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Preface


Tens of thousands of conduits through embankment dams in the United States are 
aging and deteriorating. These conduits often were poorly constructed and are not 
frequently inspected, if at all.  Deteriorating conduits pose an increasingly greater risk 
for developing defects that can lead to embankment dam failure with each passing 
year.  In an effort to deal with this problem, this document has been prepared to 
collect and disseminate information and experience that is current and has a technical 
consensus. 

This document provides procedures and guidance for “best practices” concerning 
design, construction, problem identification and evaluation, inspection, maintenance, 
renovation, and repair associated with conduits through embankment dams. Most of 
the available information on these topics was reviewed in preparing this document. 
Where detailed documentation existed, it was cited to avoid duplicating available 
materials. The authors have strived not to reproduce information that is readily 
accessible in the public domain. This document attempts to condense and 
summarize the vast body of existing information, provide a clear and concise 
synopsis of this information, and present a recommended course of action. This 
document is intended for use by personnel familiar with embankment dams and 
conduits, such as designers, inspectors, construction oversight personnel, and dam 
safety engineers. 

In preparation of this document, the authors frequently found conflicting procedures 
and standards in the many references they reviewed.  Where conflicts were apparent, 
the authors focused on what they judged to be the “best practice” and included that 
judgment in this document. Therefore, this document may be different than some 
of the various participating agencies’ own policies. 

Embankment dams, regardless of their size, create a hazard potential from the stored 
energy of the water they impound.  Examples, such as Kelley Barnes Dam, which 
failed suddenly in 1977, show the destructive power of water when it is released 
suddenly from behind even a small embankment dam. This embankment dam was 
less than about 40 feet high and about 400 feet long, but when it failed, it released 
water downstream at an estimated flow rate of over 24,000 ft3/s, killing 39 people. 
The hazard potential of an embankment dam is based on the consequences of 
failure, rather than its structural integrity. 

Embankment dams can be classified according to their hazard potential for causing 
damages downstream should they fail.  Various State and federal agencies have 
different systems for rating the hazard classes of embankment dams. A single, 
universally accepted hazard classification system does not exist.  All of the hazard 
classification systems group embankment dams into categories based on the potential 
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impacts of a theoretical release of the stored water during a dam failure.  However, 
the most common problem with all of these classification systems is the lack of clear, 
concise, and consistent terminology. The Federal Emergency Management Agency 
(FEMA) has a hazard classification system that is clear and succinct, and this system 
was adopted for the purposes of this document.  The reader is directed to FEMA 
333, Federal Guidelines for Dam Safety:  Hazard Potential Classification Systems for Dams 
(1998), for a complete version of their system.  The FEMA document uses three 
hazard potential levels to classify embankment dams.  These levels are summarized 
as follows:

 •	 Low hazard potential.—Embankment dams assigned the low hazard classification 
are those where failure or misoperation results in no probable loss of human 
life and low economic and/or environmental losses. Losses are principally 
limited to the owner’s property.

 •	 Significant hazard potential.—Embankment dams assigned the significant hazard 
classification are dams where failure or misoperation results in no probable loss 
of human life, but can cause economic loss, environmental damage, or 
disruption of lifeline facilities, or can impact other concerns.  Significant hazard 
potential classification dams are often located in predominantly rural or 
agricultural areas, but could be located in areas with population and significant 
infrastructure.

 •	 High hazard potential.—Embankment dams assigned the high hazard 
classification are those where failure or misoperation will probably cause loss of 
human life. 

Hazard potential	 Economic, environmental, lifeline 
classification Loss of human life losses 

Low None expected  Low and generally limited to owner 

Significant None expected Yes 

High Probable—one or Yes (but not necessary for this 
more expected classification) 

Embankment dam hazard classifications are assigned based on their potential for 
causing downstream damage, but these classifications do not reflect in any way on 
the likelihood that the dam may fail. An embankment dam might be classified as 
having a low hazard potential based on the impacts a failure would have on the 
downstream area, but have a high probability of failure if it were in very poor 

iv 



Preface 

condition. The hazard classification says nothing about the safety or condition of 
the structure. 

The guidance in this document is considered valid technically without regard to the 
hazard potential classification of a particular embankment dam. However, some 
design measures that are commonly used for design of high and significant hazard 
embankment dams may be considered overly robust for use in low hazard dams. As 
an example, chimney filters that extend across the entire width of the embankment 
fill section are recommended for most high hazard embankment dams.  Many 
smaller, low hazard embankment dams are constructed without this feature. This 
document recommends that even low hazard embankment dams should contain 
other currently accepted design measures that address seepage and internal erosion 
along the conduit. Specifically, a filter diaphragm or filter collar around the conduit 
is recommended for all embankment dams penetrated by a conduit. 

Often, low hazard embankment dams are small structures (height or reservoir 
volume). The term “small embankment dam” does not have a single widely accepted 
definition. Some designers may consider a 25-foot high embankment dam to be the 
largest dam in the small dams category, and others may consider this to be the 
smallest dam in the large dam category.  The International Commission on Large 
Dams defines large embankment dams as being more than about 50 feet high. For 
this reason, this document will consider only the hazard potential of the 
embankment dam. The focus of this document is on significant and high hazard 
embankment dams due to the concern for loss of life and property damage. 
However, where appropriate, deviation from the guidance is noted for low hazard 
embankment dams. This deviation is not all inclusive, and the designer may find 
additional guidance on the design and construction of conduits within low hazard 
embankment dams in Natural Resources Conservation Service (NRCS) National 
Handbook of Conservation Practice Standard Code 378 Pond (2002). The designer should 
be aware that future downstream development could require revising the hazard 
potential classification from low to significant or high. Pressurized conduits are not 
recommended at low hazard embankment dams, since these structures often lack 
regular inspections and may not contain the appropriate safety features as discussed 
in this document. 

FEMA’s National Dam Safety Program sponsored development of this document in 
conjunction with the Association of State Dam Safety Officials, Bureau of 
Reclamation, Federal Energy Regulatory Commission, Natural Resources 
Conservation Service, and U.S. Army Corps of Engineers. 

The primary authors of this document are Chuck Cooper, P.E. (Bureau of 
Reclamation), John Cyganiewicz, P.E. (Bureau of Reclamation), James Evans, P.E. 
(Federal Energy Regulatory Commission), Mark Haynes, P.E. (Colorado Division of 
Water Resources), Danny McCook, P.E. (Natural Resources Conservation Service), 
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David Pezza, P.E. (U.S. Army Corps of Engineers), and Hal Van Aller, P.E. 
(Maryland Department of the Environment).  The technical editor for this document 
was Lelon A. Lewis (Bureau of Reclamation).  Illustrators for this document were 
Bonnie Gehringer (Bureau of Reclamation) and Wendy Pierce (Natural Resources 
Conservation Service). Additional technical assistance was provided by Cindy Gray 
(Bureau of Reclamation). 

Peer review of this document has been provided by Doug Boyer, P.E. (Bureau of 
Reclamation), Steve Higinbotham, P.E., Brad Iarossi, P.E., William Irwin, P.E. 
(Natural Resources Conservation Service), Robert McGovern, P.E. (Bureau of 
Reclamation), Dr. Edward B. Perry, P.E., and Chuck Redlinger, P.E. (Bureau of 
Reclamation). 

The National Dam Safety Review Board (NDSRB) reviewed this document prior to 
issuance.  The NDSRB has responsibility for monitoring the safety and security of 
dams in the United States, advising the Director of FEMA on national dam safety 
policy, consulting with the Director of FEMA for the purpose of establishing and 
maintaining a coordinated National Dam Safety Program, and monitoring of State 
implementation of the assistance program. 

A number of additional engineers and technicians provided input in preparation of 
this document, and the authors greatly appreciate their efforts and contributions. 
The authors also extend their appreciation to the following agencies and individuals 
for graciously providing additional reviews, information, and permission to use their 
materials in this publication: 

ASTM International 
American Concrete Institute 
American Concrete Pressure Pipe Association 
American Society of Agricultural and Biological Engineers 
American Society of Civil Engineers 
Association of State Dam Safety Officials, Lori Spragens and Sarah Mayfield 
BC Hydro, Steve Garner 
Bureau of Indian Affairs 
Bureau of Reclamation, Richard D. Benik, Rick Frisz, Ernest Hall, Walter 

Heyder, John LaBoon, Rich Markiewicz, William McStraw, Jay Stateler, 
and Chris Veesaert 

Canadian Dam Association 
Canadian Geotechnical Journal 
Colorado Division of Water Resources 
Concrete Reinforcing Steel Institute 
Federal Energy Regulatory Commission 
Keith Ferguson 
International Commission on Large Dams 
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LakeLine Magazine 
Maryland Dam Safety Division, Cas Taherian 
Mine Safety and Health Administration, John Fredland 
Montana Department of Natural Resources and Conservation, Michele 

Lemieux 
National Oceanic and Atmospheric Administration 
National Research Council of Canada 
Natural Resources Conservation Service, Wade Anderson 
Ohio Department of Natural Resources, Jerry Reed 
Ed Rossillon 
Schnabel Engineering, Mark Dunscomb and Ned Billington 
Sonex Corporation, William C. Boyce 
Thurber Engineering Ltd., John Sobkowicz 
Transportation Research Board 
University of New South Wales, Professor Robin Fell 
URS Corporation, Sal Todaro 
United States Army Corps of Engineers, David Capka, Ed Chisolm, Dan 

Leavell, Bob Oberle, Michael R. Snyder, and Duane Stagg 
Washington State Department of Ecology 

If conduits are not designed and constructed correctly, embankment dams will have 
an increased probability of failure, which endangers the public.  The particular design 
requirements and site conditions of each embankment dam and conduit are unique. 
No single publication can cover all of the requirements and conditions that can be 
encountered during design and construction. Therefore, it is critically important that 
conduits through embankment dams be designed by engineers experienced with all 
aspects of the design and construction of these structures. 

The users of this document are cautioned that sound engineering judgment should 
always be applied when using references.  The authors have strived to avoid 
referencing any material that is considered outdated for use in modern designs. 
However, the user should be aware that certain portions of references cited in this 
document may have become outdated in regards to design and construction aspects 
and/or philosophies.  While these references still may contain valuable information, 
users should not automatically assume that the entire reference is suitable for design 
and construction purposes. 

Many sources of information were utilized in the development of this document, 
including:

 •	 Published design standards and technical publications of the various federal and 
State agencies involved with the preparation of this document. 
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•	 Published professional papers and articles from selected authors, technical

journals and publications, and organizations.


 •	 Experience of the individuals and the federal and State agencies involved in the 
preparation of this document. 

