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Abstract 
The implementation of production-level large scale archives 

is often based on research prototypes that possess essential 
functions and characteristics, e.g., storage capacity, ingest, 
metadata recording, ability to migrate to newer formats, etc. 
However, a key characteristic that is often overlooked is 
scalability, i.e., the ability of the system to accommodate large 
numbers of items without compromising performance - while 
ingesting, indexing or access.  

Here we describe an investigation of archive scalability in a 
Java-based system (System for the Preservation of Electronic 
Resources or SPER) which was built by an R&D team at the U.S. 
National Library of Medicine to investigate various aspects of 
digital preservation. SPER uses DSpace as the underlying 
infrastructure for building and managing the digital archive. To 
confirm the capability of SPER/DSpace to serve as a large 
archive, we conducted scalability tests by generating and ingesting 
data for more than a million items, and studied ingest behavior as 
a function of the archive size.  

This paper describes the test procedure and environment, the 
software developed to measure performance during ingest, and the 
characteristics of the ingested data. We present the ensuing 
results, which confirm the scalability of SPER/DSpace with 
acceptable ingest performance as the archive is expanded to a 
million items. 

 

Introduction 
SPER is an evolving Java-based system to research digital 

preservation functions and capabilities, including automated 
metadata extraction (AME) for documents, retrieval of available 
metadata from external databases, document archiving, and 
ensuring long term use through bulk file format migration [1]. 
SPER is built upon MIT�s DSpace software (Version 1.4) [2], with 
some modifications and enhancements to better facilitate batch-
based processing. It uses a Java RMI-based Client-Server model 
and runs on Windows platforms, using MySQL (Version 5.02 or 
higher) database, but may also be run on Solaris systems. The 
architecture of SPER is shown in Figure 1. 

As SPER relies upon the DSpace infrastructure to build and 
manage its archive, to determine the scalability of SPER, it was 
imperative to examine the scalability of DSpace itself. DSpace is 
an open-source, OAIS-compliant digital repository system used by 
about than 300 universities and other organizations worldwide [3]. 
However, no actual data has been found on the archive size of 
these installations, neither is any benchmark available on DSpace 
performance. (One installation at Cambridge University had 
reported that ingesting new items to DSpace was too slow beyond 
one hundred thousand, but no details were given on the operational 
environment or other conditions.) 
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Figure 1 - SPER Architecture with DSpace Archiving Layer  

So for our test, we built a DSpace archive with more than one 
million items (individual retrievable objects) and measured the 
scalability of the system in terms of the ingest rate and other 
parameters as the archive grew in size. The details of the 
experiment and ensuing results are presented in the following 
sections. (Note that MySQL database system used in our DSpace 
installation does not inherently limit scalability, as MySQL table 
size is limited only by the host platform/operating system.) 

Test Components 
The components relevant to our scalability test include the 

ingest data, archival storage, databases, special test software, as 
well as the test platform where the tests were performed. These 
components are described below: 

Ingest Data 
For practicality, the ingest data, comprising more than a 

million individual documents and descriptive metadata, was 
simulated by replicating the data we had previously archived using 
SPER [4] , as follows:  
• The input data for simulation were from two FDA Notice of 

Judgment collections [5], named FDNJ (Food and Drug-
related Notice of Judgment) and DDNJ (Drug-related Notice 
of Judgment) which were already stored in an operational 
SPER system. The number of items (called NJs) in these two 
collections was approximately 17,700 and 220 respectively. 

• New collections were created by copying all source data (TIFF 
images and OCR text) and metadata associated with each NJ 
of an input collection. 

• Unique identifiers (UI) and titles were created for the 
replicated items by prefixing the original item�s UI and title 
(stored in its metadata file) with the new collection name, and 
updating the metadata file. This helped later in the visual 
verification of ingest during item retrieval. 



 

 

Data Characteristics 
Each ingested item represents one NJ record, which consists of 
three or more associated bitstreams, as follows: 
- Monochrome TIFF image(s) of the original published page(s) 

containing the NJ description text 
- Dublin Core metadata file  
- SPER-generated preservation metadata file 
- OCR textline file of the NJ 

Each TIFF is a CCITT Group 4 Fax compressed image, and 
averages 100 KB in size. Approximately 50% of items have only 
one associated TIFF image, 25% have two images, and 2% have 
10 images. In the DDNJ collection three items also have 47, 57 
and 100 associated images.  Each OCR textline file contains text 
for the entire NJ as converted by the OCR engine in SPER. About 
80% of items have this associated text file.  

