Los Alamos National Laboratory

About LANL

About Our Capabilities, Facilities, and Staff

"Los Alamos National Laboratory plays an indispensable role in building America as a science and technology powerhouse, and our staff are an incredible resource to the nation and the world." Michael Anastasio, Dir.


Solving Complex R&D Problems with Special Blend of Staff, Capabilities and Facilities

Now in its seventh decade, LANL is one of the few laboratories that can bring great breadth of fundamental and discovery science, technology, and engineering rapidly together to create tangible solutions for national security needs.

Our staff, working with partners throughout science and industry, must be able to deliver today's solutions while maintaining the depth of capabilities to deliver the next generation of discoveries.

Los Alamos has demonstrated a cycle of innovation where we have developed world-leading capabilities and facilities in response to urgent, unique missions. Our new discoveries continue to responde to emerging missions.

Being able to integrate and apply our capabilities rapidly to new challenges will be a key advantage in an increasingly competitive landscape.


Our Science, Technology and Engineering Priorities

Science that Matters

  • Information science and technology enabling integrative and predictive science
  • Experimental science focused on materials for the future
  • Fundamental forensic science for nuclear, biological, and chemical threats

How We Work

  • Collaborate, partner and team to make decisive contributions to our sponsors
  • Outstanding operational excellence for safety, security, and efficient pursuit of ST&E for our missions

Transform Our Scientific Campus

  • Campus for 2020 (consistent with complex transformation)
  • Modern science facilities: LANSCE refurbishment, CMR replacement, Science Complex
  • Signature facilities

More About This Science

Pushing Frontiers

In the second half of 2008, Los Alamos National Laboratory made significant advances in its primary mission: safeguarding the U.S. nuclear deterrent and pushing the frontiers of science on multiple fronts.

The national stockpile stewardship program achieved a major milestone in September with the production of the first life-extended W76-1 ballistic missile warhead for Trident submarines. The achievement culminated more than a decade of work by scientists and engineers at Los Alamos and across the nuclear weapons complex-including two crucial experiments conducted by the Laboratory's Hydrodynamic Experiments Division.

Another highlight: Roadrunner reached a new performance record of 1.105 petaflops, keeping it atop the list of the world's fastest supercomputers. Built by IBM for the Lab, Roadrunner was the first computer the crack the petaflop barrier: one thousand TRILLION operations per second. Initial applications will range widely: studying in great detail the evolution of HIV... exploring deeply the formation—as well as deformation—of metallic nanowires...and-toward producing biofuels more efficiently-unraveling the processes by which bacteria break down cellulose.

Safety and environmental stewardship were again a major theme for our work in the latter half of 2008. In November, the last group of unvented high-activity drums left Los Alamos for the Waste Isolation Pilot Plant near Carlsbad. That shipment fulfilled a commitment to the Defense Nuclear Facilities Safety Board to prioritize disposal of the highest-activity transuranic wastes stored at the Lab.

Los Alamos also strengthened security, ensuring that nearly six dozen classified and unclassified computing systems are managed and operated securely. The Lab has now complied with all 14 security actions mandated two years ago by the Department of Energy. And, through our program to recruit cognizant systems engineers, we met the crucial need for sufficient numbers of engineers to keep vital mechanical and electrical safety systems functioning properly in our nuclear facilities.

The latter half of 2008 proved once again why Los Alamos is the nation's premier institution for scientific research. Capping the list of accomplishments was a new technology called MagViz that could eventually provide increased security at major airports. Based on medical MRI technology, MagViz can identify contents of bottles and other containers, distinguishing potentially hazardous liquids from the harmless shampoos and perfumes a traveler might carry onboard a jet. MagViz was demonstrated successfully in December at Albuquerque's airport.

We continued a long tradition of supporting U.S. space exploration. A NASA mission, launched in October to probe the far edge of the solar system from a high Earth orbit, carried a Los Alamos device called the High Energy Neutral Atom Imager. Its goal: to detect atoms emitted from a region where the outermost reaches of our solar system meet the vast interstellar space-giving us a panoramic view of this gateway to the galaxy.

Closer to home, Los Alamos continues to explore solutions to the energy needs of tomorrow. For example, scientists at the Lab hope to use tiny semiconductors called quantum dots to convert sunlight to electricity more efficiently than is possible with current solar panels-and to create new, efficient solid-state lighting.

Equally electrifying, Los Alamos materials scientists are helping unravel the mysteries of superconductivity. During the latter half of the year, LANL researchers identified entirely new mechanisms for superconductivity that could form the basis for new superconducting materials.

Underscoring the wealth of scientific talent at the Lab, Bob Albers, Paul Johnson, and Kurt Sickafus were named Laboratory Fellows in December. These three Fellows represent diverse disciplines, including theoretical physics, energy science, and geophysics.

