

Testing the Scalability of a DSpace-based Archive
Dharitri Misra, James Seamans, George R. Thoma, National Library of Medicine, Bethesda, Maryland, USA

Abstract
The implementation of production-level large scale archives

is often based on research prototypes that possess essential
functions and characteristics, e.g., storage capacity, ingest,
metadata recording, ability to migrate to newer formats, etc.
However, a key characteristic that is often overlooked is
scalability, i.e., the ability of the system to accommodate large
numbers of items without compromising performance - while
ingesting, indexing or access.

Here we describe an investigation of archive scalability in a
Java-based system (System for the Preservation of Electronic
Resources or SPER) which was built by an R&D team at the U.S.
National Library of Medicine to investigate various aspects of
digital preservation. SPER uses DSpace as the underlying
infrastructure for building and managing the digital archive. To
confirm the capability of SPER/DSpace to serve as a large
archive, we conducted scalability tests by generating and ingesting
data for more than a million items, and studied ingest behavior as
a function of the archive size.

This paper describes the test procedure and environment, the
software developed to measure performance during ingest, and the
characteristics of the ingested data. We present the ensuing
results, which confirm the scalability of SPER/DSpace with
acceptable ingest performance as the archive is expanded to a
million items.

Introduction
SPER is an evolving Java-based system to research digital

preservation functions and capabilities, including automated
metadata extraction (AME) for documents, retrieval of available
metadata from external databases, document archiving, and
ensuring long term use through bulk file format migration [1].
SPER is built upon MIT�s DSpace software (Version 1.4) [2], with
some modifications and enhancements to better facilitate batch-
based processing. It uses a Java RMI-based Client-Server model
and runs on Windows platforms, using MySQL (Version 5.02 or
higher) database, but may also be run on Solaris systems. The
architecture of SPER is shown in Figure 1.

As SPER relies upon the DSpace infrastructure to build and
manage its archive, to determine the scalability of SPER, it was
imperative to examine the scalability of DSpace itself. DSpace is
an open-source, OAIS-compliant digital repository system used by
about than 300 universities and other organizations worldwide [3].
However, no actual data has been found on the archive size of
these installations, neither is any benchmark available on DSpace
performance. (One installation at Cambridge University had
reported that ingesting new items to DSpace was too slow beyond
one hundred thousand, but no details were given on the operational
environment or other conditions.)

SPER Server SPER Client

HTTP Browser

DSpace Web
Application

SPER Control Modules

DSpace Storage
Modules

SPER + DSpace Archive
Modules

 Bitstream
Store

Automated
Metadata
Extractors

Database

Other
Preservation

Tools

Figure 1 - SPER Architecture with DSpace Archiving Layer

So for our test, we built a DSpace archive with more than one
million items (individual retrievable objects) and measured the
scalability of the system in terms of the ingest rate and other
parameters as the archive grew in size. The details of the
experiment and ensuing results are presented in the following
sections. (Note that MySQL database system used in our DSpace
installation does not inherently limit scalability, as MySQL table
size is limited only by the host platform/operating system.)

Test Components
The components relevant to our scalability test include the

ingest data, archival storage, databases, special test software, as
well as the test platform where the tests were performed. These
components are described below:

Ingest Data
For practicality, the ingest data, comprising more than a

million individual documents and descriptive metadata, was
simulated by replicating the data we had previously archived using
SPER [4] , as follows:
• The input data for simulation were from two FDA Notice of

Judgment collections [5], named FDNJ (Food and Drug-
related Notice of Judgment) and DDNJ (Drug-related Notice
of Judgment) which were already stored in an operational
SPER system. The number of items (called NJs) in these two
collections was approximately 17,700 and 220 respectively.

• New collections were created by copying all source data (TIFF
images and OCR text) and metadata associated with each NJ
of an input collection.

• Unique identifiers (UI) and titles were created for the
replicated items by prefixing the original item�s UI and title
(stored in its metadata file) with the new collection name, and
updating the metadata file. This helped later in the visual
verification of ingest during item retrieval.