This document is available in three formats: hard copy, CD-ROM, and DVD. The 
CD-ROM and DVD formats include built-in Adobe Acrobat Reader software, 
hyperlinks, and search capabilities.  A hyperlink is a highlighted word or image within 
the document which, when clicked, takes the user to another place within the 
document or to another location altogether.  Hyperlinks are especially useful when 
the user wants to see the full reprint of a cited reference or the exact location in a 
reference from which the material was cited.  The available document formats and a 
description of their contents are as follows:

 •	 Hard copy.—There may be some users of this document who will not have 
direct access to a computer and may find hard copies more valuable to them.  A 
hard copy would be especially useful to those users working in the field at 
construction sites, where direct access to a computer may not be available. 
Users of the hard copies will lack the hyperlinking and search capabilities 
available in the other formats.

 •	 CD-ROM.—The CD-ROM contains this document and PDF copies of the cited 
references that were available in the public domain or where permission for reprint 
was granted. A CD-ROM format is being made available, since there may be a 
significant number of users who only have CD-ROM drives in their computers. 
The CD-ROM format will allow these users to take advantage of most of the 
features built into the digital version of this document. However, there was not 
enough roomon a single CD-ROM to contain all the features included on the DVD 
version of the document. Not included on the CD-ROM are the PDF copies of 
the references in the “additional reading” list. The "additional reading" references 
have not been specifically cited in this document, but may be of additional interest to 
the user in furthering their understanding of conduits and embankment dams.

 •	 DVD.—The DVD contains this document, PDF copies of the cited references 
that were available in the public domain or where permission for reprint was 
granted, plus “additional reading” references in PDF format. As DVD drives 
become more common, the DVD format will eventually become the preferred 
format for all users, since it allows the user to utilize all the available features.  

This document is intended solely for noncommercial and educational purposes. 
PDF copies of references available in the public domain have been included 
whenever possible.  For references not readily available in the public domain, efforts 
were made to obtain copyright permission. Users should be aware that PDF copies 
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for a number of cited references were unavailable due to size constraints, lack of 
availability in the public domain, or permission for reprint not being granted.  These 
references have been hyperlinked to a PDF file titled “Reference unavailable.” For 
these references, users may want to contact the author or publisher directly for 
reprint information. 

Suggestions for changes, corrections, or updates to this document should be directed 
to: 

Bureau of Reclamation 
Denver Federal Center, Bldg. 67 
6th Avenue and Kipling 
Denver, Colorado 80225-0007
 Attention: Chuck Cooper (D-8130) 

Please reference specific pages, paragraphs, or figures within this document, together 
with proposed new material in any convenient format. Sources of proposed new 
material should be completely cited. Submission of material signifies permission for 
use in a future revised edition of this document, but credit for such new material will 
be given where appropriate. 

The material presented in this document has been prepared in accordance with 
recognized engineering practices.  The guidance in this document should not be used 
without first securing competent advice with respect to its suitability for any given 
application. The publication of the material contained herein is not intended as 
representation or warranty on the part of individuals or agencies involved, or any 
other person named herein, that this information is suitable for any general or 
particular use, or promises freedom from infringement of any patent or patents. 
Anyone making use of this information assumes all liability from such use. 

Any use of trade names and trademarks in this document is for descriptive purposes 
only and does not constitute endorsement. The information contained herein 
regarding commercial products or firms may not be used for advertising or 
promotional purposes and is not to be construed as an endorsement of any product 
or firm. 
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Conversion Factors

To the International System of Units (SI) (Metric)


Pound-foot measurements in this document can be converted to SI measurements 
by multiplying by the following factors: 

Multiply By To obtain 

acre-feet 1233.489000 cubic meters 

cubic feet 0.028317 cubic meters 

cubic feet per second 0.028317 cubic meters per second 

cubic yards 0.764555 cubic meters 

degrees Fahrenheit (°F-32)/1.8 degrees Celsius 

feet 0.304800 meters 

feet per second 0.304800 meters per second 

gallons 0.003785 cubic meters 

gallons 3.785412 liters 

gallons per minute 0.000063 cubic meters per second 

gallons per minute 0.063090 liters per second 

inches 2.540000 centimeters 

mils 0.000025 meters 

mils 0.025400 millimeters 

pounds 0.453592 kilograms 

pounds per cubic foot 16.018460 kilograms per cubic meter 

pounds per square foot 4.882428 kilograms per square meter 

pounds per square inch 6.894757 kilopascals 

pounds per square inch 6894.757000 pascals 

square miles 2.589988 square kilometers 

tons 907.184700 kilograms 
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c, cohesion

E', modulus of soil reaction

f'c, compressive strength of concrete

p, pore pressure

s, shear strength

θ , angle of internal friction

P-, primary.  A P-wave is a seismic compression wave.

S-, secondary.  An S-wave is a seismic shear wave.
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ASTM Standards


ASTM 
Standard Title 

A 36	 Standard Specification for Carbon Structural Steel 
A 53	 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-

Coated, Welded and Seamless 
A 796	 Standard Practice for Structural Design of Corrugated Steel Pipe, Pipe-

Arches, and Arches for Storm and Sanitary Sewers and Other Buried 
Applications 

C 33	 Standard Specification for Concrete Aggregates 
C 94	 Standard Specification for Ready-Mixed Concrete 
C 150	 Standard Specification for Portland Cement 
C 361	 Standard Specification for Reinforced Concrete Low-Head Pressure Pipe 
C 397	 Standard Practice for Use of Chemically Setting Chemical-Resistant 

Silicate and Silica Mortars 
C 497	 Standard Test Methods for Concrete Pipe, Manhole Sections, or Tile 
C 822	 Standard Terminology Relating to Concrete Pipe and Related Products 
C 939	 Standard Test Method for Flow of Grout for Preplaced-Aggregate 

Concrete (Flow Cone Method) 
D 638	 Standard Test Method for Tensile Properties of Plastics 
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to conduits and embankment dams: 

American Society of Civil Engineers: www.asce.org 
Association of State Dam Safety Officials: www.damsafety.org 
Bureau of Reclamation:  www.usbr.gov 
Bureau of Reclamation Publications: 

www.usbr.gov/pmts/hydraulics_lab/pubs/index.cfm 
Canadian Dam Association: www.cda.ca 
Federal Emergency Management Agency:  www.fema.gov/fima/damsafe/resources 
Federal Energy Regulatory Commission: www.ferc.gov/industries/hydropower.asp 
International Commission on Large Dams: www.icold-cigb.net 
Mine Safety and Health Administration: www.msha.gov 
National Performance of Dams Program: npdp.stanford.edu 
Natural Resources Conservation Service:  www.nrcs.usda.gov/technical/eng 
Natural Resources Conservation Service Publications:  www.info.usda.gov/ced 
U.S. Army Corps of Engineers: www.usace.army.mil 
U.S. Army Corps of Engineers Publications: 

www.usace.army.mil/inet/usace-docs/eng-manuals 
United States Society on Dams:  www.ussdams.org 

xxxvi 



Introduction


Conduits convey water from a reservoir through, under, or around an embankment 
dam in a controlled manner. Conduits through embankment dams serve a variety of 
purposes. Conduits typically convey releases for:

 •	 Releasing stored waters to meet downstream requirements

 •	 Providing emergency reservoir evacuation

 •	 Flood control regulation to release waters temporarily stored in flood control 
space

 •	 Diverting flow into canals or pipelines

 •	 Providing flows for power generation

 •	 Satisfying a combination of multipurpose requirements

 •	 Stream diversion during construction 

Most conduits through embankment dams are part of outlet works systems. 
However, some conduits act as either primary or service spillways; auxiliary or 
secondary spillways to assist the primary spillway structure in passing floods; or 
power conduits (penstocks) used for the generation of power. Conduits can be 
classified as either:

 •	 Nonpressurized flow.—Open channel flow at atmospheric pressure for part or all 
of the conduit length (figure 1). This type of flow is also referred to as “free 
flow.”

 •	 Pressure flow.—Pressurized flow throughout the conduit length to the point of 
regulation or control or terminal structure (figure 2) 

Many types of materials have been used for conduits over the years, such as 
reinforced cast-in-place and precast concrete, thermoplastic and thermoset plastic, 
cast and ductile iron, welded steel, corrugated metal, and aluminum. Some early 
builders of conduits used whatever materials were readily available, such as wood 
(figure 3) and hand-placed rubble masonry (figure 4).  Regardless of the material use, 
a conduit represents a discontinuity through an embankment dam and its foundation. 



Conduits through Embankment Dams 

Figure 1.—Nonpressurized outlet works. 

Figure 2.—Pressurized outlet works. 

This discontinuity can cause settlement to be different adjacent to the conduit than it 
is in the rest of the embankment dam.  Earthfill may also be compacted differently 
around a conduit than for the rest of the embankment dam. These factors can cause 
cracking of the earthfill and lead to other consequences.  Failures of embankment 
dams caused by the uncontrolled flow of water through the dam or foundation are a 
common problem. A conduit can develop defects from deterioration, cracking from 
foundation compressibility, or joint separation due to poor design and construction. 
Water leaking from defects in conduits can contribute to seepage pressures 
exceeding those that occur solely from flow through soils in the embankment dam 
from the reservoir.  When preferential flow paths develop in the earthfill through 
which water can flow and erode the fill, severe problems or breaching type failures 
often result. The reasons that conduits contribute to these failures are discussed 
more extensively in several sections of this document. 

Historically, a single term, “piping,” has been commonly used in literature to 
describe all erosional processes involved in embankment dam failures. The reason 
for this is that frequently after a failure, a tunnel-shaped feature resembling a pipe is 
observed.  See figure 5 for an example. In this document, two terms will be used to 
describe failures of embankment dams associated with uncontrolled flow of water, 
rather than using a single generic term.  The two terms that will be used in this 
document are:

 • Backward erosion piping and

 • Internal erosion 
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Figure 3.—A 15-inch diameter, wire-wrapped wood stave pipe used as an 
outlet works conduit within a 75-year old embankment dam.  The outlet 
works conduit was removed and replaced due to deterioration and 
backward erosion piping concerns. 

Figure 4.—A 100-year-old, mortar-lined, rubble masonry outlet works 
conduit. 
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Figure 5.—Embankment dam failure caused by internal erosion of earthfill 
near the conduit.  Flow was not directly along the contact between 
earthfill and conduit, but in the earthfill away from conduit.  Hydraulic 
fracture in highly dispersive clay embankment soils caused the failure.  The 
embankment design included antiseep collars, but not a filter diaphragm. 

