (see Figure 6, p. 18).
- Live birth per cycle rate: the percentage of ART cycles started that resulted in a live birth (a delivery of one or more living babies). This rate is the one many people are most interested in because it represents the average chances of having a live-born infant by using ART. Throughout this report, live birth rate means live birth per cycle rate unless otherwise specified.
- Live birth per egg retrieval rate: the percentage of ART cycles in which eggs were retrieved that resulted in a live birth. It is generally higher than the live birth per cycle rate because it excludes cycles that were canceled before eggs were retrieved. In 1999, about 14% of all cycles using fresh, nondonor eggs or embryos were canceled for a variety of reasons (see Figure 4).
- **Live birth per transfer rate:** includes only those ART cycles in which an embryo or egg and sperm were transferred back to the woman. This rate is the highest of these four measures of ART success.

What percentage of ART cycles results in a pregnancy?

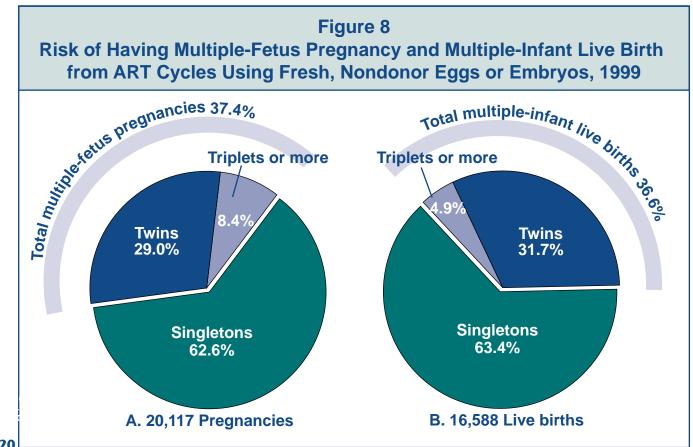
Figure 6 shows the results of the 1999 ART cycles that used fresh, nondonor eggs or embryos. Most of these cycles (68.7%) did not produce a pregnancy; a very small proportion (0.7%) resulted in an ectopic pregnancy (the embryo implanted outside the uterus), and 30.6% resulted in clinical pregnancy. Clinical pregnancies can be further subdivided as follows:


- 19.2% resulted in a single-fetus pregnancy.
- 11.4% resulted in a multiple-fetus pregnancy.

What percentage of pregnancies results in live births?

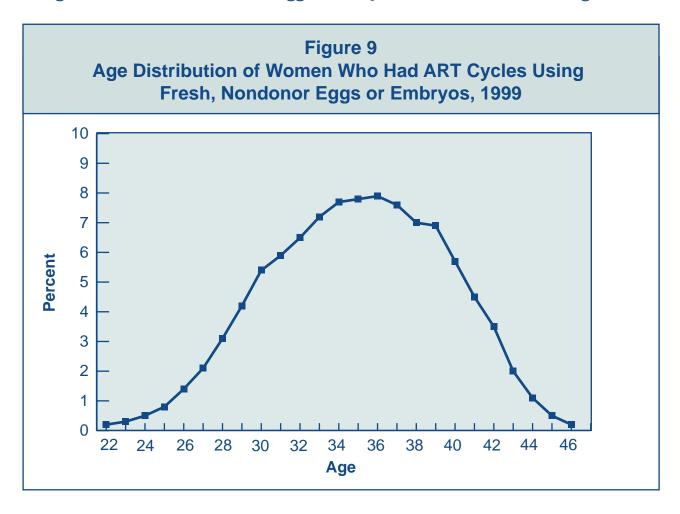
Figure 7 shows the outcomes of pregnancies resulting from ART cycles in 1999 (see Figure 6). Approximately 82% of the pregnancies resulted in a live birth (52% in a singleton birth and 30% in multiple-infant births). Approximately 16% of pregnancies resulted in an adverse outcome (miscarriage, induced abortion, or stillbirth). For less than 2% of pregnancies, the outcome was not reported.

Although the birth of more than one baby is counted as one live birth, multiple-infant births are presented here as a separate category because they often are associated with problems for both mothers and infants. Infant deaths and birth defects are not included as adverse outcomes because the available information for these outcomes is incomplete.


Using ART, what is the risk of having a multiple-fetus pregnancy or multiple-infant birth?

Multiple-infant births are associated with greater problems for both mothers and infants. These include higher rates of caesarean section, prematurity, low birth weight, and infant death and disability.

Part A of Figure 8 shows that among the 20,117 pregnancies that resulted from ART cycles using fresh, nondonor eggs or embryos, about 63% were singleton pregnancies, 29% were twin pregnancies, and about 8% were triplet or greater pregnancies. Thus, overall, about 37% of the pregnancies included more than one fetus.


In 1999, 3,310 pregnancies ended in either miscarriage, stillbirth, or induced abortion, and 219 pregnancy outcomes were not reported. The remaining 16,588 pregnancies resulted in live births. Part B of Figure 8 shows that about 37% of these live births produced more than one infant (32% twins and 5% triplets or more). This compares with a multiple-infant birth rate of less than 3% in the general U.S. population.

Although the total rates for multiples were similar between pregnancies and live births, there were more triplet pregnancies than triplet births. Triplet (or more) pregnancies may be reduced to twins or singletons by the time of birth. This can happen naturally (e.g., fetal death), or a woman and her doctor may decide to reduce the number of fetuses using a procedure called multifetal pregnancy reduction. Information on medical multifetal pregnancy reductions is incomplete and therefore is not provided here.

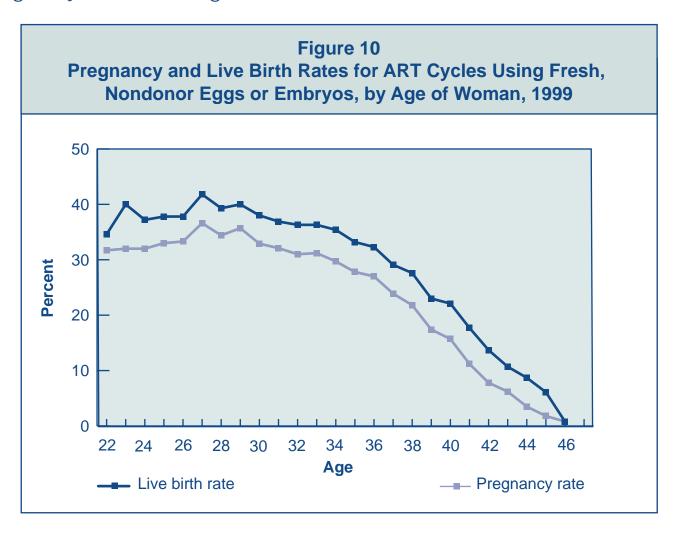
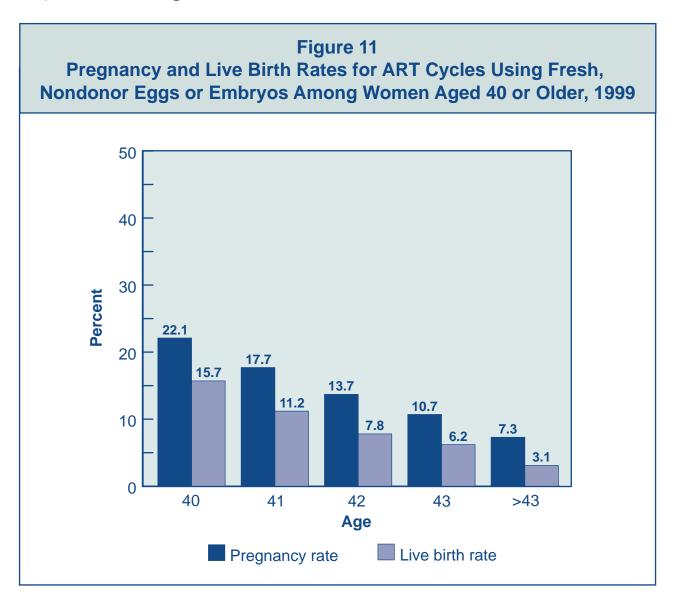
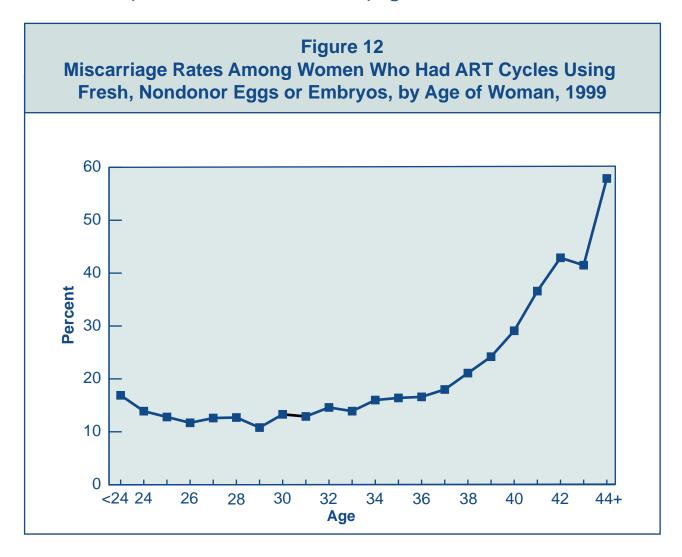

What are the ages of women who have an ART procedure?