The combined size of the last three text files, on the average, 
is 10 KB, and they are stored as three separate bitstreams for each 
item in the archive. 

Archive Contents  
The two FDA collections were replicated to create and populate the 
DSpace archive as follows: 
- Number of DSpace Communities:  32 
- Number of Collections: 109 
- Number of Collections per Community: varied between 1 to 5 
- Number of Ingested Items:  1,041,790 
- Number of Items with 4, 5 and 10 associated bitstreams:  

541442, 267104 and 1166 respectively 
- Number of Items with 50, 60 and 103 bitstreams:  58 each 
- Number of searchable fields in Dublin Core file of an item: 12  
 
The contents of the searchable metadata fields are indexed using the 
Apache Lucene software during ingest.  

Databases 
The two databases, used in the test, are: 
- Ingest Database: This is the standard DSpace database used 

for recording information related to each item in the archive. 
In SPER, it is implemented as a MySQL database. 

- Ingest Performance Database: This is another MySQL 
database, distinct from the above, which is implemented 
specifically for our scalability test. Detailed information on 
each ingested item is extracted from the DSpace log file and 
loaded into this database as a table.  

Operations Platform and Software 
The Ingest performance measurement task was conducted on 

a dedicated virtual machine on a Sun Microsystems X4500 server. 
The X4500 features dual core 2.8GHz AMD Opteron processors, 
with 16GB of memory, 24 TB of disk space and four 1 Gb/s 
network interfaces. The virtual partition was allocated 4.5TB of 
dedicated disk space. The Java application performing ingest used 
3 GB of pre-allocated memory. The other main tasks running on 
this virtual machine are the MySQL database server, and Apache 
Tomcat Web services needed for accessing the ingested items 
through a Web browser. Note that the directory with ingest input, 
and the archive upload area reside on the same disk as the archive, 
making faster data transfer during ingest. 

The test was conducted using the following versions of the 
underlying operating system/software: 
- Sun Solaris 10 
- DSpace: V1.4.1  
- MySQL: V5.01 with Connector-j 5.0.7 
- Java: V1.4.2 

Test Procedure and Software 
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Figure 2 – SIP generation and Ingest of simulated FDA-NJ collections 

The steps used to generate and ingest the data, and the 
software modules to perform them are shown in Figure 2. 
Retrieval of performance information and generation of 
corresponding charts are shown in Figure 3. These steps are 
explained below: 

 
1. In �Ingest Data Generation� shown in Figure 2, the module 

IngestDataFactory uses the FDNJ and DDNJ collection items 
(images, metadata, and OCR text) stored in specified input 
directories, and generates replicated data with unique 
identifiers into output directories, corresponding to new 
DSpace Communities and Collections. The module 
SIPFactory then creates OAIS-type Submission Information 
Packages (SIPs) with these items, in the form of several XML 
files, each SIP specifying all items to be ingested in one 
batch.  

2. During �Ingest Processing�, The SIPIngestManager ingests a 
batch of items specified in a SIP to the DSpace archive, using 
the DSpace library modules, and automatically creating new 
communities and collections in the database, as required. It 
accesses the resource files indicated for each item in the SIP, 
and ingests the items individually to the DSpace archive. 
(Note that this is somewhat different from the DSpace 
command-line batch ingest operation, where all the items to 
be ingested are assumed to be in a single top level directory, 
and all resources for an item must be in a single directory. 

The SIPIngestManager records necessary information 
such as the data upload time, ingest time, number of ingested 
files, size of ingested data etc. for each archived item into a 
log file (the DSpace log file) for later analysis. 

3. This performance-related data in the log file is then analyzed, 
parsed and formatted by a set of Perl scripts, and loaded to 
tables in the Ingest Performance database, as shown in    
Figure 3. 
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 Figure 3 – Generation of performance charts from Ingest log 

4. Finally, the IngestPerformance module accesses the  Ingest 
Performance database, and gathers necessary performance-
related data as a function of the archive size (represented as 
the number of items already ingested to the archive), through 
SQL queries. This data is then output to formatted text files, 
which are input to an Excel plotting package. 