These two terms are more descriptive of the distinctly different mechanisms by 
which water can damage embankment dams. In this document, the term “backward 
erosion piping” will be reserved to describe conditions where water flows not 
through preferential flow paths, such as cracks in the soil, but through the pores of a 
soil. The flow causing the mechanism of failure termed “backward erosion piping” 
is solely that from intergranular flow causing excessive seepage forces at an exit face. 
These seepage forces cause a boil condition or particle detachment at an exit face, if 
it is not protected by a properly designed filter. The term “backward erosion piping” 
is used in an attempt to define this precise condition of failure. The term “internal 
erosion,” discussed in the following paragraph, describes the more common way that 
water can damage embankment dams, as it flows through cracks, discontinuities at 
the interfaces between conduits and earthen embankments or their foundations, or 
other preferential flow paths. Seepage flow for internal erosion is typically 
concentrated. 

The term “internal erosion” will be used in this document to describe all conditions 
other than “backward erosion piping” by which water flowing through embankment 
dams or foundations erodes the soils and causes a failure.  Internal erosion occurs 
where water flows through a discontinuity in the embankment dam and/or 
foundation, and erodes the sides of the crack to enlarge it and cause a failure.  The 
term “internal erosion” is used in lieu of a number of terms that have historically 
been used to describe variations of this generic process including scour, concentrated 
leak piping, and others.  This term will also be used for another type of condition 
called suffosion. Suffosion is the type of erosion where the matrix of the soil mass is 
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unstable.  When seepage occurs, the finer part of the soil matrix is eroded out, 
leaving behind a much coarser fraction. 

“Backward erosion piping” can develop only in a category of soils susceptible to this 
mechanism of failures. Certain conditions are required for backward erosion piping 
to occur, as described by Von Thun (ASDSO, 1996, p. 5), with added conditions 
suggested by McCook (ASDSO, 2004, p. 8), summarized as follows:

 •	 A flow path/source of water.

 •	 An unprotected exit (open, unfiltered) from which material can escape.

 •	 Erodible material within the flow path that can be carried to the exit.

 •	 The material being piped or the material directly above it must be able to form 
and support a “roof” or “pipe.”

 •	 Water initially flows exclusively within the pore space of soils.  This is often 
termed intergranular seepage.  If flow is through macro-features or cracks in the 
soil or along an interface between the soil and another structure, the term 
internal erosion is more correct for describing problems that occur.

 •	 The soil through which water is seeping is susceptible to backward erosion 
piping.  The most susceptible soil types are fine sands and silts with little clay 
and no plasticity.  Clays and clayey coarse-grained soils are highly resistant to 
backward erosion piping.  The resistance of clays and clayey coarse-grained soils 
results from the high interparticle attraction caused by electrochemical forces. 
Internal erosion mechanisms are responsible for most failures where clayey soils 
are in the flow path. 

Internal erosion may develop any time a discontinuity occurs within an embankment 
dam that is accessible to water in the reservoir or to water flowing in conduits. 
Cracks caused by hydraulic fracture of the earthfill, cracks in bedrock that the 
embankment is in contact with, and other preferential flow paths provide a way that 
water can erode soils in contact with the feature.  Internal erosion is extremely 
dangerous because of the rapidity in which flow paths can erode, particularly for 
highly erosive soils, such as low plasticity silts or dispersive clays.  Figures 5 and 6 
show examples of failure due to internal erosion associated with a conduit through 
the embankment dam. The terms backward erosion piping and internal erosion are 
defined in the glossary in this document. To further assist readers in understanding 
the definition of these two terms in the context of this document, the following 
illustrations are provided: 
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Figure 6.—Embankment dam failure caused by internal erosion of earthfill 
near the conduit.  The initial failure was tunnel shaped, but the collapse of 
the roof of the tunnel resulted in the observed shape of breach.  Hydraulic 
fracture in highly dispersive clay embankment soils caused the failure.  The 
embankment dam design included antiseep collars, but no filter diaphragm.

 •	 Figure 7 illustrates the internal erosion process as a result of a hydraulic fracture 
through the embankment dam. 

•	 Figure 8 illustrates the internal erosion process as a result of low density 
embankment materials under the haunches of a pipe due to poor compaction.

 •	 Figure 9 illustrates the internal erosion process associated with the creation of a 
void caused by excessive compactive energy used to compact embankment 
materials against the conduit.

 •	 Figure 10 shows the backward erosion piping process associated with 
intergranular seepage and the subsequent backward erosion of soil particles. 

All four of these mechanisms can lead to partial or full failures of the embankment 
dam. 

Internal erosion and backward erosion piping can occur suddenly and with little 
warning.  In these cases, little may be done to address the problem quickly enough to 
avert a failure. Recognizing conditions likely to result in these failure mechanisms is 
essential to design of conduits and embankment dams that are resistant to failures. 
In other cases, the failure mechanisms may develop slowly and go unrecognized until 
the subterranean erosion develops cavities in the embankment dam large enough to 
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An embankment dam with a low reservoir water level. 

The reservoir water level rises, inducing a hydraulic fracture within the 
embankment dam due to poor construction or defective soils. 

The hydraulic fracture extends through the embankment dam as a result of 
arching of the overlying embankment, resulting in low stress concentrations in 
the soil and a reservoir level high enough to cause the fracture.  Conduits often 
create differential settlement and arching of the earthfill, because settlement 
of the embankment dam is less above the conduit than on either side of it. 

Figure 7.—The internal erosion process as a result of a hydraulic fracture. 
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Water from the reservoir penetrates the hydraulic fracture, initiating internal 
erosion of the side walls of the fracture. 

The internal erosion process continues as water flowing in the hydraulic 
fracture widens the walls of the fracture.  Intergranular seepage is not involved 
in the process, and the soils surrounding the fracture are unsaturated. 
Intergranular seepage rarely has time to develop, since this type of failure 
occurs most frequently on first filling of the reservoir. 

Figure 7 (cont’d).—The internal erosion process as a result of a hydraulic fracture. 
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A vortex may form at the location where water in the reservoir enters the 
upstream end of the hydraulic fracture. 

Often, the end result of internal erosion along the hydraulic fracture is a 
tunnel-shaped void (see figure 5).  Loss of the reservoir contents can occur by 
water flowing through the tunnel-shaped void.  Where the tunnel-shaped void 
enlarges sufficiently (see figure 5), the roof of the tunnel collapses, leaving a 
v-shaped notch in the embankment dam like that shown in figure 6.  If the 
reservoir had contained a little more storage and the flow had continued a 
little longer through the tunnel-shaped void, the embankment dam shown in 
figure 5 would have collapsed and looked similar to the embankment dam in 
figure 6. 

Figure 7 (cont’d).—The internal erosion process as a result of a hydraulic fracture. 
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         Poor compaction causes arching to occur in the area of the conduit's
        haunches.  This creates a low density zone subject to hydraulic fracture.  

Water flowing through the hydraulic 
fracture can erode the sides, leading to 
internal erosion and the development of 
a void along the conduit. 

Conduits through Embankment Dams 

The hydraulic fracture can propagate in a downstream direction and 
initiate flowing water from the reservoir. 

Figure 8.—The internal erosion process as a result of low density embankment materials 
under the haunches of a pipe due to poor compaction. 
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Water from the reservoir penetrates the hydraulic fracture, initiating internal 
erosion of the side walls. 

Flowing water from the reservoir continues the internal erosion process within 
the hydraulic fracture.  Intergranular seepage is not necessarily involved in this 
process, and the embankment materials surrounding the void may be 
unsaturated. 

A void was formed along the conduit due to water flowing through a hydraulic fracture. 

Figure 8 (cont’d).—The internal erosion process as a result of low density embankment 
materials under the haunches of a pipe due to poor compaction. 
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Compactive energy 
lifts conduit 

Compactive energy 
lifts conduit 

If too much compactive energy is applied while attempting to compact the 
embankment materials under the haunches of the conduit, a void can occur 
beneath the conduit. 

The void can extend beneath the entire length of the conduit. 

Water from the reservoir can penetrate the void, initiating internal erosion of 
the side walls. 

Figure 9.—The internal erosion process associated with the creation of a void caused by 
excessive compactive energy used to compact embankment materials against the conduit. 
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Flowing water from the reservoir continues the internal erosion process within 
the void.  Intergranular seepage is not necessarily involved in this process, and 
the soils surrounding the void may be unsaturated. 

The resulting failure often leaves a tunnel-shaped void along the conduit. 

Figure 9 (cont’d).—The internal erosion process associated with the creation of a void 
caused by excessive compactive energy used to compact embankment materials against the 
conduit. 
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Backward erosion piping begins in fine sand foundation materials at the toe of 
an embankment dam.  The foundation is assumed to be a soil susceptible to 
piping such as fine, poorly graded sand.  A filter zone is not provided at the 
seepage discharge face (or the filter has been improperly designed), allowing 
backward erosion piping to begin. 

Intergranular seepage flow conditions exist within the foundation under the 
embankment dam, and soil particles are removed.  The particles are deposited 
(sand boils) on the ground surface at the downstream toe, or washed away if 
flow is higher. 

Figure 10.—The backward erosion piping process associated with intergranular seepage and 
the subsequent backward erosion of soil particles. 
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The process of dislodging soil particles continues at an escalating rate because 
of the hydraulic gradient increase.  As the backward erosion piping gets closer 
to the reservoir, seepage quantity also increases. 

A tunnel develops due to the continued erosion of the soils in the foundation. 
This assumes the overlying embankment dam, foundation layer, or conduit is 
able to support the tunnel that is forming.  The soil exposed to flow in the 
developing tunnel is erodible, and the walls of the tunnel can grow larger at 
the same time that the discharge face moves upstream. 

Figure 10 (cont’d).—The backward erosion piping process associated with intergranular 
seepage and the subsequent backward erosion of soil particles. 
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Eventually, the tunnel erosion feature reaches the reservoir.  Outflow will then 
increase substantially, leading to direct erosion of the embankment dam and 
complete breach or draining of the reservoir through the tunnel that develops. 

The resulting failure often completely destroys the embankment dam, leaving 
few traces of the original piping tunnel.  The failure of this embankment dam 
was attributed to piping of foundation sands.  Photo courtesy of National 
Oceanic and Atmospheric Administration. 

Figure 10 (cont’d).—The backward erosion piping process associated with intergranular 
seepage and the subsequent backward erosion of soil particles. 
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be observable at the surface of the embankment or foundation. Visual inspection, 
seepage and turbidity measurements, and pore pressure readings are useful in 
detecting whether problems like these may be developing in an embankment dam. 
Chapter 9 discusses inspection techniques in detail. 