Figure 9 presents 1999 ART cycles using fresh, nondonor eggs or embryos according to the age of the woman who had the procedure. About 70% of these cycles were among women aged 30–39. Because very few women younger than age 22 used ART and very few women older than age 46 used ART with their own eggs, those cycles are not included in the figure.


Do ART success rates differ among women of different ages?

A woman's age is the most important factor affecting the chances of a live birth when her own eggs are used. Figure 10 shows both the pregnancy and live birth rates for women of different ages who had ART procedures in 1999. Among women in their 20s, both pregnancy and live birth rates were relatively stable; however, both rates declined steadily from the mid-30s onward as fertility declined with age. For additional detail on success rates among women aged 40 years or older, see Figure 11.

How do ART success rates differ for women aged 40 years or older?


Success rates decline with each year of age and are particularly low for women 40 or older. Figure 11 shows pregnancy and live birth rates for women 40 or older. The average chance for pregnancy was about 22% for women aged 40; the live birth rate for this age was about 16%. This rate dropped steadily with each one-year increase in age. The live birth rate was approximately 6% for women aged 43, and 3% for women older than 43.

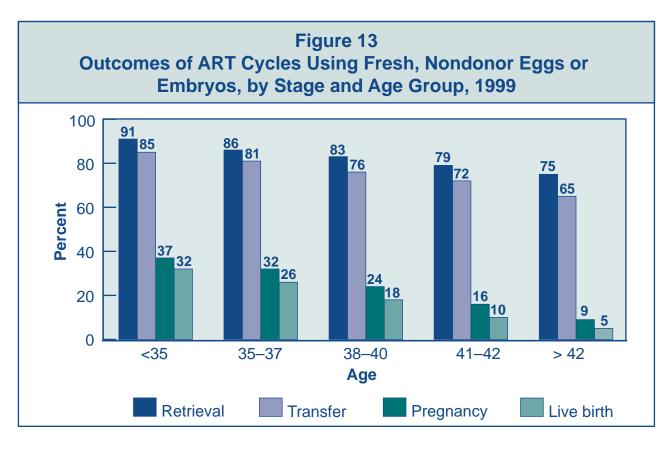
How do miscarriage rates vary among women of different ages undergoing ART?

A woman's age not only affects the chance for pregnancy when her own eggs are used, but also affects her risk for miscarriage. Figure 12 shows miscarriage rates for women of different ages who became pregnant using ART procedures in 1999. Miscarriage rates generally were near or below 15% among women younger than 33. The rates began to increase among women in their mid-to-late 30s and continued to increase with age, reaching 29% at age 40 and 43% at age 42.

The miscarriage rates observed among women undergoing ART procedures appear to be similar to those reported in various studies of other pregnant women in the United States.

How does a woman's age affect her chances of progressing through the various stages of ART?

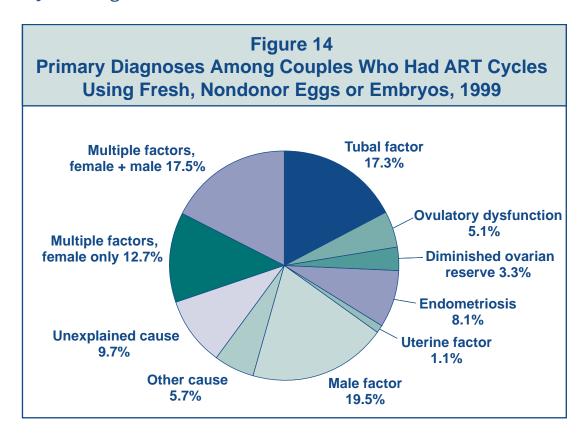
In 1999, a total of 65,751 cycles using fresh, nondonor eggs or embryos were started:


- 29,682 in women younger than 35
- 15,291 in women 35–37

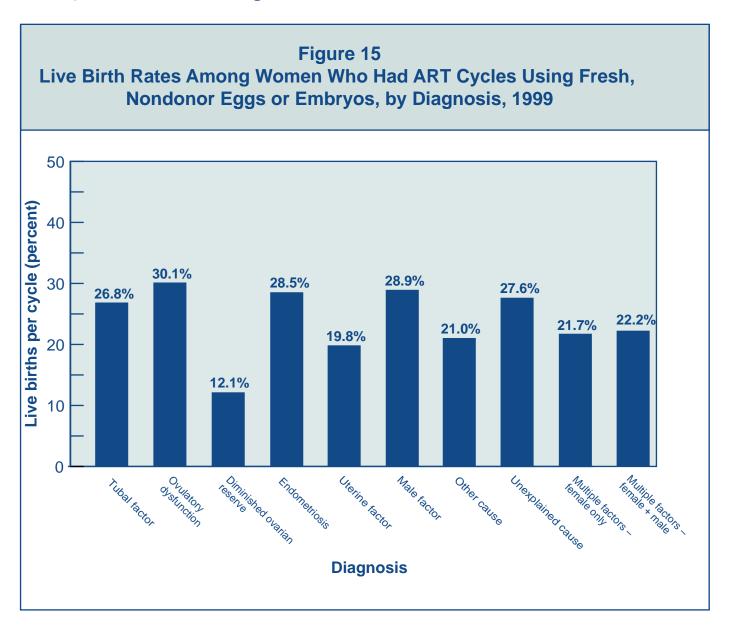
- 12,848 in women 38–40
- 5,302 in women 41–42
- 2,628 in women older than 42

Figure 13 shows that a woman's chance of progressing from the beginning of ART to pregnancy and live birth (using her own eggs) *decreases* at **every stage** of ART as her age *increases*.

- As women get older, the likelihood of a successful response to ovarian stimulation and progression to **egg retrieval** decreases.
- As women get older, cycles that have progressed to egg retrieval are slightly less likely to reach **transfer**.
- The percentage of cycles that progress from transfer to pregnancy also decreases as women get older.
- As women get older, cycles that have progressed to pregnancy are less likely to result in a **live birth** because the risk for miscarriage is increased (see Figure 12).


Overall, 32% of cycles started in 1999 among women younger than 35 resulted in live births. This percentage decreased to 26% among women aged 35–37, 18% among women aged 38–40, 10% among women 41–42, and 5% among women older than 42.

What are the causes of infertility among couples who use ART?


Figure 14 shows the diagnoses reported for infertility among couples who had an ART procedure in 1999. Diagnoses range from one infertility factor in one partner to multiple factors in either one or both partners. However, diagnostic procedures may vary from one clinic to another, so the categorization may be inexact.

- **Tubal factor** means that the woman's fallopian tubes are blocked or damaged, making it difficult for the egg to be fertilized or for an embryo to travel to the uterus.
- **Ovulatory dysfunction** means that the ovaries are not producing eggs normally. Such dysfunctions include polycystic ovary syndrome and multiple ovarian cysts.
- **Diminished ovarian reserve** means that the ability of the ovary to produce eggs is reduced. Reasons include congenital, medical, or surgical causes or advanced maternal age (older than 40).
- **Endometriosis** involves the presence of tissue similar to the uterine lining in abnormal locations. This condition can affect both fertilization of the egg and embryo implantation.
- **Uterine factor** means a structural or functional disorder of the uterus that results in reduced fertility.
- **Male factor** refers to a low sperm count or problems with sperm function that make it difficult for a sperm to fertilize an egg under normal conditions.
- **Other causes** of infertility include immunological problems, chromosomal abnormalities, cancer chemotherapy, and serious illnesses.
- **Unexplained cause** means that no cause of infertility was found in either the woman or the man.
- Multiple factors, female only, means that more than one female cause was diagnosed.
- Multiple factors, female and male, means that one or more female causes and male factor infertility were diagnosed.

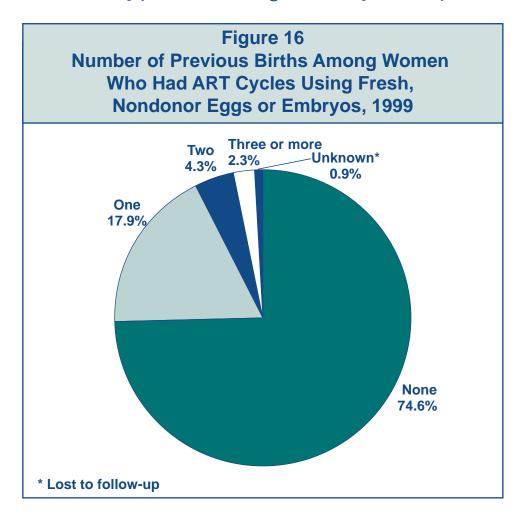

Does the cause of infertility affect the chances of success using ART?