Data Characteristics
Each ingested item represents one NJ record, which consists of
three or more associated bitstreams, as follows:
- Monochrome TIFF image(s) of the original published page(s)

containing the NJ description text
- Dublin Core metadata file
- SPER-generated preservation metadata file
- OCR textline file of the NJ

Each TIFF is a CCITT Group 4 Fax compressed image, and
averages 100 KB in size. Approximately 50% of items have only
one associated TIFF image, 25% have two images, and 2% have
10 images. In the DDNJ collection three items also have 47, 57
and 100 associated images. Each OCR textline file contains text
for the entire NJ as converted by the OCR engine in SPER. About
80% of items have this associated text file.

The combined size of the last three text files, on the average,
is 10 KB, and they are stored as three separate bitstreams for each
item in the archive.

Archive Contents
The two FDA collections were replicated to create and populate the
DSpace archive as follows:
- Number of DSpace Communities: 32
- Number of Collections: 109
- Number of Collections per Community: varied between 1 to 5
- Number of Ingested Items: 1,041,790
- Number of Items with 4, 5 and 10 associated bitstreams:

541442, 267104 and 1166 respectively
- Number of Items with 50, 60 and 103 bitstreams: 58 each
- Number of searchable fields in Dublin Core file of an item: 12

The contents of the searchable metadata fields are indexed using the
Apache Lucene software during ingest.

Databases
The two databases, used in the test, are:
- Ingest Database: This is the standard DSpace database used

for recording information related to each item in the archive.
In SPER, it is implemented as a MySQL database.

- Ingest Performance Database: This is another MySQL
database, distinct from the above, which is implemented
specifically for our scalability test. Detailed information on
each ingested item is extracted from the DSpace log file and
loaded into this database as a table.

Operations Platform and Software
The Ingest performance measurement task was conducted on

a dedicated virtual machine on a Sun Microsystems X4500 server.
The X4500 features dual core 2.8GHz AMD Opteron processors,
with 16GB of memory, 24 TB of disk space and four 1 Gb/s
network interfaces. The virtual partition was allocated 4.5TB of
dedicated disk space. The Java application performing ingest used
3 GB of pre-allocated memory. The other main tasks running on
this virtual machine are the MySQL database server, and Apache
Tomcat Web services needed for accessing the ingested items
through a Web browser. Note that the directory with ingest input,
and the archive upload area reside on the same disk as the archive,
making faster data transfer during ingest.

The test was conducted using the following versions of the
underlying operating system/software:
- Sun Solaris 10
- DSpace: V1.4.1
- MySQL: V5.01 with Connector-j 5.0.7
- Java: V1.4.2

Test Procedure and Software

Item data
for test

Repository

IngestDataFactory

FDA-NJ
Item data

SIPFactory

SIP
(XML)

INGEST DATA GENERATION

SIPIngestManager

DSpace
Archive DSpace Archive

Database

DSpace
Modules

Ingest
Log

INGEST PROCESSING

Figure 2 – SIP generation and Ingest of simulated FDA-NJ collections

The steps used to generate and ingest the data, and the
software modules to perform them are shown in Figure 2.
Retrieval of performance information and generation of
corresponding charts are shown in Figure 3. These steps are
explained below:

1. In �Ingest Data Generation� shown in Figure 2, the module

IngestDataFactory uses the FDNJ and DDNJ collection items
(images, metadata, and OCR text) stored in specified input
directories, and generates replicated data with unique
identifiers into output directories, corresponding to new
DSpace Communities and Collections. The module
SIPFactory then creates OAIS-type Submission Information
Packages (SIPs) with these items, in the form of several XML
files, each SIP specifying all items to be ingested in one
batch.

2. During �Ingest Processing�, The SIPIngestManager ingests a
batch of items specified in a SIP to the DSpace archive, using
the DSpace library modules, and automatically creating new
communities and collections in the database, as required. It
accesses the resource files indicated for each item in the SIP,
and ingests the items individually to the DSpace archive.
(Note that this is somewhat different from the DSpace
command-line batch ingest operation, where all the items to
be ingested are assumed to be in a single top level directory,
and all resources for an item must be in a single directory.

The SIPIngestManager records necessary information
such as the data upload time, ingest time, number of ingested
files, size of ingested data etc. for each archived item into a
log file (the DSpace log file) for later analysis.