Design and construction inadequacies are often to blame for internal erosion and 
backward erosion piping incidents. Designers must understand which design 
measures are effective in preventing these mechanisms of failure.  

In nonpressurized conduits, water seeping through the embankment dam can enter 
the conduit through defects.  If the surrounding soils are susceptible to backward 
erosion piping, cavities can develop in the embankment and foundation of the 
conduit. This problem is discussed in more detail in section 7.1. 

In pressure flow conduits, water under pressure can escape through defects and 
damage the surrounding embankment and foundation. This problem is discussed in 
more detail in section 7.2. 

In nonpressurized or pressurized conduits, water seeping along the interface between 
the conduit and surrounding soil may be concentrated enough to result in backward 
erosion piping, if the soils are susceptible.  If the soils are resistant to backward 
erosion piping, but a crack or potential flow path develops near the conduit, internal 
erosion can result.  This problem is discussed in more detail in section 7.3. 

If the soils surrounding the conduit are resistant to backward erosion piping, 
hydraulic fracture may occur.  The hydraulic fracture created can then erode and lead 
to a failure tunnel that is similar to that which develops in soils that are susceptible to 
backward erosion piping. This problem is discussed in more detail in section 7.4. 

Internal erosion and backward erosion piping incidents are often associated with 
conduits through embankment dams. The following factors increase the likelihood 
of these problems developing at a given site:

 •	 Conduits constructed across abruptly changing foundation conditions (i.e., a 
concrete core wall or bedrock with a quickly changing profile) are more likely to 
experience differential settlement.  See section 1.2 for more discussion on 
factors in locating conduits in the most favorable conditions. 

•	 Circular conduits constructed without concrete bedding or cradles are more 
likely to experience problems than conduits in more favorable shapes (i.e., 
horseshoe). See section 4.1 for more discussion on conduit shapes.

 •	 Conduits with an excessive number of joints are more likely to develop defects 
that can lead to problems. See section 4.3 for discussion on joints in conduits. 
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•	 Excavations made to replace unsuitable foundation materials for conduits

increase the potential for differential settlement problems.  Section 5.1 also

discusses this factor.


 •	 Conduits with compressible foundations are more likely to deform excessively, 
which may damage the conduit. Compressible foundations may also contribute 
to differential settlement that can result in hydraulic fracture of the earthfill 
surrounding the conduit. Section 5.1.2 discusses soil foundations for conduits. 
Locating conduits on bedrock is desirable, but not always practical. See section 
1.2 for more discussion on factors in locating conduits in the most favorable 
conditions.

 •	 Conduits located in closure sections in embankment dams contribute to

differential settlement problems.  Section 5.2 discusses this factor in detail.


 •	 Embankment dams constructed with materials susceptible to internal erosion or 
backward erosion piping. Sections 5.2 and 5.3 discuss this factor in detail.

 •	 Conduits constructed without adequate compaction around the conduit are 
more likely to experience erosional problems.  Section 5.3 discusses this factor 
in detail.

 •	 Embankment dams constructed without a chimney filter or conduits 
constructed without a filter collar or filter diaphragm.  See chapter 6 for more 
discussion on the design and construction of filters.

 •	 Conduits constructed of materials susceptible to deterioration, such as

corrugated metal pipe. See chapter 8 for discussion of defects in conduits.


Understanding the steps involved in a failure mode as the result of internal erosion 
or backward piping erosion is important in designing defensive measures to prevent 
these failures.  An event tree can be used to understand the series of events that can 
lead to embankment dam failure by internal erosion or backward erosion piping. An 
event tree used by the Bureau of Reclamation (Reclamation, 2000, p. 15) for internal 
erosion of an existing embankment dam is shown in figure 11. The steps or “nodes” 
of the event tree shown on figure 11 are generally described as follows:

 1.	 The reservoir rises, causing a water load on the embankment dam. The 
information is generally derived from the statistical historic record of reservoir 
operations.  Normally, it is the probability of a reservoir to rise onto a portion 
of the embankment dam that might contain a flaw and not usually the time that 
the reservoir exists at a specific elevation. 
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2.	 The next node of the event tree considers the potential for a concentrated leak 
to exist or newly occur.  The leak must be of sufficient size to reasonably expect 
the soil erosion process to begin. 

3.	 The next node then considers if the erosion process continues. This is usually 
done by assessing the potential for an adequate filter to exist at the downstream 
end of the leak.

 4.	 If there is no reasonable expectation of a filter, the potential for the erosion 
process to progress is examined in the next three nodes by considering (a) the 
potential for a roof to form over the pipe channel, (b) the potential for an 
element at the upstream end of the leak to limit flow, and (c) the erosion 
characteristics of the embankment material.

 5.	 If the erosion process will fully reach the progression stage, the potential to

successfully intervene to prevent failure soon after detection of the erosion is

considered.


 6.	 If such early intervention will not likely be successful, the potential for the

embankment dam to fully breach is considered.


 7.	 If the embankment dam is of a type that can actually breach, the potential to 
heroically intervene to save the dam is examined (e.g., the potential to quickly 
lower the reservoir).  The culmination of a negative outcome of all the events in 
the event tree is the catastrophic release of the reservoir. 

This event tree is usually used by Reclamation to assess the potential for the failure 
of an existing embankment dam in a risk context. In a risk assessment of an internal 
erosion failure mode, a probability of the event tree would be estimated and this 
would be multiplied by some consequence of the embankment dam failure, usually 
life loss.  The event tree was developed for the internal erosion failure mode only. 
An event tree for a failure mode of backward erosion piping might be slightly 
different than this one.  For instance, instead of the potential for a concentrated leak, 
the initiation node might evaluate the potential for a high exit gradient to begin the 
erosion process. 

For a new embankment dam being designed, understanding the events that can lead 
to failure by internal erosion or backward erosion piping can lead to improvements 
in the design. As most of the steps of the process are considered, opportunities for 
multiple lines of defense in the design can be developed. 

Compilations of case histories of embankment dam failures and accidents show that 
frequently, conduits were considered a factor in the failures or accidents.  Case 
histories such as those shown in appendix B are examples of embankment dams 
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where conduits were associated with failures and accidents.  The case histories in 
appendix B include a variety of situations where defects in the conduit and poor 
design or construction decisions contributed to the failures. Several modes of failure 
are discussed in this document related to conduits, which include both the backward 
erosion piping and internal erosion modes of failure. Appendix B includes very few 
case histories that involve backward erosion piping associated with conduits. This is 
because soils that are highly susceptible to backward erosion piping have seldom 
been used to backfill around conduits.  Most case histories of failures and accidents 
involving conduits are related to one of the internal erosion modes of failure. Both 
this Introduction and chapter 7 provide more discussion on modes of failure. 

In 1998, a survey of State dam safety programs was conducted for the Interagency 
Committee on Dam Safety (ICODS) Seminar No. 6 on piping associated with 
conduits through embankment dams (Evans, 1999, p. 1). Fourteen states provided 
responses to the survey.  The respondents indicated that 1,115 embankment dams 
with conduits would likely need repair within the next 10 years.  Of these 1,115 
embankment dams, 53 percent had conduits constructed with corrugated metal pipe 
(CMP), 23 percent were constructed with steel pipe, and 20 percent were constructed 
with concrete pipe. 

Conduits within embankment dams are often designed using standards not 
specifically intended for penetrations through dams. For example, certain pressure 
pipe standards (e.g., those from the American Water Works Association) may not be 
applicable (without design and construction modifications) for use in pressurized 
conduits through embankment dams. The purpose and performance characteristics 
of conduits through embankment dams differ from those required for water supply 
pipelines. The use of certain types of manufactured pipe for conduits through 
embankment dams is a concern, since these materials were developed and 
standardized for applications other than embankment dams. The unique 
performance requirements for conduits in embankment dams include:

 •	 Service life.—Most embankment dams are designed assuming a minimum 
100-year service life with minimal maintenance.  Manufactured pipe needs to be 
durable in the expected wet, dry, and freeze/thaw environments found within a 
conduit.

 •	 Accessibility.—As the height of the embankment dam increases, the practicality 
of accessing the conduit for repairs decreases.  Manufacturing and installation 
quality control needs to be high to ensure dependable installations.

 •	 Strength.—The structural loading on manufactured pipes can be very high due to 
positive projecting, rather than trench loading conditions, and very high 
embankments. The pipe needs to be structurally designed for all possible 
loading conditions for applications within embankment dams. 
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•	 Risk.—The development of small defects within the conduit can lead to serious 
failure modes threatening the entire embankment dam.  Designs needs to be 
robust and conservative.

 •	 Movement.—Conduits within high embankments dams, built on compressible 
foundations, may experience significant displacement as the dam settles.  The 
conduit joints need to be capable of absorbing such movements while 
remaining watertight.  The conduit placement needs to anticipate subsequent 
settlement in order to remain positively sloping for gravity drainage. 

Inexperienced designers may inadvertently apply inappropriate design standards or 
misuse design standards to save on time and provide cost savings.  Examples of the 
misapplication of design standards include:

 •	 Inappropriate design references.—State highway department standard plans for 
culverts and culvert structures are sometimes simply referred to in construction 
specifications and drawings to save the designer from actually designing the 
conduit. Culvert designs are not intended for use within embankment dams.

 •	 Inappropriate application of standards.—The NRCS has developed several 
standardized conduit and joint detail drawings for use in embankment dams. 
Such drawings have been used to successfully build thousands of small 
embankment dams. Such drawings have also been misused. In one known 
case, the standard detail drawings were used to unsuccessfully install a 
pressurized conduit on a high hazard embankment dam on a soft foundation. 
As with all standardized designs and drawings, the design and construction 
assumptions made in preparing the drawings need to be satisfied for the specific 
application and site.

 •	 Inappropriate use of materials.—Reinforced concrete pressure pipe has been used 
for pressurized conduits within embankment dams. Reinforced concrete 
pressure pipe utilizes gasketed joints, which could be subject to leakage, if 
improperly constructed. In a typical 100-foot high embankment dam there 
could be over 80 gasketed joints, all with the potential for leakage. 

Conduits often penetrate other types of embankment structures or are used for 
utility purposes.  These types of penetrations are not addressed in detail in this 
document. Some of the guidance presented in this document may apply to these 
types of penetrations and should be carefully evaluated by designers for 
implementation. Users of this document will need to evaluate the applicability of the 
proper guidance to their project. Conduit penetrations not specifically addressed 
within this document include: 
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•	 Conduits within levees.—Guidance on conduits through levees is available from 
other sources, such as the USACE’s Design and Construction of Levees (2000).

