

- I. BRIEF BACKGROUND
- II. WHY DOESN'T CREATINE ALWAYS WORK?
- III. WHAT CAN CREATINE DO?
 - Performance
 - Body Composition
 - Metabolic
 - Cardiovascular
 - Hormonal
 - Other

IV. SPECIFIC POPULATIONS

- Adolescents
- Elderly
- Women
- Vegetarians
- Disease States
- V. SAFETY ISSUES
- VI. FUTURE RESEARCH

USE OF CREATINE

- 16% of high school athletes (Ray et al, '01)
- 14% of high school male athletes (Smith and Dahm, '00)
- 41% of Division I athletes (Greenwood et al, '00)
- 48% (M): 4% (F) Division I athletes (LaBotz et al, '99)
- 45% of Norwegian power athletes (Ronsen et al, '99)

WHAT IS CREATINE?

- Cr is NOT a vitamin or mineral
- Cr is NOT a steroid
- Cr is NOT an amino acid, peptide, or protein

Creatine is a non-essential, naturally-occurring, organic, nitrogen-containing compound made in the body from amino acids but also obtained in the diet.

SIMPLE YET COMPLEX!


Creatine is involved in one simple chemical reaction and functions to replenish ATP during periods of RAPID energy turnover (temporal energy buffer):

PCr + ADP + H⁺ <---(CREATINE KINASE)---> Cr + ATP

What can creatine do? PERFORMANCE

- Cycling protocols
- Running protocols
- Swim protocols
- Loaded/unloaded jumping
- Bench press
- Squat
- Knee extension
- Elbow flexion
- Rowing
- Endurance protocols

- ► Tennis: No ∆ stroke performance
- ► Soccer: ↑ sprint performance
- ► Hockey: ↑ spring skating

WHY DOESN'T CREATINE ALWAYS WORK?

RESEARCH VARIABLES IN HUMAN STUDIES

SUBJECTS:

Age

Gender

Number

Body composition

Training status

Motivation

Genetics

Circadian rhythms

Illness

Learning effects

NUTRIENT PARAMETERS:

Dosage

Time of administration

Mode of administration

Bioavailability of nutrient

Single or multiple nutrients

Form of nutrient

DIET:

Caloric intake/Diet composition Hydration status

STUDY DESIGN:

Single-Blind/Double-Blind

Prpoer measurement parameters

Length of study

Time-course measurements

Cross-over/matched

MEASUREMENTS:

Reproducibilty/Precision/Sensitivity

EXERCISE:

Type/Duration/Intensity/Frequency

RESULTS:

Statistical vs. Practical

WHY DOESN'T CREATINE ALWAYS WORK?

- Inadequate statistical power
- Variability in initial muscle creatine stores?
- Performance tests are unreliable?
- Performance tests are the wrong tests?
- Creatine effects are too weak to be detected?
- Failure to increase muscle creatine levels

What can creatine do? BODY COMPOSITION

(not dependent on training)

Acute (<7 days):

Body mass (greater in men)	\uparrow
Fat-free mass (greater in men)	\uparrow
Fat mass	Νο Δ
Total body water	\uparrow
Intracellular/extracellular water	?

Chronic (>7 days):

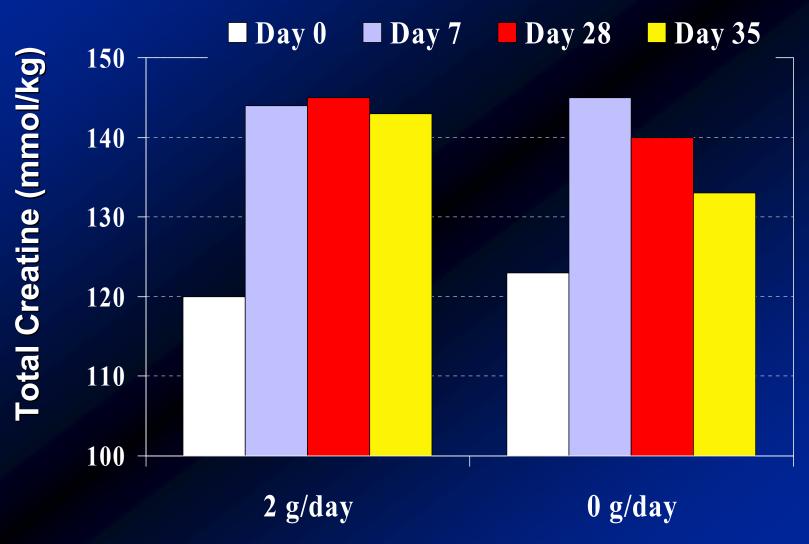
Body mass	\uparrow
Fat-free mass	\uparrow
Muscle fiber cross sectional area	\uparrow
Fat mass	Νο Δ
Total body water	\uparrow
Intracellular/extracellular water	?