3. This performance-related data in the log file is then analyzed,
parsed and formatted by a set of Perl scripts, and loaded to
tables in the Ingest Performance database, as shown in
Figure 3.

Performance
Log Table

Perl Scripts

Ingest
Log

MySQL

Ingest Perform-
ance database

PERFORMANCE DATA GENERATION

IngestPerformance

Queries

Query
results

Performance
results

MS-Excel

Performance
charts

 Figure 3 – Generation of performance charts from Ingest log

4. Finally, the IngestPerformance module accesses the Ingest
Performance database, and gathers necessary performance-
related data as a function of the archive size (represented as
the number of items already ingested to the archive), through
SQL queries. This data is then output to formatted text files,
which are input to an Excel plotting package.

Operations
To assure meaningful test results, especially under varying

operational conditions of the host system, ingest of a million data
items was conducted twice, in two different cycles, using the same
input data. In the first iteration (Test 1), the one million items were
ingested to the archive in several batches, by repeatedly invoking
the SIPIngestManager from Unix Shell procedures. In each
session, several SIPs amounting to roughly 100,000 to 200,000
items were ingested, with each SIP containing a maximum of
36,000 items. The gap between two successive batches spanned a
few hours to several days. In the second iteration (Test 2), all the
SIPs were ingested in a contiguous manner in two batches (with a
gap of a few hours), containing around 100,000 and 900,000 items
respectively. This procedure was conducted as a stress test for the
system

Results
In running the tests, we limited the size of each SIP to 36,000

items, as it was discovered that the total number of items that may
be ingested in a single invocation of the SIPIngestManager with a
3 GB pre-allocated memory is approximately 40,000 (due to the
heap space requirements of in-memory caches, XML trees, etc.).
Several SIPs may be ingested serially, with no adverse effect, by
repeatedly executing the SIPIngestManager from a Java command
within a UNIX batch file.

The scalability of the system was measured and plotted as the
time taken to ingest an item as a function of the size of the archive,
represented by the number of items already ingested to the archive.
The data points along the X axis (or the abscissa, in the related
graphs) were established at increments of ten thousand � yielding
more that 100 measurement points.
The factors that were measured are the following:
• Average time required to ingest an item, computed over every

set of ten thousand items. This helped to smooth out the time
variations of individual items due to differences in bitstream
numbers and data sizes.

• Minimum time taken to ingest an item within each group of
10,000 items.

• Total number of items that were ingested within +/- 25 percent
of the average ingest time within any 10,000 item group. This
gives a measure of the spread in the ingest time of items (due
to variation in bitstreams, etc.) as the archive size increases.

• Average time taken to ingest items with 4, 6, 8 and more
bitstreams as a function of archive size.

Test 2 was conducted under a more stable system

environment, and the results of this test are presented in Figure 4
through 6. Overall results from Test 1, which were performed over
a longer time span with less uniform system conditions, are shown
in Figure 7 for comparison purpose. It should be noted that the
ingest times presented here include the data upload time to the
DSpace temporary storage area, which was observed to be less
than 10 percent of the ingest time in the worst case scenario, and
therefore, not discussed further.

Average and Minimum Ingest Times
Figure 4 shows these times as a function of increasing archive

size. The dotted curves show the average and minimum ingest
times while the two straight lines represent their trends. It may be
noted that the ingest times closely follow these linear trends, with
the exception of items in the range 430,000 through 680,000. The
ingest times are higher in this range, indicating lower performance
of ≥ 20 percent for the average and ≥ 10 percent for the
minimum.

The anomaly shown occurred during a 30 hour period over a
week-end, as seen from the actual times (indicated through the
dotted arrows) associated with these events. Other systems in our
facility reported performance degradations during this time period
as well, with the cause unknown at this time.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Archive Size (x 10,000 items)

In
g

es
t

Ti
m

e
p

er
 it

em
 (

in
 s

ec
on

d
s)

Average Time
Minimum Time
Linear (Average Time)
Linear (Minimum Time)

10/23/07 16:50Time:

10/26/07 11:00

10/29/07 09:02

11/02/07 23:35

10/28/07 04:14

Figure 4 - Average and minimum ingest times as a function of archive
size in Test 2

Number of Items vs. Ingest Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

Archive Size (x 10,000 items)

N
o

. o
f

In
ge

st
ed

 It
em

s
(i

n
a

10
,0

00
 it

em
 g

ro
u

p)

Within Average Ingest Time

Within 125% of Average Ingest Time

Within 75% of Average Ingest Time

Figure 5 -Number of items ingested within different time ranges as a
function of archive size

Spread in Ingest Time
Figure 5 provides a synopsis of the variation in the ingest

times of items from the average ingest time of that group. The
three curves from top to bottom indicate the number of items that
were ingested within 125%, 100% and 75% of the average ingest
time of each group of 10,000 items respectively.