 •	 Utility conduits.—Utility conduits are utilized for various functions, such as water, 
wastewater, sewer, electrical, telecommunications, and gas lines.  As 
urbanization pushes farther out into previously undeveloped or agricultural 
areas, more utility conduit crossings of embankment dams are being required. 
While many of the new utility conduits installations are made through low 
hazard dams, the continued urbanization may make previously low hazard 
structures become significant or high hazard dams. 

Typically, requests for utility crossings are made to local and State agencies. 
These agencies provide the necessary review and right-of-way permitting.  If at 
all possible, these conduit crossings should be located outside the limits of the 
embankment dam, so as not to provide a discontinuity within the dam or a 
transverse seepage path through the dam. 

Inexperienced designers associated with utility conduits may utilize designs that 
trench through the embankment dam for new installations or to repair or 
replace existing conduits and not use proper excavation, backfill, and 
compaction practices around the conduit. This can lead to failure of the 
embankment dam. Any utility conduit installation should be designed by a 
professional engineer experienced in the design and construction of 
embankment dams. If these conduits must be located within the embankment 
dam, they should be positioned in the upper crest of the dam, well above the 
design flood elevation.  Typically, this is not a problem, as the utility owner 
requires permanent access to the conduit.  If the utility conduit is for a water 
line, special precautions should be employed, so that a rupture of the conduit 
will not continue unchecked and cause erosion of the embankment dam.  Such 
precautions should consider applicable guidance contained within this 
document, automatic shutoff mechanisms, frequent testing and inspection of 
the system, and visual monitoring. 

Another concern with utility conduit crossings are unauthorized installations. 
Embankment dam failures have occurred as the result of unauthorized utility 
conduit installations where no notice was given to the responsible agency for 
proper review and right-of-way permitting. All embankment dams should be 
marked with “no trespassing” signs.  Unfortunately, these signs are often 
ignored during unauthorized utility conduit installations.  

One alternative to burying the utility conduit crossing within an embankment 
dam is to construct the crossing over the crest of the dam.  This alternative has 
been successfully used by USACE for conduit crossings over levees and is best 
suited for small diameter pipes. To accomplish this alternative, additional 

23



Conduits through Embankment Dams 

earthfill is added on the crest of the dam, so a ramp is constructed over the 
utility conduit to allow for the crossing of vehicular traffic.  Typically, a 
minimum of 2 feet of cover is provided over the conduit and a 6-percent grade 
is utilized on the ramps.  Additional earthfill is ramped around the utility 
conduit on both the upstream and downstream faces of the embankment dam 
as needed to provide protective cover.  The grade on these ramps is usually 
about 10 percent.  This alternative eliminates any concerns associated with 
excavation into the embankment dam.

 •	 Conduits within tailings and slurry impoundment dams.—This document is intended to 
apply to traditional embankment type dams. The design and construction of 
conduits through tailings and slurry impoundments often utilize different 
guidelines than those presented in this document. 

Tailings and slurry dams are an integral and vital component of mining 
operations.  Tailings dams permanently retain mining, chemical, and industrial 
waste products (e.g., ground-up rock that remains after the mineral value has 
been removed from the ore). Figure 12 shows an example of a tailings dam.  A 
slurry dam permanently retains waste created by the processing and washing of 
coal. These structures retain the waste products and allow them to settle out, 
enabling reclamation (recycling) of the slurry water, and permanent retention 
and eventual restoration of the site. 

The coarser fraction of the waste material is commonly used to construct the 
dam, with the finer waste being pumped as slurry behind the dam. Typically, 
tailings and slurry dams are constructed over the life of the mine, with the dam 
being raised as needed to provide additional disposal capacity. The dams may 
be raised by downstream, upstream, or centerline construction. In many cases, 
the dams reach several hundred feet in height. 

As with any dam, an important aspect of these impoundments is handling 
water, in this case both storm runoff and water pumped in with the slurry. 
Some of the dams are totally diked structures while others have contributing 
watersheds. Often the impoundment water is reclaimed for use in processing 
or in other mining activities. The seepage from these impoundments can cause 
chemical deterioration due to its acidity or alkalinity.  In some cases, the nature 
of the leachate requires that the impoundment be provided with an impervious 
liner.  A “decanting system” typically removes free water from behind the dam. 
Designers use a variety of methods and materials to decant water from slurry 
and tailings dams.  Decanting systems often consist of an extendable intake 
structure (e.g., tower or sloping chute) and a conduit to convey discharge away 
from the tailings dam.  Figure 13 shows an example of an intake structure for a 
decanting system.  The intake structure is normally constructed progressively as 
the deposition level rises to avoid the costs of a high, unsupported structure 
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Figure 12.—An example of a tailings dam. 

before the impoundment is constructed. Reinforced cast-in-place concrete, 
precast concrete, steel, and plastic conduits have all been used.  Some designers 
prefer to avoid having a conduit pass through the dam and use either floating 
pump installations or siphons to decant the water. Use of these options is 
especially favored in areas where the impoundment can be located high in the 
watershed to minimize runoff inflow, and in areas, such as portions of the 
western United States, where rainfall is low.  Designers also cite the advantage 
in this approach of eliminating potential problems with decant conduit risers, 
such as structural stability and debris clogging. 

Some tailings dams are required to be provided with impervious liners due to 
the acidity of the leachate.  In these cases, if a decant conduit is used, a 
watertight connection must be achieved between the liner and the conduit.  The 
presence of the liner affects these installations by limiting the potential for 
seepage along the conduit. 

Some tailings dam failures and problems have been attributed to problems with 
compaction of the backfill around the decant conduit. A notable occurrence 
was a failure at a phosphate tailings dam in Florida in 1994.  While this case 
involved CMP, it highlighted the difficulty in obtaining adequate compaction in 
the haunch area under the pipe. Postfailure investigation of two other decants 
that had been installed at the same facility indicated gaps or loose areas in the 
haunch area backfill. Interestingly, although plastic and steel pipes have been 
used extensively in slurry impoundments, no failures are known to have 
occurred, and only a few problems have been attributed to inadequate haunch 
area compaction in these applications.  

In the past, decant pipes were constructed of CMP.  However, in many cases 
the acidity of the refuse caused corrosion problems.  Protective coatings were 
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Figure 13.—An example of a decant intake structure. 

employed to combat this problem, but there also were problems with the 
watertightness of the joints. This problem became particularly apparent when 
dam safety regulators began to require pressure testing of the pipes. 

As a result of problems with corrosion and joint watertightness, and to deal 
with increasing fill heights over the pipes, designers turned to two other types 
of decant pipes: thick-walled welded steel pipe, and high density polyethylene 
pipe (HDPE). Pipes were often designed to withstand the fill height loading 
from several stages of construction, and the pipe would be replaced by 
installing another pipe at a higher elevation, with the original pipe being filled 
with grout. 

Designers considered corrosion-protected welded steel and HDPE pipes to be 
beneficial for the type of foundation conditions and construction practices 
found at these dams.  The locations of these dams are limited to areas near the 
processing plants, meaning that designers need to deal with varied, and often 
less than ideal, foundation conditions. Furthermore, as these pipes may be 
extended up- or downstream, their length can become relatively long, 
sometimes exceeding 1,000 feet.  Over such lengths, a flexible pipe could 
tolerate some differential movement due to varying foundation conditions. 
Additionally, many of these dams have underground mining in their vicinity and 
the possibility of mining-induced ground movement needs to be considered. 

The pipes used for the decanting systems have typically been installed without 
being encased in concrete.  In most cases, the pipes have been installed with 
hand compaction of the backfill in the haunch area. Hand held compaction 
equipment has often been used.  Flowable fill has been used in a few cases.  A 
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more recent practiced has been to place the pipe high in the dam cross section, 
so that it is above the normal phreatic level; then the pipe is grouted and 
replaced by another pipe when the next stage is constructed. A concern for a 
pipe placed high in the dam is that a large storm could result in a raised phreatic 
level which may subject the pipe to a situation analogous to “first filling” of the 
dam. That is, a problem with seepage along the pipe may only become evident 
at a critical time with respect to the amount of water stored in the 
impoundment. 

In an attempt to address potential problems with seepage along a conduit, older 
installations made use of antiseep collars.  In more recent years, filter 
diaphragms have been installed.  In spite of installing the pipes with hand 
compaction of the haunch area, a practice that has led to problems in other 
applications, no significant problems have been attributed over the last 25 years 
to piping or excessive seepage through the backfill of a decant conduit for 
slurry impoundments. 

The International Commission on Large Dams (ICOLD) has prepared a 
number of technical publications (Bulletins Nos. 44, 74, 97, 98, 101, 103, 104, 
106, and 121 [1989a, 1989b, 1994b, 1995a, 1995b, 1996a, 1996b, 1996c, and 
2001]) related to the design, construction, and operation of these types of dams 
(many of these have been developed in partnership with the United Nations 
Environment Programme [UNEP]). 

Tailings and slurry dams have inherent differences compared to embankment 
dams used for the storage and control of water.  The reasons that tailings and 
slurry dams do not fit within the normal context of “embankment” dams 
include (see ICOLD publications for further information):

 1.	 They are designed to be abandoned and not operated.

 2.	 Construction is usually simultaneous with its operation.

 3.	 Generally constructed with mill tailings, mine waste, and earth- or rockfill.

 4.	 The primary use is the disposal of waste and slurry from the processing

operations. They usually impound water only for sedimentation,

reclamation, and mill operation. Water retention is considered to be

incidental to their intended operation of waste disposal.


 5.	 The waste is typically discharged along the upstream slope of the dam, 
forming a delta of settled fines, with the water pushed back away from the 
dam. 
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6.	 The hydraulic gradient existing within the dam is typically less than that 
existing within in a traditional embankment dam.

 7.	 These dams often are required to impound and release water with a low 
pH, which can cause corrosion and deterioration of the conduit.

 8.	 Typically, the free water that is impounded is a small percentage of the 
total stored volume.  The majority of the stored volume is hydraulically 
deposited fine waste.

 9.	 These dams typically cannot be breached at the end of their useful service 
life and the reservoir area returned to its original condition.  These dams 
must retain their waste products for hundreds of years.

 10. These dams are often raised many times to stay ahead of the rising 
impoundment water.

 11. These dams are normally subjected to only a nominal amount of 
drawdown of free water.

 12. The settled fines typically provide a low permeability zone, which acts to 
restrict seepage.

 13. Due to the much larger mass of these dams, decant conduits are generally 
much longer than conduits in traditional water storage dams. Some dams 
have conduits over 1,000 feet in length. 

