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DISTRIBUTION AND PROPERTIES
OF VARIANCE ESTIMATORS

FOR COMPLEX MULTISTAGE PROBABILITY SAMPLES

Judy A. Bean, Ph.D., University of Iowa

INTRODUCTION tion. Because of these features, the assumptions

Background

Since the early 1940’s, there has been a sub-
stantial growth in the use of surveys of human
populations, which has occurred in alI research
areas, including the biological and health sci-
ences, and particularly the social sciences. Along
with the increasing utilization of surveys, the
purposes for which data are collected have ex-
panded. Research workers first employed sur-
veys to obtain specific information about groups
for descriptive purposes only. Increasingly, how-
ever, they have become more interested in mak-
ing comparisons among subgroups of the popula-
tion, in testing hypotheses about the population,
or in disclosing complex relationships. Both the
greater use and the change in objectives have
promoted considerable theoretical and practical
development in sample design which, in turn,
has resulted in decreased use of the traditional
method of random selection from human popu-
lations.

Most scientific sample surveys today are based
on complex multistage probability samples, with
design components often including unequal
probabilities of selection for different elements
in the population, stratification, and two or
more stages of clustering. The estimation proce-
dure may involve adjustment for nonresponse,
use of concomitant variables, and poststratifica-

.
of independence and equal probability of selec-
tion are not valid. Therefore, analytical ques-
tions arise. Theory has not been developed suffi-
ciently to overcome all the difficulties evoked
by the correlation induced by cIusters of sample
units.

One analytical problem not solved in theory
concerns estimation of variances and standard
errors of parameter estimates. Since these are
integral components of the formulas for con-
structing confidence intervals and testing
hypotheses, standard errors are crucial in statisti-
cal inference. When variance estimates are
needed for statistical inference, several choices
are available.

‘There is the option of designing and carrying
out a random sample but, as mentioned pre-
viously, this has become an uncommon design.
The human populations to be studied today are
large and widely dispersed, which makes listing
and travel prohibitively expensive. However, it is
frequently possible to use a reasonable approxi-
mation for estimating variances when the exact
formula is not known. Care must be exercised
when selecting an adequate approximation. For
instance, if the random sample formula PQJn is
substituted for the appropriate vfiance esti-
mator for clustered samples, it can be shown
that the variance is usuaIIy underestimated.

The investigator can perhaps translate the
problem for which no estimates of standard



errors are obtainable into one for which esti-
mates are available. For example, the 2 X 2 chi-
square test can sometimes be translated into the
difference between two proportions. Inferences
can be made on statistics for which the true vari-
ances cannot be calculated, by applying vari-
ances of similar statistics. For clarification, con-
sider the situation in which an analyst is inter-
ested in testing whether or not k (k > 2) means
are from the same population. Since the variance
for the difference of two means is known, the
variance for several pairs or perhaps all pairs can
be computed. Then the ratio of these variances
to variances that would have been obtained if
the design had been a simple random sample can
be calculated. The analyst then infers that the
comparison of the correct variance estimate of
the k means to simple random sample variance
would yield a similar ratio. Thus, he can use this
ratio as an adjustment factor to the usual F ratio
for testing such ahypothesis.l’2

Another approach to the problem of estimat-
ing variances is to interweave within a sample
design a small number of replications. Each of
these replications produces an estimate of the
parameter. Therefore, their comparison provides
an estimate of variance for the sample. An exam-
ple of this is to draw 10 independent sub samples
from the same population using the same proba-
bility design. Let Xi denote the estimated mean
of the ith subsample and

Then from the 10 independent estimates, the
simple variance of the mean 37for the entire sam-
ple can be computed. This estimate is

This method is too expensive to employ for a
complex design.3

A similar procedure to using independent sub-
samples is the random group method. To illus-
trate the technique, suppose one has a simple
random sample of n observations drawn with re-

placement. The observations are randomly dis-
tributed among t groups consisting of n/t
observations each. The variance estimate is

where

~j = the mean for the jth random group, and

j= 1

This method is suitable for multistage survey
samples. If primary sampling units (PSU’S) are
drawn and then second-stage units are sampled
within, all the second-stage units from a primary
unit constitute a single unit when forming the
random groups. If there are few PSU’S, this pro-
cedure is not too useful. Moreover, there is a loss
of information.4

The final choice is to compute the estimates
of standard errors by one of the three general
methods: Taylor series expansion or lineariza-
tion method, pseudoreplication or replication
method (originated from the methods of inde-
pendent replication and random group), or jack-
knife method. Unfortunately, the behavior of’
the variance estimates produced by these meth-
ods is not thoroughly understood.