Variation in Ingest Time due to Number of
Associated Bitstreams

The time to ingest an item depends upon the number and size
of its associated bitstreams, as large amounts of data require more
time to upload and store them, and number of bitstreams influence
the time needed to create/store the files and corresponding
database records.

Table 1: Ingest time vs. number of bitstreams

No. of

bitstreams

No.

of

TIFF

files

Avg.

ingest

time at

start (in

sec)

Avg. ingest

time at

one

million

items (in

sec)

Factor

w.r.t. one

TIFF file

at one

million

items

Percent

Increase

per TIFF

file

4 1 0.106 1.390 1.0 -

5 2 0.125 1.435 1.032 3.2

6 3 0.144 1.500 1.079 3.95

10 7 0.205 1.698 1.221 3.66

13 10 0.389 1.874 1.348 3.88

50 47 0.845 3.475 2.500 3.26

60 57 1.929 3.723 2.680 3.00

103 100 2.281 5.651 4.065 3.10

Table 1 shows the change in ingest time of items due to

increasing number of bitstreams, in the initial stage of the archive
as well as at one million items. The number of TIFF files of an
item is lower by three from its number of bitstreams, due to the
exclusion of the two metadata files and the OCR text file.

Ingest Time as a function of Number of TIFF Files

0

1

2

3

4

5

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of TIFF files

A
ve

ra
ge

 In
g

es
t t

im
e

p
er

 it
em

(i

n
se

co
n

ds
) In archive with

one million items

In initial archive

Figure 6 – Change in ingest time with increasing number of TIFF files

Figure 6 graphically represents the ingest time as a function
of the number of TIFF files of the archived items from Table 1.

Results from the First Test
For the sake of comparison, we present in Figure 7 the

average ingest time of items in the first test (Test 1), which was
performed in a more realistic scenario involving smaller SIP
batches, and periodic ingesting. During the interim period between
two ingest sessions, the system was occasionally rebooted and the
MySQL server was restarted.

The two dotted curves in Figure 7, representing the average
and minimum ingest times, show recurring periodic peaks and
troughs in ingest times, which are similar in nature to the
deviations found in Figure 4 for Test 2. The sudden change in
slopes in this test are found to occur mostly around new ingest
sessions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

ArchiveSize (x 10,000 items)

In
ge

st
 T

im
e

p
er

 it
em

 (i
n

 s
ec

on
ds

)

Average Time
Minimum Time
Linear (Minimum Time)

Linear (Average Time)

Figure 7 - Average and minimum ingest times in Test 1

Analysis
The steep rises and falls in the average ingest times occur in

both Figure 4 and 7, although it occurs only once during Test 2
and recurs in an almost cyclic fashion in Test 1. The reason for the
sudden change in slope in either of these charts is not immediately
clear, but may be attributed to some other activities, external to
ingest, affecting the system performance. These may include
network activities occurring in the system, which might have
affected the MySQL transaction times as well as available CPU
time for the SIPIngestManager, in addition to the overheads
caused by the initialization of various system components and
caches after a system reboot or MySQL server restart.

From results in Figure 4, the minimum time taken to ingest an
item shows a linear trend, varying from ~ 0.075 sec initially to ~
1.3 sec at one million items. The average ingest time, on the other
hand, varies from ~ 0.11 sec to 1.4 sec over the same period. The
divergence between the minimum and average trends remains
almost steady (changing from 0.05 sec to 0.15 sec over the entire
interval). Even with the increase in the archive size, most of the
items are ingested within a comfortable range around the average
time, as seen in Figure 5. In spite of the differences in the actual
ingest curves in Figure 4 and Figure 7, it may be noted that their
trend lines are very similar in nature and match in value, yielding
the average ingest time of 0.10 to 0.15 sec initially and 1.4 sec at
the target size of the archive. This affirms the reliability of the
overall performance test results.