Los Alamos may be one of the world's great technology incubators, yet we also strive to help others develop new ideas and products. In January, the Lab selected four young local companies as the newest recipients of awards from the LANS Venture Acceleration Fund. LANS, which manages and operates the Lab, supports the fund through donations from its earnings.

The Lab and LANS also teamed last September with a venture capital firm and a local venture capital fund to spin off technology developed by Lab scientists, with an emphasis on creating companies in Northern New Mexico. The Lab could contribute up to one million dollars to the initiative over the first three years.

We also are pushing to build top-flight research facilities for the future. In July 2008, workers hoisted the final steel beam atop the skeleton of what will be the Radiological Laboratory Utility Office Building, part of the Lab's Chemistry and Metallurgy Research Replacement Project. Once completed, the CMRR nuclear facility will house several of the Lab's mission-critical projects, including analytical chemistry, materials characterization, and actinide research and development capabilities. They'll be relocated from their current location in the historic—yet antiquated—Chemical and Metallurgy Research building at Technical Area 3.

In December, Los Alamos welcomed hundreds of employees who transferred from KSL, the subcontractor whose work the Lab brought in-house. The move was geared to improve efficiency and reduce costs associated with site-support services, including maintenance, waste removal, and custodial work.

Throughout the Lab's history, Los Alamos has helped play a vital role in the surrounding communities, and in 2008, that tradition continued. Lab employees pledged a million dollars, and LANS matched one hundred percent: a record Los Alamos contribution to United Way of TWO MILLION dollars. Contributions from the Lab and LANS also helped fund dozens of nonprofit organizations and scholarship programs, including a LANS donation of $500,000 to a LANL Foundation scholarship named for former long-time New Mexico Senator Pete Domenici.

These accomplishments and many more added up to a strong year. Our customer, the National Nuclear Security Administration, reached the same conclusion in its very favorable assessment of the Lab's performance for fiscal year 2008. It's unmistakable: the extraordinary talent, commitment, and creativity that Los Alamos employees dedicate every day to national security science and the betterment of their communities.

Better Breast Cancer Detection

Safer, more comfortable and accurate tests find undetectable, highly fatal cancers

 
 

Quick read

We have developed a safer, more comfortable, inexpensive, and accurate way to detect early-stage cancer by using sound waves that replace dangerous x-ray technology used for mammograms.

 
 

Women may soon have access to safer, more comfortable, inexpensive, and accurate breast scans that find early-stage cancers. Breast cancer affects one in eight women in the U.S., and it is the second most common and fatal cancer.

Currently, the only routine breast-screening technology is mammography, an awkward and unpleasant procedure that uses x-rays to scan through tissue and capture on film a two-dimensional (2D) image of the breast.

Los Alamos scientists Lianjie Huang and Kenneth M. Hanson and collaborators have developed a better way, producing a three-dimensional (3D) image, using sound waves instead of dangerous x-rays.

Utrasonic tests can detect early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality and remission percentages.

X-ray mammography cannot accurately detect small tumors. Additionally, mammography subjects the patient to ionizing radiation, which carries inherent risks.

This view of a 3D ultrasound CT image was obtained, from a patient, using KCI's prototype device.
This view of a 3D ultrasound CT image was obtained, from a patient, using KCI’s prototype device. It shows a cross section of the breast near the chest wall (top of image) and a vertical cross section through the remainder of the breast. A tumor (red) is visible near the chest wall.

How it Works

The technique, called ultrasound-computed tomography (ultrasound CT), uses a prototype scanning device built at Karmanos Cancer Institute (KCI). A woman's breast is immersed in water and surrounded by a ring-shaped array of hundreds of ultrasound elements. Each element emits ultrasound waves and then receives waves that are scattered from the soft tissue. The array is moved incrementally down the entire breast, gathering data at each step.

A suite of newly developed computer algorithms converts the stepwise ultrasound data into a series of high-resolution, 2D images and then turns the series into a single 3D image. The technology actually obtains three kinds of images, corresponding to the speed, attenuation, and reflectivity of the waves.

Ultrasonic imaging takes advantage of differences in the interactions of acoustic waves with tissues of varying material properties. The interactions of the waves and the tissue cells are governed by wave-propagation physics and involve the following three phenomena: the speed of acoustic waves, scattering, and attenuation.

The Laboratory collaborated on this project with researchers from KCI, London's Imperial College, and Stanford University.

Ultrasound CT has the potential to detect cancer in its earliest stages. And since it is both safer and more comfortable, it should prove an attractive alternative for future breast cancer screening.







This site passed IRM-CAS quality check