Operations 
To assure meaningful test results, especially under varying 

operational conditions of the host system, ingest of a million data 
items was conducted twice, in two different cycles, using the same 
input data. In the first iteration (Test 1), the one million items were 
ingested to the archive in several batches, by repeatedly invoking 
the SIPIngestManager from Unix Shell procedures. In each 
session, several SIPs amounting to roughly 100,000 to 200,000 
items were ingested, with each SIP containing a maximum of 
36,000 items. The gap between two successive batches spanned a 
few hours to several days. In the second iteration (Test 2), all the 
SIPs were ingested in a contiguous manner in two batches (with a 
gap of a few hours), containing around 100,000 and 900,000 items 
respectively. This procedure was conducted as a stress test for the 
system 

Results 
In running the tests, we limited the size of each SIP to 36,000 

items, as it was discovered that the total number of items that may 
be ingested in a single invocation of the SIPIngestManager with a 
3 GB pre-allocated memory is approximately 40,000 (due to the 
heap space requirements of in-memory caches, XML trees, etc.). 
Several SIPs may be ingested serially, with no adverse effect, by 
repeatedly executing the SIPIngestManager from a Java command 
within a UNIX batch file.  

The scalability of the system was measured and plotted as the 
time taken to ingest an item as a function of the size of the archive, 
represented by the number of items already ingested to the archive. 
The data points along the X axis (or the abscissa, in the related 
graphs) were established at increments of ten thousand � yielding 
more that 100 measurement points.   
The factors that were measured are the following: 
• Average time required to ingest an item, computed over every 

set of ten thousand items. This helped to smooth out the time 
variations of individual items due to differences in bitstream 
numbers and data sizes.  

• Minimum time taken to ingest an item within each group of 
10,000 items. 

• Total number of items that were ingested within +/- 25 percent 
of the average ingest time within any 10,000 item group. This 
gives a measure of the spread in the ingest time of items (due 
to variation in bitstreams, etc.) as the archive size increases. 

• Average time taken to ingest items with 4, 6, 8 and more 
bitstreams as a function of archive size. 
 
Test 2 was conducted under a more stable system 

environment, and the results of this test are presented in Figure 4 
through 6. Overall results from Test 1, which were performed over 
a longer time span with less uniform system conditions, are shown 
in Figure 7 for comparison purpose. It should be noted that the 
ingest times presented here include the data upload time to the 
DSpace temporary storage area, which was observed to be less 
than 10 percent of the ingest time in the worst case scenario, and 
therefore, not discussed further. 

Average and Minimum Ingest Times 
Figure 4 shows these times as a function of increasing archive 

size. The dotted curves show the average and minimum ingest 
times while the two straight lines represent their trends. It may be 
noted that the ingest times closely follow these linear trends, with 
the exception of items in the range 430,000 through 680,000.  The 
ingest times are higher in this range, indicating lower performance 
of ≥ 20 percent for the average and ≥ 10 percent for the 
minimum.   

The anomaly shown occurred during a 30 hour period over a 
week-end, as seen from the actual times (indicated through the 
dotted arrows) associated with these events. Other systems in our 
facility reported performance degradations during this time period 
as well, with the cause unknown at this time. 
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Figure 4 - Average and minimum ingest times as a function of archive 
size in Test 2 
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Figure 5 -Number of items ingested within different time ranges as a 
function of archive size 

Spread in Ingest Time 
Figure 5 provides a synopsis of the variation in the ingest 

times of items from the average ingest time of that group. The 
three curves from top to bottom indicate the number of items that 
were ingested within 125%, 100% and 75% of the average ingest 
time of each group of 10,000 items respectively. 

Variation in Ingest Time due to Number of 
Associated Bitstreams 

The time to ingest an item depends upon the number and size 
of its associated bitstreams, as large amounts of data require more 
time to upload and store them, and number of bitstreams influence 
the time needed to create/store the files and corresponding 
database records. 

 
Table 1: Ingest time vs. number of bitstreams 

No. of 

bitstreams 

No. 

of 

TIFF 

files 

Avg. 

ingest 

time at 

start (in 

sec) 

Avg. ingest 

time at 

one  

million 

items (in 

sec) 

Factor 

w.r.t. one 

TIFF file 

at one 

million 

items 

Percent 

Increase 

per TIFF 

file 

4 1 0.106 1.390 1.0 - 

5 2 0.125 1.435 1.032 3.2 

6 3 0.144 1.500 1.079 3.95 

10 7 0.205 1.698 1.221 3.66 

13 10 0.389 1.874 1.348 3.88 

50 47 0.845 3.475  2.500 3.26 

60 57 1.929 3.723 2.680 3.00 

103 100 2.281 5.651 4.065 3.10 

 
Table 1 shows the change in ingest time of items due to 

increasing number of bitstreams, in the initial stage of the archive 
as well as at one million items. The number of TIFF files of an 
item is lower by three from its number of bitstreams, due to the 
exclusion of the two metadata files and the OCR text file. 