Figure 15 shows the percentage of live births after an ART procedure according to the causes of infertility. (See Figure 14 or the glossary in Appendix B for an explanation of the diagnoses.) Although the national average success rate was 25.2%, success rates varied somewhat for those with different diagnoses; however, the definitions of these diagnoses may vary from clinic to clinic. In general, the highest success rates were observed for those with ovulation disorders. Couples diagnosed with male factor, endometriosis, tubal factor, or unexplained infertility also had above-average success rates. The lowest success rates were observed for those with diminished ovarian reserve. Additionally, couples with uterine factor, "other" causes, or multiple infertility factors had below-average success rates.

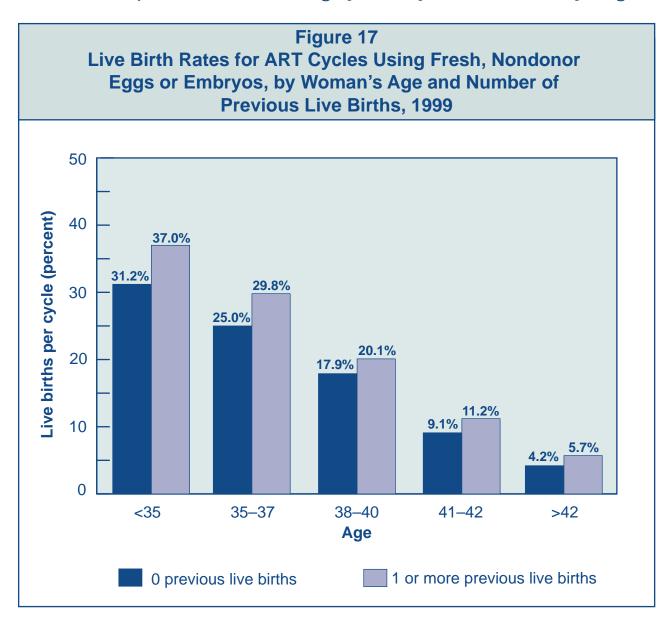

How many women who use ART have previously given birth?

Figure 16 shows the number of previous births among women who had an ART procedure in 1999. Most of these women (about 75%) had no previous births, although they may have had a pregnancy that resulted in a miscarriage or a therapeutic abortion. About 18% of women using ART in 1999 reported one previous birth, and about 7% reported two or more previous births. However, we do not have information about how many of these were ART births and how many were not. These data nonetheless point out that women who have previously had children can still face infertility problems, including the infertility of a new partner.

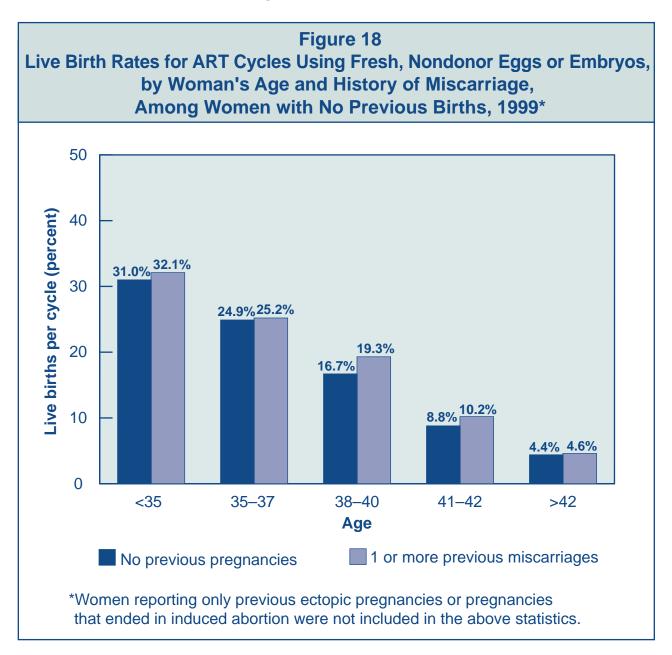
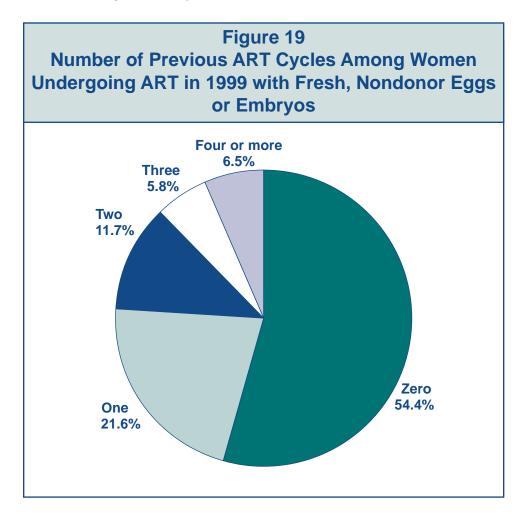

Do women who have previously given birth have higher ART success rates?

Figure 17 shows the relationship between the success of an ART cycle performed in 1999 and the history of previous births to the woman who had the treatment. Previous live-born infants were conceived naturally in some cases and through ART in others. In all age groups, women who had not had a previous live birth were slightly less likely to have a live birth by using ART.


Are women with previous miscarriages more likely to be successful using ART compared with women who have never been pregnant?

More than 49,600 ART cycles were performed on women who had not previously given birth (see Figure 16). However, 24% of those women did report one or more previous pregnancies that had ended in miscarriage. We do not have information on whether the previous pregnancies were the result of ART or were conceived naturally. Figure 18 shows the relationship between the success of an ART cycle and the history of previous miscarriage. Women in all age groups who had a previous miscarriage were slightly more likely to have a live birth by using ART than women who had never been pregnant. This relationship was not as pronounced as the relationship between success and previous *birth* shown in Figure 17. These findings do indicate, however, that a history of pregnancy, even if unsuccessful, is related to a higher live birth rate from a later ART cycle.

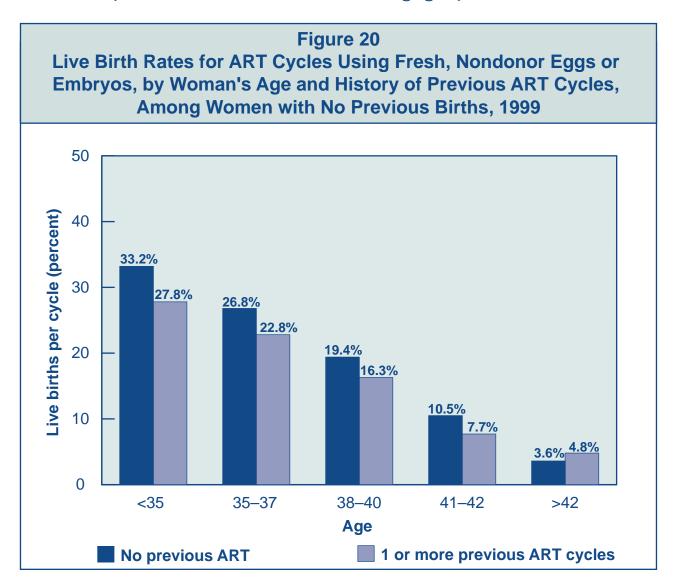
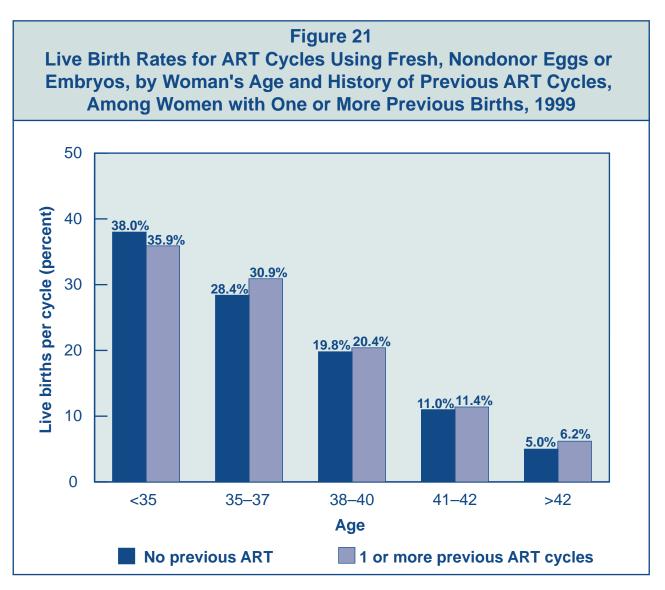
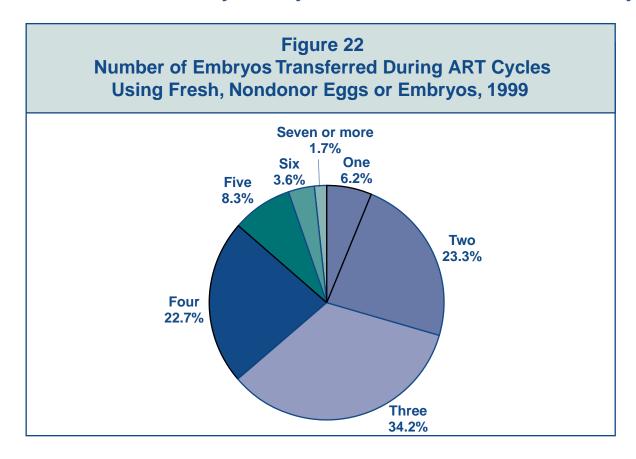

How many current ART users have undergone previous ART cycles?