LONG-TERM CREATINE AND LBM

REFERENCE	DAYS	METHOD	ΔCR	ΔPL
Becque et al. '00	42	HW	1.6	-0.1
Berman et al. '98	52	SF	0.0	0.4
Earnest et al. '95	28	HW	1.6	-0.5
Kelly et al. 98	25	SF	2.5	?NS
Kirksey et al. '99	42	HW	2.6	1.0
Kreider et al. '98	28	DEXA	2.4	1.3
Noonan et al. '98	56	HW	3.2	1.5
Noonan et al. '98	56	HW	2.2	1.5
Pearson et al. '99	70	SF	0.3	-1.3
Peeters et al. '99	42	SF	2.7	0.2
Peeters et al. '99	42	SF	2.2	0.2
Rawson et al. '99	30	HW	0.6	0.1
Stone et al. '99	35	HW	5.3	1.4
Stone et al. '99	35	HW	2.9	1.4
Vandenberghe et al. '97	74	HW	2.6	1.6
Volek et al. '99	84	HW	4.3	2.1

What can creatine do? METABOLIC

- **► Total muscle creatine** (↑ by exercise and insulin)
- Muscle glycogen


Muscle with 7 creatine levels can store more glycogen during a 3-day glycogen depletion/repletion protocol

- Muscle/blood lactate
- Whole body/mixed muscle PRO synthesis
- Leucine oxidation (men only)
- Phosphocreatine resynthesis rate
- Amonia/hypoxanthine accumulation
- Muscle GLUT 4 (insulin sensitivity?)

Variable

Νο Δ

Muscle creatine after ingesting 20 g/day for 6 days followed by 2 g/day or nothing

What can creatine do? CARDIOVASCULAR

- Blood pressure
- Heart rate
- Oxygen consumption
- Cholesterol
- Triglycerides

Νο Δ

Νο Δ

Νο Δ

 \downarrow or No Δ

 \downarrow or No Δ

What can creatine do? HORMONAL

Growth hormone	↑?
Testosterone	Νο Δ
Cortisol	No Δ
0.41	

Others:

 $\begin{array}{ccc} & & & & & & \uparrow ? \\ \text{Renin} & & & & \text{No} \ \Delta \\ \text{Angiotensin} & & & & \text{No} \ \Delta \\ \text{Atrial peptide} & & & & \text{No} \ \Delta \\ \end{array}$

Insulin No Δ

PROPOSED MECHANISMS

- Energy metabolism
- Protein metabolism
 - **>** ↓ whole body protrein catabolism
 - ↑ actin & myosin synthesis in vitro
- ↑ Cell swelling
- ► ↑ Membrane Integrity (intramuscular or intravenous PCr)

SAFETY ISSUES

- Kidney/Liver
- Blood Lipids
- > GI
- Muscle Cramping
- Cardiovascular

No scientific evidence but anecdotal claims persist

↑ Anterior compartment pressure during/after exercise

SPECIFIC POPULATIONS

- Adolescents (few data)
- Elderly (mixed results)
- **►** Women (↑ performance and LBM)
- Vegetarians (↑ performance and LBM)
- Disease States

THERAPEUTIC USE OF CREATINE IN DISEASE

- Myopathies & neuromuscular disorders associated w/ ↓ muscle creatine (gyrate atrophy, mitochondrial pathologies, muscular dystrophy, etc.)
- Animal models of Parkinson's and Huntington's disease
- Neuroprotective affects from hypoxia and energyrelated brain pathologies in animal models
- Guanidinoacetate methyltransferase deficiency
- Heart disease
- Rehabilitation after disuse atrophy
 - ► ↑ myogenic transcription factor
 - ↑ GLUT 4

FUTURE RESEARCH

- Pharmacokinetic research in order to optimize dosing regimens
- Clinical trials in individuals w/ neuromuscular disorders
- Interaction with other nutrients
- Characteristics of "nonresponders"
- Matrix of delivery, timing of intake, & variability in Cr accumulation
- Long-term safety
- Responses in different populations
- Mechanistic research:
 - Specific myoson & actin-specific fractional synthetic & breakdown rates and isoform-specific mRNA content
 - Cellular hydration

<