As a result of these factors, the performance experience indicates that the 
combination of hydraulic gradient and backfill material characteristics may have 
been sufficient to prevent internal erosion and backward erosion piping 
problems. Also, it may be possible that particles of fine waste carried with the 
seepage act to choke off potential seepage paths.  Experience has shown, for 
example, that moving the discharge point of the slurry to a point upstream of a 
localized seepage area is often effective in eliminating the seepage. 

Since these types of dams are raised concurrent with disposal, and construction 
occurs over the life of the mine, which could be a few years to over 30 years, 
these dams provide a unique opportunity to monitor the structural performance 
of decant conduits.  In applications where the height of fill proposed over the 
conduit creates concerns about pipe deflection, deflection is typically monitored 
at various intervals of fill height.  Based on these measurements, parameters 
affecting deflection, such as the modulus of soil reaction (E') can be 
back-analyzed, and future pipe deflection, and the point at which remedial 
actions may be required, can be better modeled and estimated. 
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The “best practices” provided in this document should be applied to the decant 
conduits installed in tailings and slurry dams.  However, these best practices 
creates a dilemma in the case of tailings and slurry dams.  As previously 
discussed, there are benefits to having a conduit that can tolerate some 
deformation in these dams. Furthermore, these impoundments do not typically 
have an “impervious core,” and the added cost of reinforced cast-in-place 
conduits concrete is not as suitable for the shorter life of impoundment 
conduits, as compared to conduits through traditional embankment type dams. 
While the absence of significant problems does not rule out future problems, 
the existing record does provide some indication that alternatives to concrete 
encasement may be reasonable in tailings and slurry impoundment applications. 
The following recommendations are provided for installing conduits in these 
types of dams:

 1.	 Although extensive problems have not been encountered with decant 
pipes through these dams, good conduit design and installation practices 
need to be followed.  A primary recommendation is that designers 
recognize the large body of evidence that indicates that adequate 
compaction cannot be achieved in the haunch area by conventional hand 
held compaction methods.  Using these methods, full contact between the 
pipe and the backfill cannot be ensured.  For guidance on compaction, see 
section 5.3.

 2.	 Decant conduits should be provided with an adequately designed filter. 
The filter should extend far enough out from the conduit to intercept 
areas where cracks may occur due to hydraulic fracturing or differential 
movement of backfill/embankment materials.  For guidance on filters, see 
chapter 6.

 3.	 The filter should not be considered as an adequate defense, by itself, 
against problems with seepage along the conduit.  The permeability of the 
backfill material and its level of compaction need to be sufficient to restrict 
seepage and reduce the hydraulic gradient along the conduit.  The filter is 
intended to collect the limited seepage that occurs through well compacted 
and suitable backfill.  The filter could be overwhelmed and rendered 
ineffective by excessive seepage.

 4.	 If the pipe is not to be encased in concrete, with sloping sides that allow 
compaction by heavier equipment, then an alternate construction method, 
that provides for adequate compaction and full contact in the haunch area, 
needs to be specified.

 5.	 Use of an alternate construction method should only be considered where 
it can be shown that the combination of hydraulic gradient and backfill 
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material characteristics indicate adequate protection against internal 
erosion and backward erosion piping. 

6.	 Whatever conduit installation method is to be used, the specifications 
should include a detailed step-by-step procedure for installing the conduit 
and for achieving full contact with the bedding and backfill. The type of 
equipment to be used to achieve the specified backfill densities should be 
specified.  Quality control during construction should be the responsibility 
of a registered professional engineer who is familiar with the project 
specifications and the potential problems.  The specifications should 
indicate how it will be determined that full contact between the conduit 
and the backfill has been achieved and the required backfill 
moisture/density specifications have been met.  The engineer should be 
required to inspect and accept the conduit bedding and backfill before the 
backfill is placed over the conduit. 

Even though these dams differ significantly from embankment type dams, they 
can experience failure.  Regulatory agencies, dam owners, and designers may 
find application of the guidance provided in this document can improve the 
overall integrity of their structure.  They should fully consider the basis for 
these best practices and decide on the applicable guidance to use.  Where the 
design and construction of a conduit through these types of dams deviates from 
these best practices, the designer should ensure that potential problems are 
otherwise accounted for in the design. 
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General


Conduits have been placed through embankments for centuries. However, placing a 
conduit within an embankment dam increases the potential for seepage and internal 
erosion or backward erosion piping. Water may seep through the earthfill 
surrounding the conduit, through cracks in the embankment caused by the conduit, 
or into or out of defects (e.g., cracks, deterioration, or separated joints) in the 
conduit. If the conduit is flowing under pressure, and defects exist in the conduit, 
the water escaping the conduit can erode surrounding soils. 

Replacement of a conduit through an embankment dam is difficult, time consuming, 
and expensive. Designers should adopt a conservative approach for the design of 
conduits. The purpose of this chapter is to provide guidance for both constructing 
new conduits and renovating or replacing existing conduits in embankment dams. 
When evaluating existing conduits, designers should attempt to determine how 
closely the design of the existing conduit complies with criteria for new conduits.  If 
the existing conduit lacks state-of-the-practice defensive design measures, it may be 
considered inadequate by modern standards. These design measures should provide 
both primary and secondary defensive measures to reduce the probability of failures. 
Inadequate conduit designs, poor construction, and improper maintenance can 
adversely affect the safety of embankment dams. 

1.1 Historical perspective 

Most designers of embankment dams have attempted to include defensive design 
measures to address potential seepage along conduits extending through earthfill or 
earth- and rockfill embankments.  Even so, many observed failures and accidents of 
embankment dams have occurred, involving conduits or the earthfill near the 
conduits. For large embankment dams, about one-half of all failures are due to 
internal erosion or backward erosion piping. In about one-half of these failures, 
internal erosion or backward erosion piping was known to have initiated around or 
near a conduit (Foster, Fell, and Spannagle, 2000, p. 1032). This means that about 
25 percent of all embankment dam failures are a result of internal erosion or 
backward erosion piping associated with conduits. 
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Until about the mid-1980s, the most common approaches for controlling seepage 
were antiseep collars (also known as cutoff collars) and careful compaction (special 
compaction using small hand held compaction equipment) of backfill around 
conduits.  Antiseep collars are impermeable diaphragms, usually of sheet metal or 
concrete, constructed at intervals within the zone of saturation along the conduit. 
They increase the length of the seepage path along the conduit, which theoretically 
lowers the hydraulic gradient and reduces the potential for backward erosion piping. 

Antiseep collars were designed primarily to address intergranular seepage (flow 
through the pore spaces of the intact soil).  Antiseep collars did not fully address the 
often more serious mechanism of failure (internal erosion), that occurs when water 
flows through cracks and erodes the compacted earthfill near the conduit outside the 
zone of influence of the antiseep collars in the compacted earthfill near the conduits. 
In the 1980s, major embankment dam design agencies including the U.S. Army 
Corps of Engineers (USACE), and the Bureau of Reclamation (Reclamation) 
discontinued using antiseep collars on conduits for new dams.  Reasons why antiseep 
collars were abandoned include:

 •	 Antiseep collars impeded compaction of soils around the conduit.

 •	 Antiseep collars contributed to differential settlement and created potential 
hydraulic fracture zones in the fill.

 •	 Designers realized that problems associated with conduits were more likely to 
be caused from internal erosion mechanisms than from intergranular seepage. 

•	 Designers achieved increased confidence in the capability and reliability of

filters to prevent internal erosion failures.


 •	 Antiseep collars can form a foundation discontinuity that could result in

differential settlement and cracking of the conduit.


The Natural Resources Conservation Service (formerly Soil Conservation Service, 
SCS) also discontinued using antiseep collars on new embankment dams, but 
continues to allow them on small, low hazard dams and only under certain restrictive 
conditions. 

Figures 14 through 16 show examples of the construction difficulties involved with 
compaction around antiseep collars. Appendix A gives a detailed history of the 
design rationale used for antiseep collars and reasons for their being discontinued. 
Figures 17 and 18 show examples of the ineffectiveness of antiseep collars in 
preventing embankment dam failure resulting from internal erosion near conduits. 
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Figure 14.—Antiseep collars impeded the compaction of soils around the 
conduit.  Hand tampers were used next to the antiseep collars. 

Figure 15.—Compaction around antiseep collars was difficult using large 
equipment. 

Most embankment dam designers, dam regulators, and dam-building agencies now 
recommend a zone of designed filter material surrounding the penetrating conduit. 
Some designs use a filter diaphragm located about midway between the centerline of 
the embankment dam and downstream toe. Other designs use a filter collar around 
the downstream portion of the conduit.  Often, a chimney filter serves as a 
diaphragm to protect the conduit, as well as satisfying other functions of 
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Figure 16.—Good compaction around antiseep collars was difficult to 
achieve. 

embankment dam design. See chapter 6 for guidance on the design and construction 
of filters.  Since filters have become a standard design element in embankment dam 
designs, very few failures have occurred that can be attributed to internal erosion or 
backward erosion piping near conduits. 

1.2  Locating the conduit 

A number of factors influence the layout of a conduit, such as the type and cross 
section of the embankment dam, topography, geology, and hydraulics. Conduits 
through embankment dams are often referred to as “cut-and-cover” conduits. 
Conduits through embankment dams should be avoided, when safe and 
cost-effective alternatives are available.  An alternative to a conduit through the 
embankment dam is a tunnel located in the abutment, wherever geology, topography, 
and economics are favorable. The advantages of a tunnel include:

 •	 Eliminates potential failure modes.—The tunnel is not physically associated with the 
embankment dam. Using a tunnel completely eliminates the potential failure 
modes normally associated with a penetration through an embankment dam.

 •	 Facilitates construction.—A tunnel can often facilitate stream diversion around the 
damsite during construction.

 •	 Simplifies embankment placement.—A tunnel can allow unobstructed embankment 
placement, since it no longer hinders construction of the earthfill.  
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Figure 17.—Failure of an embankment dam following first filling.  The 
failure was attributed to internal erosion because the time required for 
seepage to develop through the compacted embankment and cause failure 
was very short.  Also, the soils are not the type ordinarily considered 
susceptible to backward erosion piping.  Antiseep collars were not 
effective in preventing the failure. 

Figure 18.—Antiseep collars were not adequate to prevent the internal 
erosion failure of this embankment dam.  The internal erosion that 
occurred on first filling of the reservoir occurred in dispersive clay soils 
that are not susceptible to backward erosion piping. 
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•	 Eliminates compaction requirements.—A tunnel eliminates the need for special

compaction requirements around the conduit.


 •	 Allows for independent construction of tunnel.—Tunnel construction can be 
performed independently of the embankment dam construction. Typically, the 
construction of the conduit through an embankment dam is a critical path 
feature for construction of the dam.