Figure 19 presents ART cycles that used fresh, nondonor eggs or embryos in 1999 according to whether previous ART cycles had been performed. For about 46%, one or more previous cycles were reported. (This percentage includes previous cycles using either fresh or frozen embryos.) This finding illustrates that it is not uncommon for a couple to undergo multiple ART cycles. We do not have information on when previous cycles were performed, nor do we have information on the outcomes of those previous cycles.

Are success rates different for women using ART for the first time and women who previously used ART but did not give birth?

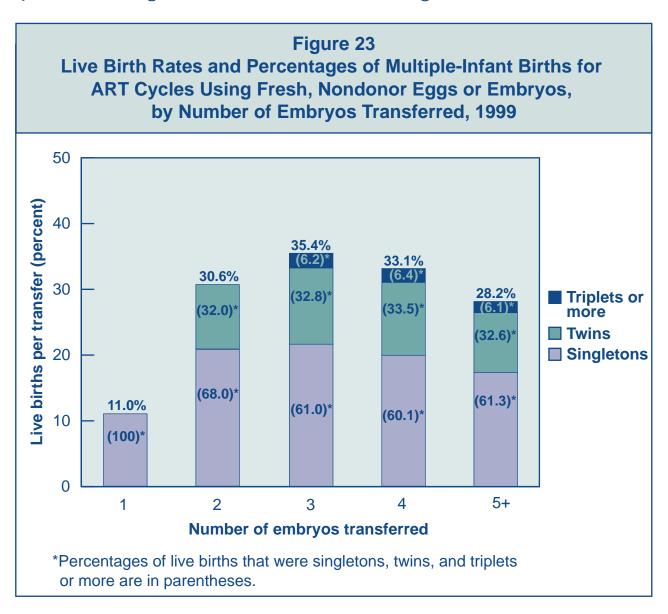

Figure 20 shows the relationship between the success of ART cycles performed in 1999 using fresh, nondonor eggs or embryos and a history of previous ART cycles among women with no previous births. In all age groups up to age 42, success rates were lower for women who had previously undergone an unsuccessful ART cycle. Women older than 42 who used their own eggs had low success rates overall. Whether or not a woman had previously undergone ART was not further predictive of success rates in this oldest age group.

What are the success rates for women who have had both previous ART and previous births?


Figure 21 shows the relationship between the success of ART cycles performed in 1999 using fresh, nondonor eggs or embryos and a history of *both* previous ART cycles and previous births. We do not have information on whether the previous births were the result of ART or were conceived naturally. However, among women with previous births, there was no decline in success rates if they had undergone previous ART cycles. In some age groups, the success rate appeared to be slightly higher if a previous ART cycle had been performed.

Taken together, Figures 20 and 21 show that having undergone previous ART cycles may be related to the success of the current ART cycle. But, it is important to consider the outcomes of previous cycles and whether the woman has given birth in the past.

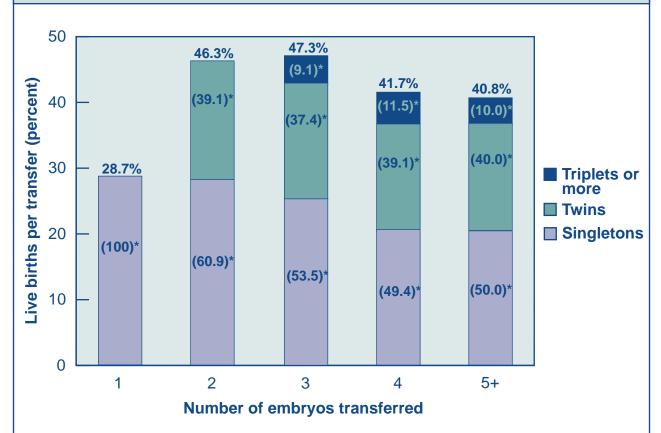
How many embryos are transferred in ART procedures?


Figure 22 shows that approximately 71% of ART cycles that progressed to the embryo transfer stage in 1999 involved the transfer of three or more embryos, about 36% of cycles involved the transfer of four or more, and nearly 14% of cycles involved the transfer of five or more embryos.

In general, is an ART cycle more likely to be successful if more embryos are transferred?

Figure 23 shows the relationship between the number of embryos transferred during an ART procedure in 1999 and the number of infants born alive as a result of that procedure. In general, the success rate increased with each additional embryo transferred (up to three); however, transferring multiple embryos also poses a risk of having a multiple-infant birth. Multiple-infant births cause concern because of the additional health risks they create for both mothers and infants. Also, pregnancies with multiple fetuses can be associated with the possibility of multifetal reduction.

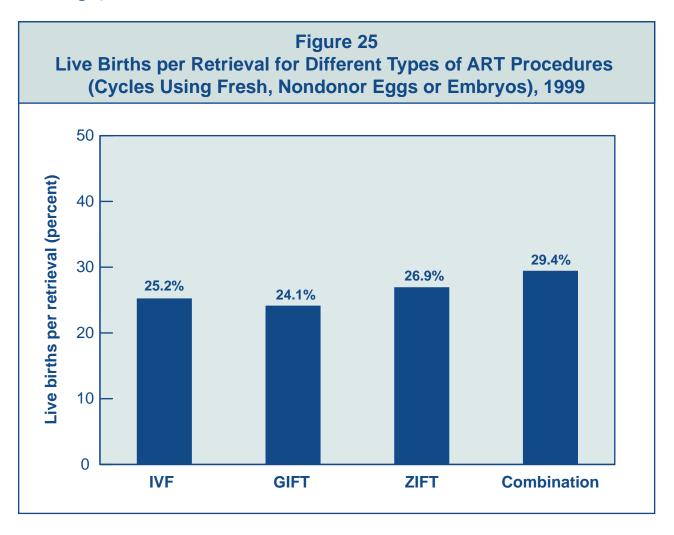
The relationships between number of embryos transferred, success rates, and multiple-infant births are complicated by several factors, such as age and embryo quality. Thus, the relationships shown in this figure do not hold for all women. (See Figure 24.)


Are live birth rates affected by the number of embryos transferred for women who have more embryos available than they choose to transfer?

Although, in general, transferring more embryos tends to improve the chance for a successful ART procedure (see Figure 23), other factors are also important. Previous research suggests that the number of embryos fertilized and thus available for ART is just as important, if not more important, in predicting success as the number of embryos transferred. Additionally, younger women tend to have both higher success rates and higher multiple-infant birth rates. Figure 24 (next page) shows the relationship between the number of embryos transferred, success rates, and multiple-infant births for a subset of ART procedures in which the woman was younger than 35 and the couple chose to set aside some embryos for future cycles rather than transfer all available embryos at one time. For this group, the chance for a live birth using ART was about 46% when only two embryos were transferred. There was virtually no increase in the success rate when three embryos were transferred. The proportion of live births that were multiple-infant births was 39% with two embryos and 47% with three embryos. Transferring three or more embryos also created an additional risk for higher-order multiple births (i.e., triplets or more). For example, the proportion of live births that were triplets or more was 9% with three embryos transferred and 12% with four embryos.*

^{*} A more detailed CDC report that discusses how various factors affect live birth and multiple-infant birth rates among women in both older and younger age groups was published in *JAMA* in 1999 (Vol. 282, No. 19, pages 1832–1838). The American Society for Reproductive Medicine (ASRM) and the Society for Assisted Reproductive Technology (SART) issue guidelines dealing with the number of embryos to be transferred in an ART procedure. Further information can be obtained from ASRM or SART (telephone 205-978-5000 or Web site http://www.sart.org).

Figure 24


Live Birth Rates and Percentages of Multiple-Infant Births for ART Cycles in Women Who Were Younger Than 35; Used Fresh, Nondonor Eggs or Embryos; and Set Aside Extra Embryos for Future Use, by Number of Embryos Transferred, 1999

*Percentages of live births that were singletons, twins, and triplets or more are in parentheses.