From Figure 5, we see that 60% to 70% of items in any group
were ingested at or below the average ingest time and more than
90% items were ingested within an additional 25% time. Also,
with increasing archive size, the number of items requiring ingest
time less than 75% of the average time, is minimal.

From Table 1 we see that the average ingest time of an item
with 100 compressed monochrome images (total of 103
bitstreams) increases from 2.281 seconds to 5.651 seconds (a
factor of approximately 2.5), in going from an empty archive to
the target archive with one million items. On the other hand, the
performance cost of ingesting an item with one image vs. an item
with 100 images in the final archive changes by a factor of four:
from approximately 1.4 sec to 5.6 sec. The last column of Table 1
shows that the time increase in adding a bitstream to an item is
around three to four percent as one goes up to 100 additional
bitstreams.

Conclusion
We conclude that the version of DSpace used in SPER (with

MySQL database) shows acceptable ingest performance for a
million-item archive. For larger archives, further benchmarks
should be conducted, possibly using higher performing hardware
platforms, distributed systems and data grids, as well as more
diverse item types.

The experimental results shown here pertain to items with
mostly one or two monochrome TIFF images, though a few items
have up to 100 images. However, a number of inferences may be
derived from these results.

• No real problems were found in ingesting a million items to the
archive, using a Sun X4500 server machine, in terms of either
performance or reliability of the SPER/DSpace software
architecture and implementation.

• The test results are reliable because of the overall matching
trends of the two sets (Test 1 and Test 2).

• With the increase in archive size, the average ingest time of an
item increases in a smooth and predictable way.

• With increasing number of TIFF images, the ingest time (per
item) increases by three to four percent for each additional
image.

• If color TIFF images were used, the ingest times would
increase slightly due to the overhead of copying additional
data to the upload area, and to the archive�s asset storage.
However, other archival overheads should not change.

Acknowledgment
This research was supported by the Intramural Research

Program of the National Institutes of Health (NIH), National
Library of Medicine (NLM), and Lister Hill National Center for
Biomedical Communications (LHNCBC).

References
[1] Mao S, Misra D, Seamans J, Thoma, G. R.: Design Strategies for a

Prototype Electronic Preservation System for Biomedical Documents,
Proc. IS&T Archiving Conference, Washington DC, pg 48-53. (2005).

[2] DSpace at MIT, http://www.dspace.org.
[3] http://wiki.dspace.org/index.php/DspaceInstances
[4] Misra D, Mao S, Rees J, Thoma, G.R.: Archiving a Historic Medico-

legal Collection: Automation and Workflow Customization, Proc.
IS&T Archiving Conference, Washington DC, pg 157-161. (2007).

[5] Public Law 59-384, repealed in 1938 by 21 U.S.C. Sec 329 (a). And
U.S Food and Drug Administration, �Federal Food and Drugs Act of
1906 (The "Wiley Act"),�
http://www.fda.gov/opacom/laws/wileyact.htm (3 Feb. 2006).

Author Biography
Dharitri Misra is a Lead Consultant at Aquilent, Inc., and is a

researcher at the U.S. National Library of Medicine working on digital
preservation topics. Her work involves developing experiments and tools to
help in the long term preservation of digital resources and in automated
extraction of metadata from text documents. She earned her M.S. and Ph.D.
degrees in Physics from the University of Maryland.

James Seamans is a Senior System Scientist with Lockheed Martin,
Inc. Mr. Seamans has worked on many medical research and development
computer imaging projects. He received his B.S. degree in mathematics
from Ricker College and A.S. degree in Electronics and Computer
Technology from DeVry University.

George R. Thoma is a Branch Chief at an R&D division of the U.S.
National Library of Medicine. He directs R&D programs in document
image analysis, biomedical image processing, animated virtual books, and
related areas. He earned a B.S. from Swarthmore College, and the M.S. and
Ph.D. from the University of Pennsylvania, all in Electrical Engineering.
Dr. Thoma is a Fellow of the SPIE, the International Society for Optical
Engineering.