 •	 Eliminates the need for special filters.—A tunnel eliminates the need for special filter 
placement and drainage requirements, which can typically slow the progress of 
embankment dam construction. 

However, there are disadvantages associated with a tunnel, such as:

 •	 Increased cost.—A tunnel is often more expensive than a conduit through an 
embankment dam. This is especially true for smaller diameter conduits. 
However, for larger diameter conduits or where pressurized systems are 
required, the relative cost differences can be reduced.  The reduction in cost 
difference is due to a lesser need for redundant safety features, such as steel 
pipe liners, special filter and drainage requirements, and more efficient 
embankment dam construction.

 •	 Soft ground concerns.—A tunnel may be problematic in soft ground conditions. 
This could result in higher design and construction costs. Also, the portal 
conditions must be able to accommodate the entrance and terminal structures.

 •	 Potential for overruns.—A tunnel typically involves more risk for cost and schedule 
overruns than a conduit through an embankment dam.

 •	 Requires additional engineering experience.—Fewer engineering firms maintain a 
qualified staff for planning, design, and construction services for tunnels than 
for conduits through embankment dams.

 •	 Construction data lacking.—Since tunnels are not very often constructed, up-to­
date construction cost data are not always readily available for comparison of 
costs to conduits through embankment dams. 

Tunnels are seldom used for small embankment dams and may be a more costly 
option for some larger dams. In those embankment dams, a conduit penetrating the 
dam may be preferred. Conduits have typically been located at about the 
embankment/foundation interface. They are often located so as to align the conduit 
discharges with the original watercourse, bypassing streamflow during construction, 
and potentially emptying the reservoir by gravity. This means that for many sites, the 
conduit is located on alluvial soils that can be deep and compressible. This also 
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means the conduit is often located near the maximum section of the embankment 
dam, which contributes to greater structural loading on the conduit.  The designer 
should consider the following guidance in locating the conduit (Reclamation, 1987c, 
p. 3):

 •	 Avoid differential settlement.—Whenever possible, the conduit should be located 
where the profile is entirely on bedrock, or entirely on soil. Differential 
settlements can occur where the overburden soil thickness is extremely variable 
or foundation properties differ. The bedrock profile underlying the conduit 
location should not have abrupt changes in a short horizontal distance.

 •	 Locate the conduit in a trench.—Locate the conduit in a trench section in firm rock 
when the rock is at or near the ground surface (figure 19).  For this option, the 
construction specifications should include provisions for rock excavation to be 
performed to eliminate or minimize open fractures or other damage to the rock 
beyond the limits of the excavation. Concrete should extend to an upper limit 
of the top of the conduit or to the original rock surface, if lower than the top of 
the conduit.

 •	 Locate the conduit on a bench.—Locate the conduit on a bench excavated along the 
base of an abutment when geological conditions and topography are favorable. 
Placing concrete on the abutment side or placing the conduit against the 
excavated rock reduces or eliminates requirements for earthfill compaction 
against one side of the conduit (figure 20).

 •	 Consider the potential for nonuniform settlement.—Foundation conditions along the 
length of the conduit are often nonuniform, and concentrated settlement is 
common in some areas. As the height of the embankment dam is raised during 
the construction of the dam, periodic inspection of the interior of the conduit 
should be performed. The frequency of such inspections should be determined 
based on anticipated foundation conditions as well as any uncertainties. Some 
conduits have experienced distress during and after construction as a result of 
unidentified foundation conditions. If distress is observed in the form of 
cracking or separation of joints, prompt remedial action is required. 
Reclamation has monitored and recorded these concentrated settlements at a 
number of their embankment dams after construction was completed. The 
results of monitoring show that nonuniform settlement along the conduit is 
common after completion of construction. 

•	 Flatten slopes where conduits span a cutoff trench.—Where a conduit spans a cutoff 
trench, the side slopes of the cutoff trench may require flattening to reduce 
differential settlement between the compacted backfill in the cutoff trench and 
the foundation soils adjacent to it. 
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Figure 19.—Conduit constructed in a trench in 
firm rock. 
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Concrete 
(reinforcement not shown) 

Conduit 

Figure 20.—Conduit cast against excavated 
rock slope.

 •	 Limit number of conduit penetrations.—Designs should use only one conduit, when 
feasible, to minimize problems associated with penetrations of the embankment 
dam. Installing several conduits, particularly near one another, compounds the 
construction difficulties and increases the likelihood of problems associated 
with conduits through the embankment dam. However, the designer should be 
aware that with only one conduit, if problems develop that limit the ability to 
control the release of water, this may result in a dam safety concern.  Therefore, 
the design should be robust using proven methods.

 •	 Avoid locating conduit joints at discontinuities.—Locate joints for the conduit where 
underlying discontinuities do not occur.  If the conduit alignment intersects a 
slurry trench cutoff or vertical drainage zone, the conduit should be designed 
where these discontinuities are not at a joint, but near the midway point 
between joints.  For guidance on conduit joints, see section 4.3.

 •	 Consider seismic deformation.—Seismic activity can result in significant deformation 
of the embankment dam.  Deformations, such as settlement and spreading can 
open conduit joints and cause cracking and displacement of the conduit.

 •	 Avoid the use of bends.—Locate the conduit so that bends in the alignment or 
profile are not required for the portion under the embankment dam. This will 
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facilitate future inspection and renovation (i.e., sliplining).  This will also 
provide improved compaction near the conduit and eliminate any stress 
concentrations resulting from the bend. 

Some techniques that have been found to be applicable for designing conduits on 
compressible foundations include:

 •	 Excavate and replace compressible foundation soils.—To reduce differential settlement 
or to reduce total settlement, excavate compressible foundation soils and 
replace with less compressible compacted soil.

 •	 Properly locate controls.—Position the control gates and valves upstream of im 
pervious zone in the embankment dam.

 •	 Avoid pressurizing the conduit.—Avoiding pressurized conduits through impervious 
embankment dams, unless the pressure conduit is placed within a larger 
conduit. To prevent pressurizing of the conduit, a free standing welded steel 
pipe supported by cradles can be placed within a larger reinforced concrete 
conduit. Access is provided along the side of the steel pipe. The steel pipe is 
considered to be ductile and will deform and still maintain a watertight conduit. 
When possible, field weld the steel pipe joints after the initial foundation 
settlement of the conduit has occurred.

 •	 Bridge over weak areas.—Longitudinal reinforcement extending across the joints 
of the reinforced concrete encasement surrounding the welded steel pipe liner 
can provide a rigid beam effect and bridge over weak foundation areas to 
minimize locally concentrated deflections.

 •	 Utilize longitudinal reinforcement across joints.—Large horizontal movements often 
occur at randomly selected conduit joints, rather than uniformly along the 
conduit length. This type of concentrated movement can open gasketed 
conduit joints that are not designed for large horizontal movements. The use 
of longitudinal reinforcement across the joints and continuous welded steel pipe 
liners are effective in reducing concentrated openings within conduits.

 •	 Provide camber.—A conduit that is not located on bedrock must be designed so 
that the amount of predicted foundation settlement does not damage the 
conduit or its function. A conduit constructed on a compressible foundation 
should be cambered to accommodate the predicted foundation settlement, to 
achieve a proper final grade. 

In lieu of constructing tunnels or conduit penetrations through embankment dams, 
siphons can often provide alternative reservoir drawdown capability for low hazard 
dams. Siphons are particularly useful for recreation reservoirs that do not make 
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regular releases.  However, proper design precautions must be utilized to ensure long 
term performance. For guidance on the design of siphons, see section 11.4.1. 

1.3  Foundation investigations 

Thorough foundation investigation and interpretation of the data obtained are 
required to determine whether a safe and economical conduit can be built at a 
selected site.  The designer should always participate with the planning of the 
subsurface exploration program. Guidance for planning, conducting, and 
interpretation is available in Reclamation’s Design of Small Dams (1987a) and 
Engineering Geology Field Manual (1998b), and the USACE’s Geotechnical Investigations 
(2001a). The designer should be aware that final alignment of the conduit may 
require adjustment after the complete foundation has been exposed. 
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Conduit Materials 

Various materials have been used in the design and construction of conduits through 
embankment dams.  The reasons for utilizing these different materials have included 
cost, availability, operations, maintenance, and constructability.  The most common 
materials used in the construction of new and renovated conduits have been:

 • Concrete.—Reinforced cast-in place and precast

 • Plastic.—Thermoplastic and thermoset

 • Metal.—Steel, ductile iron, cast iron, and CMP 

The strength and performance characteristics of each conduit material depend on its 
chemistry and the relationship of its components. For example, concrete is 
produced using cement, sand, aggregates, and reinforcement, whereas metal is a 
homogenous, isotropic material. 

Certain design and construction advantages and disadvantages are associated with 
each material.  Each material requires specific design and construction 
considerations.  Some of these materials, are not recommended for use in the design 
and construction of conduits through significant and high hazard embankment 
dams. For example, CMP is seldom used in any embankment dams other than low 
hazard dams and needs to be carefully evaluated for the specific dam site. For 
guidance on the use of specific materials in renovation, replacement, and repair of 
conduits, see chapters 12, 13, and 14. 

2.1 Concrete 

Concrete materials used in conduit construction have included:

 • Reinforced cast-in-place

 • Precast concrete pipe 
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These materials are discussed in the following sections. 

2.1.1  Reinforced cast-in-place concrete 

Reinforced cast-in-place concrete is placed and allowed to cure in the location where 
it is required to be in the completed conduit.  Reinforced cast-in-place concrete is 
made by mixing cement, fine and coarse aggregates, sand, and water. Admixtures are 
frequently added to the concrete immediately before or during its mixing to increase 
the workability, strength, or density, or to lower its freezing point.  A framework of 
reinforcing steel is constructed, and forms to contain the wet concrete mix are built 
around the reinforcement.  The wet concrete mix is placed inside the forms and 
around the reinforcing steel. Typically, consolidation of the concrete mix is obtained 
by vibration. The final solidified mass becomes reinforced cast-in-place concrete. 
Reinforced cast-in-place concrete conduits are built at the construction site. 
Figure 21 shows typical reinforcement used with cast-in-place concrete. 

Reinforced cast-in-place concrete conduits (figure 22) have a long history of use by 
the major dam design agencies.  Reinforced cast-in-place concrete conduits are very 
adaptable in their application and can be designed to fit specific project requirements 
and site conditions.  A variety of design shapes are possible.  For guidance on 
selecting the proper shape see section 4.1.  Properly designed and constructed 
reinforced cast-in-place concrete should have a service life of 100 years or longer. 