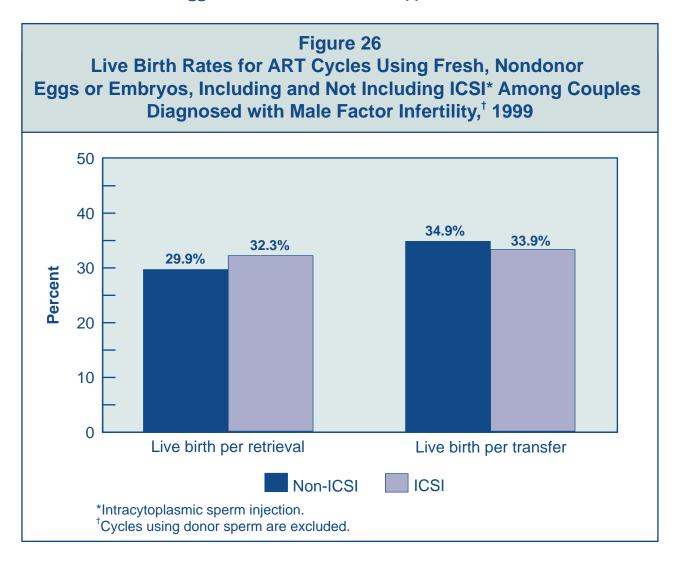
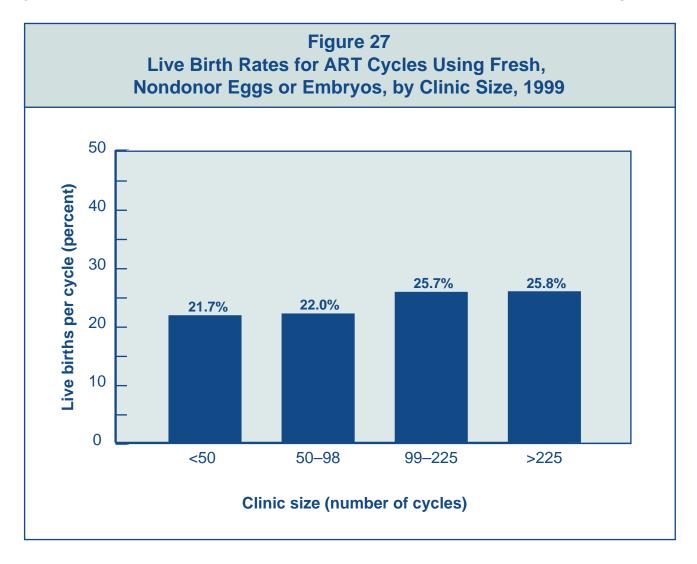
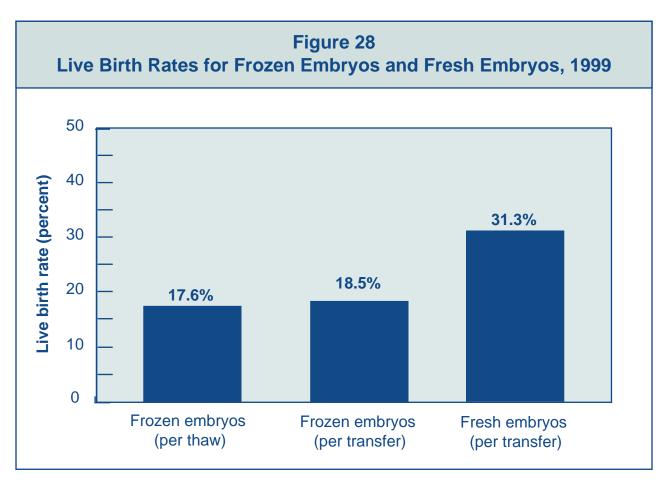

What are the live birth rates for different types of ART procedures?

Figure 25 shows the percentage of egg retrievals in 1999 that used a particular type of ART procedure and resulted in a live birth. Because the same patterns were seen among all age groups, results are given for all age groups combined. In 1999, success rates for IVF, GIFT, and ZIFT were very similar. Although the rate appears to be slightly higher for cycles that used a combination of IVF and either GIFT or ZIFT, this rate was based on a fairly low number of cycles (only 0.3% of cycles used a combination of procedures) and should be interpreted with caution. Some women with tubal infertility are not suitable candidates for GIFT and ZIFT. In addition, GIFT and ZIFT are more invasive procedures than IVF because they involve inserting a laparoscope into a woman's abdomen to transfer the embryos or gametes into the fallopian tubes. In contrast, IVF involves transferring embryos into a woman's uterus through the cervix without surgery.


Is an ART cycle more likely to be successful for couples with male factor infertility when ICSI is used?

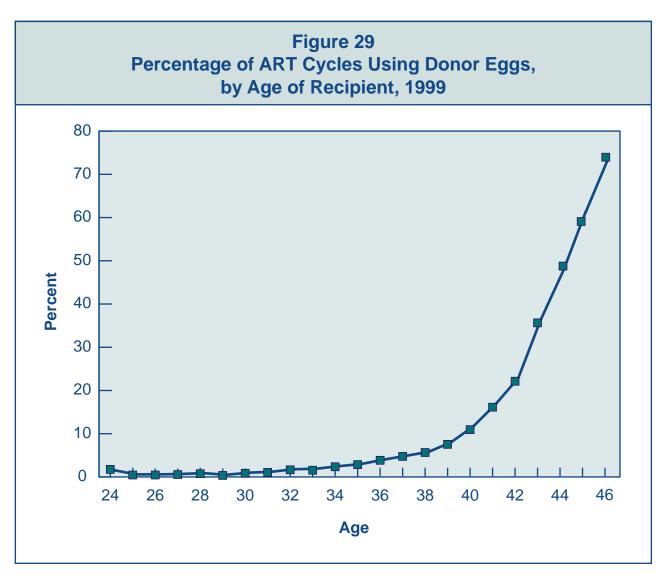
Many couples use ICSI (intracytoplasmic sperm injection, a procedure in which a single sperm is injected directly into an egg) to overcome problems with sperm function or motility. Figure 26 compares the success rates for ART procedures involving ICSI with those not involving ICSI among couples with a diagnosis of male factor infertility. Because ICSI can be performed only when at least one egg has been retrieved, only the live birth per retrieval rate and the live birth per transfer rate are compared. In 1999, success rates per retrieval were slightly higher when ICSI was used, indicating that ICSI may improve the chances of fertilization for couples with male factor infertility. The similarity in success rates for live births per transfer with and without ICSI shows that once the egg was fertilized, ICSI did not appear to affect the success rate.

Does the size of the clinic affect its success rate?

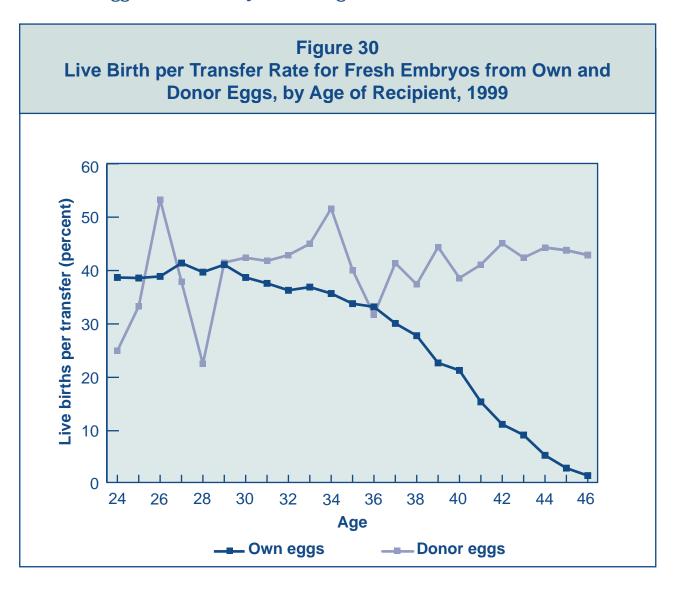

The number of ART procedures carried out every year varies among fertility clinics in the United States. In 1999, success rates tended to be slightly higher among clinics that performed more cycles. In Figure 27, clinics are divided into four *equal* groups (called quartiles) based on the size of the clinic as determined by the number of cycles it carried out. The percentage for each quartile represents the average success rate for clinics in that quartile. For the exact number of cycles and success rates at an individual clinic, refer to the clinic table section of this report.