Ingest Time as a function of Number of TIFF Files
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Figure 6 – Change in ingest time with increasing number of TIFF files 

Figure 6 graphically represents the ingest time as a function 
of the number of TIFF files of the archived items from Table 1. 

Results from the First Test 
For the sake of comparison, we present in Figure 7 the 

average ingest time of items in the first test (Test 1), which was 
performed in a more realistic scenario involving smaller SIP 
batches, and periodic ingesting. During the interim period between 
two ingest sessions, the system was occasionally rebooted and the 
MySQL server was restarted.  

The two dotted curves in Figure 7, representing the average 
and minimum ingest times, show recurring periodic peaks and 
troughs in ingest times, which are similar in nature to the 
deviations found in Figure 4 for Test 2. The sudden change in 
slopes in this test are found to occur mostly around new ingest 
sessions.  
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Figure 7 - Average and minimum ingest times in Test 1 



 

 

Analysis 
The steep rises and falls in the average ingest times occur in 

both Figure 4 and 7, although it occurs only once during Test 2 
and recurs in an almost cyclic fashion in Test 1. The reason for the 
sudden change in slope in either of these charts is not immediately 
clear, but may be attributed to some other activities, external to 
ingest, affecting the system performance. These may include 
network activities occurring in the system, which might have 
affected the MySQL transaction times as well as available CPU 
time for the SIPIngestManager, in addition to the overheads 
caused by the initialization of various system components and 
caches after a system reboot or MySQL server restart. 

From results in Figure 4, the minimum time taken to ingest an 
item shows a linear trend, varying from ~ 0.075 sec initially to ~ 
1.3 sec at one million items. The average ingest time, on the other 
hand, varies from ~ 0.11 sec to 1.4 sec over the same period. The 
divergence between the minimum and average trends remains 
almost steady (changing from 0.05 sec to 0.15 sec over the entire 
interval). Even with the increase in the archive size, most of the 
items are ingested within a comfortable range around the average 
time, as seen in Figure 5. In spite of the differences in the actual 
ingest curves in Figure 4 and Figure 7, it may be noted that their 
trend lines are very similar in nature and match in value, yielding 
the average ingest time of 0.10 to 0.15 sec initially and 1.4 sec at 
the target size of the archive. This affirms the reliability of the 
overall performance test results. 

From Figure 5, we see that 60% to 70% of items in any group 
were ingested at or below the average ingest time and more than 
90% items were ingested within an additional 25% time. Also, 
with increasing archive size, the number of items requiring ingest 
time less than 75% of the average time, is minimal.  

From Table 1 we see that the average ingest time of an item 
with 100 compressed monochrome images (total of 103 
bitstreams) increases from 2.281 seconds to 5.651 seconds (a 
factor of approximately 2.5), in going from an empty archive to 
the target archive with one million items. On the other hand, the 
performance cost of ingesting an item with one image vs. an item 
with 100 images in the final archive changes by a factor of four:  
from approximately 1.4 sec to 5.6 sec. The last column of Table 1 
shows that the time increase in adding a bitstream to an item is 
around three to four percent as one goes up to 100 additional 
bitstreams.  

Conclusion 
We conclude that the version of DSpace used in SPER (with 

MySQL database) shows acceptable ingest performance for a 
million-item archive. For larger archives, further benchmarks 
should be conducted, possibly using higher performing hardware 
platforms, distributed systems and data grids, as well as more 
diverse item types. 

The experimental results shown here pertain to items with 
mostly one or two monochrome TIFF images, though a few items 
have up to 100 images. However, a number of inferences may be 
derived from these results.  

• No real problems were found in ingesting a million items to the 
archive, using a Sun X4500 server machine, in terms of either 
performance or reliability of the SPER/DSpace software 
architecture and implementation.  

• The test results are reliable because of the overall matching 
trends of the two sets (Test 1 and Test 2). 

• With the increase in archive size, the average ingest time of an 
item increases in a smooth and predictable way.  

• With increasing number of TIFF images, the ingest time (per 
item) increases by three to four percent for each additional 
image. 

• If color TIFF images were used, the ingest times would 
increase slightly due to the overhead of copying additional 
data to the upload area, and to the archive�s asset storage. 
However, other archival overheads should not change.  
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