The advantages of using reinforced cast-in-place concrete for conduits include:

 •	 The longitudinal reinforcement typically extends across the conduit joints.  This 
prevents the joint from separating and developing a leak.

 •	 A variety of conduit shapes are available to provide better distribution of

loadings to the foundation.


 •	 Conduit shapes can be designed to provide for good compaction of earthfill 
against the conduit.

 •	 Allows for redundant seepage barrier protection, since waterstops and 
reinforcement typically extends across conduit joints.  Welded steel liners are 
often used to provide additional seepage barrier protection. 

The disadvantages of using reinforced cast-in-place concrete conduits include:

 •	 Construction costs are often higher than for other conduit materials,

particularly for small diameters.
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Figure 21.—Reinforcement being unloaded for use in cast-in-place 
concrete. 

Figure 22.—Concrete placement for a reinforced cast-in-place conduit.

 •	 Quality of concrete depends on quality control and construction inspection in 
the field.

 •	 Aggressive water or soil chemistry can limit service life, unless proper 
precautions are taken in design. 
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2.1.2 Precast concrete 

Precast concrete refers to concrete pipe that is cast somewhere other than its final 
location. Precast concrete pipe sections are transported to the location where the 
conduit is constructed (figure 23). Three types of precast concrete pipe have 
typically been used in the construction of conduits through embankment dams: 
reinforced concrete pipe (RCP), reinforced concrete cylinder pipe (RCCP), and 
prestressed concrete cylinder pipe (PCCP). 

Precast concrete pipes are typically circular in cross section.  Rectangular precast 
conduits (also known as precast concrete boxes) are seldom used in embankment 
dams, because joints cannot be constructed that are reliably watertight. 

The advantages of using precast concrete for conduits include:

 •	 Manufactured to tight tolerance in a controlled environment.

 •	 Quality is unaffected by adverse field casting conditions.

 •	 Can be installed quickly, thus minimizing the amount of time required for 
stream diversion.

 •	 Articulation of joints and the ability to accommodate varying settlement along 
the entire length of the conduit without high structural stresses. 

The disadvantages of using precast concrete for conduits include:

 •	 Longitudinal reinforcement does not extend across the conduit joints.  Joints 
can open as a result of embankment dam settlement or elongation, unless a 
continuously reinforced concrete cradle is provided along the full length of the 
conduit.

 •	 Due to shipping and handling limitations, short pipe lengths are required to 
reduce weight. This will result in many pipe joints for the entire length of the 
conduit and increase the number of locations for potential leakage. 

•	 Gasketed joints are the only defense against leakage.  

•	 Compaction of earthfill is difficult under the haunches of the pipe, unless a 
concrete cradle is provided.

 •	 Aggressive water or chemistry can limit service life, unless proper precautions 
are taken in design. 

44 



Chapter 2—Conduit Materials 

Figure 23.—Precast concrete pipe being unloaded from delivery truck. 

Some design agencies, such as Reclamation, do not permit use of pressurized or 
nonpressurized precast concrete conduits through embankment dams due to 
concerns with watertightness, the lack of longitudinal reinforcement extending across 
conduit joints, and the difficulty of adequately compacting earthfill against the 
conduit below its springline. 

Other design agencies, such as NRCS, use precast concrete pressure pipe (American 
Water Works Association  [AWWA] C300 [2004a], 301 [1999b], and 302 [2004b]) 
extensively for all embankment dams other than low hazard dams. The typical 
NRCS application is a pressure rated pipe in a nonpressurized conduit situation 
where the entrance structure is an ungated riser or tower, and the terminal structure 
is an ungated plunge pool or stilling basin.  Earth Dams and Reservoirs (1990) contains 
NRCS design guidance for conduits in embankment dams. 

2.2 Plastic 

Plastic pipe is often used in the renovation of conduits (e.g., sliplining or lining of 
existing conduits). Plastic pipe that is used in the construction of new, significant 
and high hazard embankment dams should always be encased in reinforced 
cast-in-place concrete to assure quality compaction against the conduit. Use of 
plastic pipe in new, low hazard embankment dams is generally limited to small 
diameters (less than 12 inches).  Plastic pipe used in low hazard embankment dams is 
often not encased in reinforced cast-in-place concrete for economic and 
construction-related reasons. However, use of a filter diaphragm or collar is a 
valuable defensive design measure, even for low hazard classification sites with 
favorable conditions. Some designs may not employ a filter diaphragm around the 
conduit, but eliminating this valuable feature should be carefully considered and 
justified, based on extremely favorable soil conditions, good conduit construction 
materials and methods, reliable construction practices, and favorable foundation 
conditions. Plastic pipe is generally considered to have a shorter service life 
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(approximately 50 to 100 years) than concrete, but may be preferred in situations 
where aggressive water or soil chemistry could attack concrete. 

Plastic pipe consists of resins composed of polymerized molecules mixed with 
lubricants, stabilizers, fillers, and pigments.  Plastic pipe used in the construction or 
renovation of conduits has included thermoplastic and thermoset plastic. These 
materials are discussed in the following sections. 

2.2.1 Thermoplastic 

Thermoplastics are solid materials that change shape when heated.  Thermoplastics 
commonly include polyethylene (PE) and polyvinyl chloride (PVC).  Thermoplastic 
pipe is produced by the extrusion process. The extrusion process continuously 
forces molten polymer material through an angular die by a turning screw.  The die 
shapes the molten material into a cylinder. After a number of additional processes, 
the final product is cut into the specified pipe lengths. 

The advantages of using thermoplastic pipe as a new conduit or for the sliplining of 
an existing conduit include:

 •	 Lightweight material that facilitates installation.

 •	 Resists corrosion and is not affected by naturally occurring soil and water 
conditions. May be preferable in certain conduit applications where aggressive 
water or soil chemistry would limit the life of concrete or metal pipe.

 •	 The smooth interior surface reduces friction loss.  Also, due to the very smooth 
surface of thermoplastic pipe, adherence of minerals (e.g., calcium carbonate) is 
minimized.

 •	 The ability to heat fuse PE pipe joints provides a watertight joint.

 •	 Resists biological attack. 

The disadvantages of using thermoplastic pipe as a new conduit or for the sliplining 
of an existing conduit include:

 •	 High coefficient of thermal expansion relative to concrete can cause movement 
of the slipliner, requiring the use of end restraints.

 •	 Can easily be damaged or displaced by construction and compaction equipment 
unless it is encased in concrete. 
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•	 Compaction of earthfill is difficult under the haunches of the pipes unless 
encased in concrete to provide good compaction of earthfill against the conduit.

 •	 Heat fusion of pipe joints requires special equipment and an experienced

operator.


 •	 Requires a concrete encasement for significant and high hazard embankment 
dams to provide a favorable shape for compaction of earthfill against the 
conduit. 

Solid wall, high density polyethylene (HDPE) is the most commonly used 
thermoplastic material for sliplining of existing conduits. Figure 24 shows an 
example of HDPE pipe. HDPE pipe is an inert material and as such is not subject 
to corrosion or deterioration, has a long service life, and requires little maintenance. 
This is especially important in small conduits that are not easily renovated and 
cannot be easily inspected. HDPE has been used in sliplining of existing conduits, 
since the early 1980s.  HDPE is typically available in sizes up to 63 inches in 
diameter. The manufacturer can fabricate HDPE pipe fittings, such as bends, 
flanges, reducers, and transitions.  Specialized fittings can also be custom fabricated. 
HDPE pipe is typically black. However, HDPE pipe is also available with gray and 
white pigmentation to reduce glare and improve conduit inspection using closed 
circuit television (CCTV) equipment. For guidance on the use of HDPE pipe in 
conduit sliplining applications, see section 12.1.1. 

PVC pipe (figure 25) is not as commonly used as HDPE pipe as a conduit or 
slipliner due to concerns with lack of watertightness and other inherent 
disadvantages. The major disadvantage with PVC pipe is the bell and spigot joint 
connections. This type of joint connection has the potential for leakage or can 
separate as the embankment dam settles. The bell and spigot joint integrity must be 
tested for leaks to ensure that the gasket has not rolled off during installation. Use of 
PVC bell and spigot joints should only be considered for nonpressurized, low hazard 
dam applications.  PVC is typically available in sizes up to 48 inches in diameter.  

Figure 24.—HDPE pipe to be used for sliplining of an existing conduit.
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Figure 25.—PVC pipe has infrequently been used in conduit applications 
within low hazard embankment dams.  The bell and spigot joint connection 
used for this type of pipe limits its use for most conduits. 

2.2.2 Thermoset plastic 

Thermoset plastics are rigid after manufacturing or curing and cannot be reformed. 
The most commonly used thermoset plastic for lining nonpressurized conduits is 
cured-in-place pipe (CIPP). CIPP is also referred to as an “elastic sock.” CIPP 
consists of a polyester needle-felt or glass fiber/felt reinforcement preimpregnated 
with polyester resin (USACE, 2001d, p. 11). The preimpregnation process is usually 
done at the factory for quality control purposes. On the inner surface of the CIPP 
liner is generally a coating or membrane of polyester, polyethylene, surlyn, or 
polyurethane, depending on the type of application. The membrane provides a low 
friction and hydraulically efficient inner surface to the CIPP liner.  Figure 26 shows 
CIPP being used to line an existing conduit.  CIPP has been successfully used in 
renovating deteriorated pipelines, drain pipes, and conduits through levees for over 
25 years. CIPP has been used for conduit renovation through embankment dams 
since about the mid-1990s.  

The advantages of using CIPP lining for conduits include:

 •	 Thermoset plastic pipe is corrosion resistant and is not affected by naturally 
occurring soil and water conditions. Thermoset plastic pipe may be preferable 
in certain conduit applications where aggressive water or soil chemistry would 
limit the life of concrete or metal pipe. 
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Figure 26.—CIPP liner exiting from an existing conduit via 
the hydrostatic inversion method.

 •	 The smooth interior surface reduces friction loss.  Also, due to the very smooth 
surface of thermoset plastic pipe, adherence of minerals (e.g., calcium 
carbonate) is minimized.

 •	 Thermoset plastic pipe resists biological attack.

 •	 Typically, the need for grouting of the annulus between the CIPP liner and 
existing conduit is eliminated, since it is tight fitting. 

The disadvantages of using CIPP lining for conduits include:

 •	 High material and installation costs.

 •	 Not suited for conduits with significant bends or changes in diameter.

 •	 Inability to accommodate internal and external loadings when the original

conduit is severely damaged.


CIPP liners are generally applicable for lining of existing conduits ranging in 
diameter from 4 to 132 inches.  Maximum lengths of CIPP liners generally range 
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