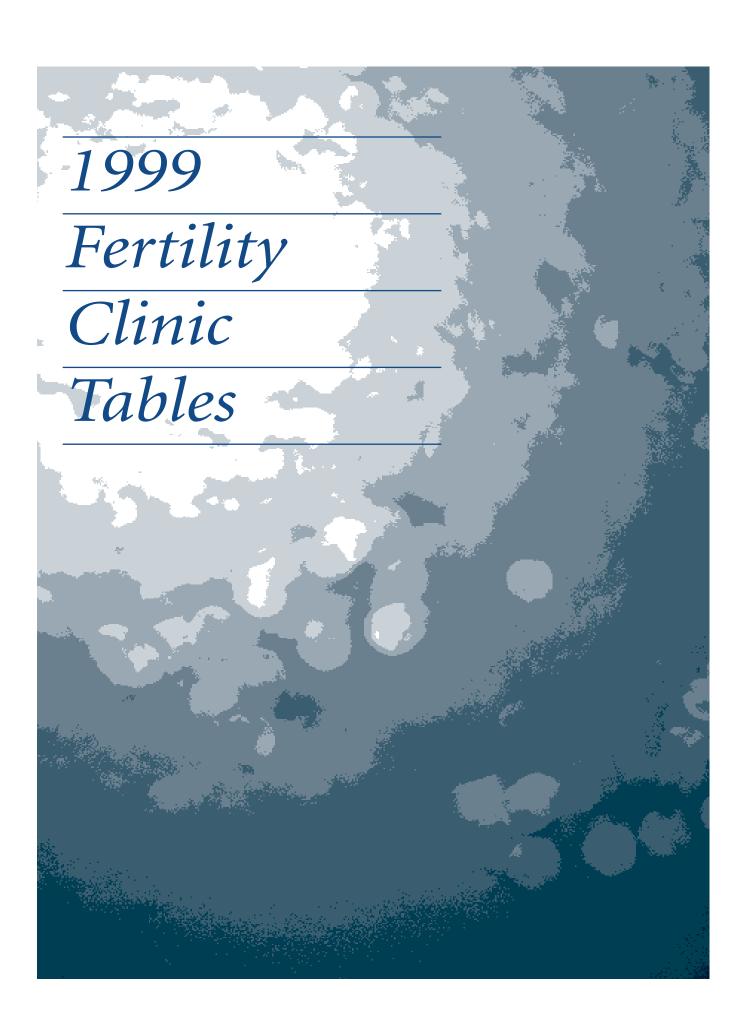
SECTION 3: ART CYCLES USING ONLY FROZEN (NONDONOR) EMBRYOS

What are the success rates for ART cycles using frozen embryos?


Approximately 14% of all ART cycles performed in 1999, or 12,005 cycles, used only frozen embryos. Figure 28 compares the success rates for frozen embryos with the rate for fresh embryos. Some embryos do not survive the freezing or thawing process. Thus, the live birth per thaw rate, which takes into account all embryos frozen, is usually lower than the live birth per transfer rate. In 1999, the live birth per thaw and live birth per transfer rates for frozen embryos were lower than the live birth per transfer rate for fresh embryos. However, cycles that use frozen embryos are both less expensive and less invasive than fresh embryo cycles because the woman does not have to go through the fertility drug stimulation and egg retrieval process again.

SECTION 4: ART CYCLES USING DONOR EGGS


Are older women more likely to have ART using donor eggs?


As shown in Figures 10, 11, and 12, eggs produced by women in older age groups form embryos that are less likely to implant and more likely to spontaneously abort if they do implant. As a result, ART using donor eggs is much more common among older women than among younger women. Donor eggs were used in approximately 10% of all ART cycles carried out in 1999, or 9,066 cycles. Figure 29 shows the percentage of ART cycles using donor eggs in 1999 according to the woman's age. Few women younger than age 36 used donor eggs; however, the percentage of cycles carried out with donor eggs then increased sharply with age. Among women older than age 46, more than 70% of all ART cycles used donor eggs.

What are the success rates for ART when donor eggs are used?

Figure 30 compares success rates for ART using donor eggs with those for ART using a woman's own eggs among women of different ages. The likelihood of a fertilized egg implanting is related to the age of the woman who produced the egg. Egg donors are typically in their 20s or early 30s. Thus, the live birth per transfer rate for cycles using embryos from donor eggs varies only slightly across all age groups. In contrast, this rate for cycles using embryos from the woman's own eggs declines steadily as women get older.

Introduction to Fertility Clinic Tables

In this section, each clinic's data are presented in a one-page table that includes the types of ART used, patient diagnoses, success rates that each clinic reported and verified for 1999, and individual program characteristics. Clinics are listed in alphabetical order by state, city, and clinic. The first table in this section is the national summary of combined data from all clinics.

Many people considering ART will want to use this report to find the "best" clinic. However, comparisons between clinics must be made with caution. Many factors contribute to the success of an ART procedure. Some factors are related to the training and experience of the ART clinic and laboratory professionals and the quality of services they provide. Other factors are related to the patients themselves, such as their age and the cause of their infertility. Some clinics may be more willing than others to accept patients with low chances of success or may specialize in different ART treatments that attract particular types of patients. These and other factors to consider when interpreting clinic data are discussed below.

Important Factors to Consider When Using These Tables to Assess a Clinic

- These statistics are for 1999. Data for cycles started in 1999 could not be published until 2001 because the final outcomes of pregnancies conceived in December 1999 were not known until October 2000. Additional time was then required to collect and analyze the data and prepare the report. Many factors that contribute to a clinic's success rate may have changed, for better or for worse, in the two years since these procedures were performed. Personnel may be different. Equipment and training may or may not have been updated. As a result, success rates for 1999 may differ from current rates.
- No reported success rate is absolute. A clinic's success rates will vary from year to year even if all determining factors remain the same. However, the more cycles that a clinic carries out, the less the rate is likely to vary. Conversely, clinics that carry out fewer cycles are likely to have more variability in success rates from year to year. As an extreme example, if a clinic reports only one ART cycle in a given category, as is sometimes the case in the data presented here, the clinic's success rate in that category would be either 0% or 100%. For further detail, see the explanation of confidence intervals on page 54.
- Some clinics see more than the average number of patients with difficult infertility problems. Some clinics are willing to offer ART to most potential users, even those who have a low probability of success. Others discourage such patients or encourage them to use donor eggs, a practice that results in higher success rates among older women. Clinics that accept a higher percentage of women who previously have had multiple unsuccessful ART cycles will generally have lower success rates than clinics that do not. In contrast, clinics that offer ART procedures to patients who might have become pregnant with less technologically advanced treatment will have higher success rates than clinics that do not.

A related issue is that success rates shown in this report are presented in terms of cycles, as required by law, rather than in terms of women. As a result, women who had more than one ART cycle in 1999 are represented in multiple cycles. If a woman who underwent several ART cycles at a given clinic either never had a successful cycle or had a successful cycle only after numerous attempts, the clinic's success rates would be lowered.

- Cancellation rates affect a clinic's success rate. Cancellation rates for cycles using fresh, non-donor eggs or embryos vary among clinics from less than 1% to approximately 41%. A high cancellation rate tends to lower the live birth per cycle rate but may increase the live birth per retrieval and live birth per transfer rates.
- Success rates for unstimulated (or "natural") cycles are included with those for stimulated cycles. In an unstimulated cycle, the woman ovulates naturally rather than through the daily injections used in stimulated cycles. Unstimulated cycles are less expensive because they require no daily injections and fewer ultrasounds and blood tests. However, women who use natural or mild stimulation produce only one or two follicles, thus reducing the potential number of embryos for transfer. As a result, unstimulated cycles have lower success rates, and clinics that carry out a relatively high proportion of unstimulated cycles will have lower success rates than those that do not. Nationally, fewer than 1% of ART cycles in 1999 were unstimulated. However, in a very few clinics, more than 25% of cycles were unstimulated.
- Success rates are calculated per cycle rather than per patient. Thus, for patients who undergo both fresh and frozen cycles, success rates are calculated separately for each cycle. Clinics that have very good live birth rates with frozen embryos would have higher ART success rates if these births were included as successes from the original stimulated cycle. Consumers should look at both rates (for cycles using fresh embryos and for those using frozen embryos) when assessing a clinic's success rates.
- The number of embryos transferred varies from clinic to clinic. In 1999, the average number of embryos that a clinic transferred to women younger than age 35 ranged from 1 to 5 for fresh nondonor cycles. The American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology discourage the transfer of a large number of embryos because it increases the likelihood of multiple gestations. Multiple gestations, in turn, increase both the probability of premature birth and its related problems and the need for multifetal pregnancy reductions.

In addition, success rates can be affected by many other factors, including

- the quality of eggs.
- the quality of sperm (including motility and ability to penetrate the egg).
- the skill and competence of the treatment team.
- the general health of the woman.
- genetic factors.

We encourage consumers considering ART to contact clinics to discuss their specific medical situation and their potential for success using ART. Because clinics did not have the opportunity to provide a narrative to explain their data, such a conversation could provide additional information to help people decide whether or not to use ART.

Although ART offers important options for the treatment of infertility, the decision to use ART involves many factors in addition to success rates. Going through repeated ART cycles requires substantial commitments of time, effort, money, and emotional energy. Therefore, consumers should carefully examine all related financial, psychological, and medical issues before beginning treatment. They also will want to consider the location of the clinic, the counseling and support services available, and the rapport that staff have with their patients.

An explanation of how to read a fertility clinic table begins on page 51.

Sample Clinic Table

A comparison of clinic success rates may not be meaningful because patient medical characteristics and treatment approaches vary from clinic to clinic. (See pp. 45-47.)

1999 ART CYCLE PROFILE

1	Туре	of ART ^{a,b}		2 Patien	t Diag	nosis	
IVF	98%	Procedural fac	ctors:	Tubal factor	9%	Other factor	2 %
GIFT	1%			Ovulation disorders	5 %	Unknown factor	3%
ZIFT	<1%	With ICSI	66%	Diminished ovarian reserve	18%	Multiple Factors:	
Combination	<1%	Unstimulated	<1%	Endometriosis	16%	Female factors only	8%
				Uterine Factor	<1%	Female & male factors	15%
				Male factor	23%		

1999 PREGNANCY SUCCESS RATES

3 Data verified by X.Y. Zee, M.D.

Type of Cycle ^a	<35	5 Age of 35-37	Woman 38-40	41-42 ^e
4A Fresh Embryos from Nondonor Eggs				
Number of cycles	161	45	27	5
Percentage of cycles resulting in pregnancies ^{c,d}	29.6	29.2	26.7	2/5
Percentage of cycles resulting in live births c,d	22.4	20.0	14.8	1/5
6 (Confidence Interval)	(15.9 - 28.8)	(8.3 - 31.7)	(1.4 - 28.2)	
Percentage of retrievals resulting in live births c,d	25.2	23.1	20.0	1/4
Percentage of transfers resulting in live births c,d	25.2	25.0	4/18	1/4
Percentage of cancellations c,d	11.2	13.3	25.9	1/5
Average number of embryos transferred	3.1	3.5	3.7	4.3
Percentage of pregnancies with twins c,d	48.9	3/12	1/8	0/2
Percentage of pregnancies with triplets ^{c,d}	8.5	2/12	1/8	0/2
Percentage of live births having multiple infants ^{c,d}	58.3	4/9	2/4	0/1
4B Frozen Embryos from Nondonor Eggs				
Number of transfers	17	3	3	1
Percentage of transfers resulting in live births c,d	2/17	1/3	1/3	0/1
Average number of embryos transferred	2.4	2.7	2.0	1.0
		All Ages C	Combined	
4C Donor Eggs	Fresh	Embryos	Frozen	Embryos
Number of transfers	1	13	3	3
Percentage of transfers resulting in live births c,d	5/	/13	1,	/3
Average number of embryos transferred	3	5.2	4	.0

CURRENT CLINIC SERVICES AND PROFILE

Current Nam	ie: AKI C	Limic of the united States	
Donor egg?	Yes	Gestational carriers? Yes	SART member

Yes Donor egg? estationai carriers? Donor embryo? Yes Verified lab accreditation? Cryopreservation? Yes Yes (See Appendix C for details.) Single women? No

^a Clinic-level statistics do not include gestational carrier cycles because the number of such cycles is very small. See page 6 for national data.

b Reflects patient and treatment characteristics of ART cycles performed in 1999 using fresh, nondonor eggs or embryos.

When fewer than 20 cycles are reported in an age category, rates are shown as a fraction and confidence intervals are not given. Calculating percentages from fractions may be misleading and is not encouraged.

A multiple-infant birth is counted as *one* live birth.

^e Clinic-specific outcome rates are unreliable for women older than 42 undergoing ART cycles using fresh or frozen embryos with nondonor eggs. Readers are urged to review national outcomes for these age groups (see page 23).

All ages (including ages >42) are reported together because previous data show that patient age does not materially affect success with donor eggs.

How to Read a Fertility Clinic Table

This section is provided to help consumers understand the information presented in the fertility clinic tables. The number before each heading refers to the number of the corresponding section in the sample clinic table on the opposite page. Technical terms are defined in the glossary (Appendix B).

1. Type of ART Used

This section gives the breakdown of ART cycle types that each clinic performed using fresh, nondonor eggs or embryos (IVF, GIFT, ZIFT, or combinations thereof). It also lists the percentage of procedures that involved intracytoplasmic sperm injection (ICSI), which was not performed by all clinics in 1999, and the percentage of cycles that were unstimulated. (See Glossary for definitions of IVF, GIFT, ZIFT, and ICSI.)

2. ART Patient Diagnosis

Consumers may want to know what percentage of a particular clinic's patients have the same diagnosis as they do. (See Glossary for definitions of diagnoses.) In addition, patients' diagnoses may affect a clinic's success rates. However, the use of these diagnostic categories may vary somewhat from clinic to clinic.

3. Verification

To have success rates published in the annual report, a clinic's medical director must verify the accuracy of the tabulated success rates. The name of the individual who verified the clinic's data is shown.

4. Success Rates by Type of Cycle

Success rates are given for the three categories of cycles described in 4A–C below: cycles using fresh embryos from nondonor eggs, cycles using frozen embryos from nondonor eggs, and cycles using donor eggs. The ART success rates shown were calculated based on data from all ART cycle types (IVF, GIFT, and ZIFT). Data from these procedures were combined because the percentages of GIFT and ZIFT cycles are generally small.

The success rates indicate the average chance of success for the given procedure at the clinic in 1999 for each of four age groups. Success rates are calculated as the percentage of cycles started, egg retrievals, or embryo transfers that resulted in either pregnancies or live births at the ART clinic in 1999. For example, if a clinic started a total of 50 cycles in 1999 and these resulted in 15 live births, the average success rate for cycles started at that clinic would be

15 (births)
$$\div$$
 50 (cycles) = .3 or 30%.

Thus, the success rate at that clinic in 1999 was 30%, meaning that 30% of cycles started that year resulted in a live birth.

Success rate calculations are very unstable if they are based on a small number of cycles. Therefore, when fewer than 20 cycles are reported in a given category, the rates are shown as fractions rather than percentages. For example, the sample clinic carried out only five fresh embryo cycles using nondonor eggs among women aged 41–42 years. Of these five cycles, two—or 40%—were successful. However, because of the small number of cycles, 40% is not a reliable success rate, so the success rate is presented as 2/5, meaning two out of five.

4A. Cycles Using Fresh Embryos from Nondonor Eggs

This section includes IVF, GIFT, and ZIFT cycles that used a woman's own eggs. Cycles that used frozen embryos or donor eggs or embryos are not included here.

• Percentage of cycles resulting in pregnancies

(Number of pregnancies divided by number of cycles started, expressed as a percentage of cycles)

A stimulated cycle is started when a woman begins taking fertility drugs; an unstimulated cycle is started when egg production begins being monitored. The number of cycles that a clinic starts is not the same as the number of patients that it treats because some women start more than one cycle in a year. Because some pregnancies end in a miscarriage, induced abortion, or stillbirth, this rate is usually higher than the live birth rate.

• Percentage of cycles resulting in live births

(Number of live births divided by number of cycles started, expressed as a percentage of cycles)

This number represents the cycles that resulted in a live birth out of all ART cycles started. One live birth may include one or more children born alive; that is, a multiple-infant birth is counted as one live birth.

Percentage of retrievals resulting in live births

(Number of live births divided by number of egg retrieval procedures, expressed as a percentage of retrievals)

This number represents the cycles that resulted in a live birth out of all cycles in which an egg retrieval was performed. The number of egg retrievals a clinic performs often is smaller than the number of cycles started because some cycles are canceled before the woman has an egg retrieved. As a result, this rate is usually higher than the live births per cycle started rate. Cycles are canceled for many reasons: eggs may not develop, the patient may become ill, or the patient may choose to stop treatment. (See Figure 4.)

• Percentage of transfers resulting in live births

(Number of live births divided by number of embryo transfer procedures, expressed as a percentage of transfers)

This number represents the cycles that resulted in a live birth out of all cycles in which one or more embryos were transferred into the woman's uterus or, in the case of GIFT and ZIFT, egg and sperm or embryos were transferred into the woman's fallopian tubes. A clinic may carry out more egg retrievals than embryo transfers because not every retrieval results in egg fertilization and embryo transfer. For this reason, live birth rates based on transfers generally will be higher than those reported for egg retrievals and for cycles started.

Percentage of cancellations

(Number of cycles canceled divided by the total number of cycles, expressed as a percentage of cycles)

This number refers to the cycles that were stopped before an egg was retrieved. A cycle may be canceled if a woman's ovaries do not respond to fertility medications and thus do not produce a sufficient number of follicles. Cycles also may be canceled because of illness or other medical or personal reasons.

Average number of embryos transferred

(Average number of embryos per embryo transfer procedure)

The average number of embryos transferred varies from clinic to clinic. The American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology have practice guidelines that address this issue.

Percentage of pregnancies with twins

(Number of pregnancies with two fetuses divided by the total number of pregnancies, expressed as a percentage of pregnancies)

A pregnancy with two fetuses is counted as *one* pregnancy.

• Percentage of pregnancies with triplets or more

(Number of pregnancies with three or more fetuses divided by the total number of pregnancies, expressed as a percentage of pregnancies)

Pregnancies with multiple fetuses can be associated with increased risk for mothers and babies (e.g., higher rates of caesarean section, prematurity, low birth weight, infant death) and the possibility of multifetal reduction.

A pregnancy with three or more fetuses is counted as *one* pregnancy.

• Percentage of live births having multiple infants

(Number of deliveries resulting in a birth of more than one living baby divided by the number of live births, expressed as a percentage of live births)

A delivery of one or more living babies is counted as one live birth.

4B. Cycles Using Frozen Embryos from Nondonor Eggs

Frozen (cryopreserved) embryo cycles are those in which previously frozen embryos are thawed and then transferred. Because frozen embryo cycles use embryos formed from a previous stimulated cycle, no stimulation or retrieval is involved. As a result, these cycles usually are less expensive and less invasive than cycles using fresh embryos. In addition, freezing some of the embryos from a retrieval procedure may increase a woman's overall chances of having a child from a single retrieval.

4C. Cycles Using Donor Eggs

Success rates are presented separately for cycles using fresh donor eggs or embryos and those using frozen donor embryos. Older women, women with premature ovarian failure (early menopause), women whose ovaries have been removed, and women with a genetic concern about using their own eggs may consider using eggs that are donated by a young, healthy woman. Embryos donated by couples who previously had ART also may be available. Many clinics provide services for donor egg and embryo cycles. For these cycle types, results from women in all age groups (including older than 42) are reported together because previous data show that patient age does not affect success rates with donor eggs. (See Figure 30 on page 43.)

5. Age of Woman

Because a woman's fertility declines with age, clinics report lower success rates for older women attempting to become pregnant with their own eggs. For this reason, rates for women using nondonor eggs or embryos are reported separately for women younger than age 35, for women 35–37, for women 38–40, and for women 41–42. Clinic-specific outcome rates are not shown for women older than 42 who undergo ART using their own eggs because the number of women in this age group at each clinic is small; therefore, a calculation of the live birth rate in older age groups may not be meaningful. Readers are encouraged to review national outcomes for these age groups shown on page 23. The sample clinic table illustrates the decline in ART success rates among older women: 22.4% of cycles started in women younger than 35 resulted in live births, whereas only 14.8% of cycles started in women aged 38–40 resulted in a live birth.

6. Confidence Interval

The tables show a range, called the **95% confidence interval**, that tells us how reliable a clinic's demonstrated success rate is. This range is calculated only if 20 or more cycles are reported in an age category. (When fewer than 20 cycles are reported in a given category, success rates are shown as fractions rather than percentages; see paragraph 4, Success Rates by Type of Cycle, page 51.) In general, the more cycles that a clinic performs, the narrower the range. A narrow range means we are more confident that a clinic would have a similar success rate if it treated other similar groups of patients under similar clinical conditions. On the other hand, a wide range tells us that a clinic's success rate is more likely to vary under similar circumstances because we had less information (fewer cycles) on which to base our estimates.

Even though one clinic's success rate may appear higher than another's based on the confidence intervals, *these confidence intervals are only one indication that the success rate may be better. Other factors also must be considered* when comparing rates from two clinics. For example, some clinics see more than the average number of patients with difficult infertility problems, while others discourage patients with a low probability of success. For further information on important factors to consider when using the tables to assess a clinic, refer to pages 47–49.

For a more detailed explanation and examples of confidence intervals, see page 431 in the Appendix.

7. Clinic Services and Profile

- **Current Name.** This name reflects name changes that may have occurred since 1999, while the clinic name at the top of the table was the name of the ART clinic as it existed in 1999. Some clinics not only have changed their names but reorganized as well. Reorganization is defined as a change in ownership or affiliation or a change in two of the three key staff positions (practice director, medical director, or laboratory director). In such cases, no current name will be listed, but a statement will be included that the clinic has undergone reorganization since 1999. Also, in such cases, no current clinic services or profile will be listed.
- **Donor egg program.** Some clinics have programs for ART using donor eggs. Donor eggs are eggs that have been retrieved from one woman (the donor) and then transferred to another woman who is unable to conceive with her own eggs (the recipient). Policies regarding sharing of donor eggs vary from clinic to clinic.
- **Donor embryo.** These are embryos that were donated by another couple who previously underwent ART treatment and had extra embryos available.
- **Single women.** Clinics have varying policies regarding ART services for single (unmarried) women.
- **Gestational carriers.** A gestational carrier is a woman who carries a child for another woman; sometimes such women are referred to as *gestational surrogates*. Policies regarding ART services using gestational carriers vary from clinic to clinic. Some states do not permit clinics to offer this service.
- **Cryopreservation.** This item refers to whether or not the clinic has a program for freezing extra embryos that may be available from a couple's ART cycle.
- **SART member.** For 1999, 350 of the 370 clinics reporting data are SART members.
- **Verified lab accreditation.** If "yes" appears next to this item, the ART clinic uses an embryo laboratory accredited by one of the following organizations:
 - · College of American Pathologists (CAP), Reproductive Laboratory Accreditation Program
 - Joint Commission on Accreditation of Healthcare Organizations (ICAHO)
 - New York State tissue bank program

If "pending" appears here, it means that the clinic has submitted an application for accreditation to one of the above organizations and has provided proof of such application to SART.

"No" indicates that the embryo laboratory has not been accredited by any of these three organizations.

CDC provides this information as a public service. **Please note that CDC does not oversee any of these accreditation programs.** They are all nonfederal programs. To become certified, laboratories must have in place systems and processes that comply with the accrediting organization's standards. Depending on the organization, standards may include those for personnel, quality control and quality assurance, specimen tracking, results reporting, and

the performance of technical procedures. Compliance with these standards is confirmed by documentation provided by the laboratory and by on-site inspections. For further information, consumers may contact the accrediting organizations directly, as follows:

- CAP, Reproductive Laboratory Accreditation Program: For a list of accredited laboratories, call 800-323-4040 and ask for Laboratory Accreditation.
- JCAHO: Call 630-792-5000 to inquire about the status of individual laboratories.
- New York State: Call 518-485-5341 to find out which laboratories are certified under the tissue bank regulations.

Further information on laboratory accreditation is provided in Appendix C.

1999 National Summary

A comparison of clinic success rates may not be meaningful because patient medical characteristics and treatment approaches vary from clinic to clinic. (See pp. 45–47.)

1999 ART CYCLE PROFILE

	Type o	of ART ^{a,b}		Patie	nt Diag	gnosis	
IVF GIFT ZIFT	97% 1% 1%	Procedural fact	43%	Tubal factor Ovulatory dysfunction Diminished ovarian reserv		Other factors Unknown factor Multiple factors:	7 % 9 %
Combination	<1%	Unstimulated	<1%	Endometriosis Uterine factor Male factor	7% 1% 18%	Female & male factors	13% 1 7 %

1999 PREGNANCY SUCCESS RATES

Type of Cycle ^a	Age of Woman				
	<35	35-37	38-40	41-42 ^d	
Fresh Embryos From Nondonor Eggs					
Number of cycles	29,682	15,291	12,848	5,302	
Percentage of cycles resulting in pregnancies	37.3	31.6	24.4	15.9	
Percentage of cycles resulting in live births ^c	32.2	26.2	18.5	9.7	
Percentage of retrievals resulting in live births ^c	35.6	30.4	22.4	12.3	
Percentage of transfers resulting in live births ^c	37.8	32.4	24.2	13.6	
Percentage of cancellations	9.4	13.7	17.5	21.1	
Average number of embryos transferred	3.0	3.3	3.5	3.7	
Percentage of pregnancies with twins	32.6	28.6	22.7	14.0	
Percentage of pregnancies with triplets or more	9.4	8.6	6.6	2.6	
Percentage of live births having multiple infants ^c	41.0	35.7	28.6	14.4	
Frozen Embryos From Nondonor Eggs					
Number of transfers	5,615	2,431	1,670	513	
Percentage of transfers resulting in live births ^c	19.7	19.1	15.8	16.2	
Average number of embryos transferred	3.0	3.0	3.1	3.3	

Donor Eggs	All Ages Combined ^e				
	Fresh Embryos	Frozen Embryos			
Number of transfers	5,844	2,287			
Percentage of transfers resulting in live births ^c	41.6	23.5			
Average number of embryos transferred	3.0	3.0			

CURRENT CLINIC SERVICES AND PROFILE (AS OF 1/15/2000)

Total number of reporting clinics: 370

Services Offero	ed:			Clinic Profile:	
Donor egg?	84%	Gestational carriers?	61%	SART member?	95%
Donor embryo?	5 1%	Cryopreservation?	99%	Verified lab accreditation?	
Single women?	83%			Yes	79 %
				No	8%
				Pending	13%

^a Gestational carrier cycles are not included in these calculations. See page 6 for summary statistics on these cycles.

^b Reflects patient and treatment characteristics of ART cycles performed in 1999 using fresh, nondonor eggs or embryos.

^c A multiple-infant birth is counted as *one* live birth.

^d See page 23 for national summary statistics for women older than 42.

^e All ages (including ages >42) are reported together because previous data show that patient age does not materially affect success with donor eggs.