Three major survey organizations–the ,.U.S.
Bureau of the Census; the National Center for
Health Statistics (NCHS); and the Survey Re-
search Center (SRC), University of Michigan—
commonly use one of the three general methods,
linearization, replication, or jackknifing, to cal-
culate estimates of variances from the sample
data. It is, therefore, important to become
familiar with the properties of these methods.

Strategy of the Study

There are several possible ways to study the
characteristics of variance estimates created by
the general methods. One possibility is the devel-
opment of applicable theory by assuming a cer-
tain distributional form and obtaining exact
analytical solutions. However, the mathematics
involved have so far proven to be intractable.



There is another drawback with this approach
with a stratified multistage design: two sources
of sampling error are between the first-stage
units and within the first-stage units. When only
one unit is chosen from a stratum, there is no
consistent way of estimating the variance be-
tween the first-stage units from the sample itself.
In practice, the designs seldom fulfill this simpIe
assumption of the selection of two units. An-
other avenue of study is Monte Carlo sampling
from synthetic populations. Such population
are difficuIt to construct and are of questionable
representativeness. A third device is an empirical
investigation. By this approach, data that have
bken collected in a survey become the universe,
and repeated samples are drawn from it. For
each sample, the statistics being studied are com-
puted, and sampling distributions of the esti-
mates are generated. Perhaps the most famous
such study is the investigation by “Student” in
1908,s which resulted in his derivation of the t
distribution.

In this report, the view is that by Monte Carlo
sampling of data collected in a nationwide sam-
ple, variance estimators can be studied to gain
insight into their properties and behavior. An
empirical investigation of the behavior of the
replication and linearization variance estimation
methods from a viewpoint that is both broad
and practical is undertaken. The study uses five
variables collected on 131,575 people in the
U.S. Health Interview Survey (HIS). The main
objectives of the research were the following:

1. To investigate two general variance esti-
mator methods,= linearization and replica-
tion

2. To study the distribution of the ratio of an
estimated mean minus its expected value
divided by its standard error

3. To measure the impact of poststratification
on variance estimates

Other aspects examined in the investigation were
the extent of the biasness of two estimators and
the feasibility of using a simpler variance esti-
mator as an approximation to the correct repli-

aSice the replication and linearization schemes are actually
being used by several samplers, the author chose to study only
these two techniques in this study.

cation and linearization variance estimates (the
results are given in appendixes I and II).

When a study of this magnitude is described
and discussed, there is the danger that the reader
will lose sight of the overall objectives amidst all
the details of the anaIysis. To facilitate report-
ing, the main features of the methodology in-
volved in doing the research are listed, as fol-
lows:

1. Sample des@z. By this term is meant the

2.

3.

It

com-ponents- of selection of the sample
units. The design used includes stratifica-
tion, sampling of the first-stage units with
probability proportional to size, the largest
units entering the sample with probability y
1, and. finally, subsampling clusters of
households within the first-stage units,
thereby embedding two stages of clustering
in the design.
Estimation procedure. This refers to the
method for producing estimates of the
health characteristics. Two different post-
stratified estimators of means are used.
Varz”ance calculations. This feature is the
computation from the sample data of esti-
mates of the variance of the estimators pro-
duced in feature number 2. For each esti-
mate of a characteristic, the variance is
estimated in a number of different ways.

is appropriate to state the reasons why only
two out of the three general variance estimators
are studied here. The intent of the research is to
observe the variance estimators produced by the
methods in more depth than has been done pre-
viously and to study the behavior of the esti-
mators for types of designs and estimation pro-
cedures being used today. Data handling, even
for a small-scale study of a similar nature, is
quite massive, and this problem is compounded
by the type of design and procedures selected.
Therefore, the decision was made that only two
of the three variance estimator techniques would
be investigated.

HIGHLIGHTS OF THE
FINDINGS

This study was undertaken to investigate how
well statistical methods important for making



inferences are valid when the data have been col-
lected in a multistage probability sample survey
and subjected to a complex estimation proce-
dure. The main points examined were the fol-
lowing:

1. The behavior of the variance estimates pro-
duced by the balanced half-sample replica-
tion method and the linearization method

2. The distribution of the ratio “of a sample
estimate minus its expected value to its
estimated standard error

3. The impact of the estimation technique
poststratification on variance estimatey

Since the mathematics have not been devel-
oped to answer this question of validity, the
approach was to use Monte Carlo simulation
from a specified universe and to determine the
empirical results.

The sample design was a stratified two-stage
cluster design with first-stage units being
selected with probability proportional to size.
The estimation process involves weighting by the
reciprocal of probability of selection and post-
stratification. Five variables were used, and three

different samples sizes were studied with 900
samples of each size drawn.

Because design III is the largest sample size
and, thus, the one most comparable to real sur-
veys, the highlights for only this design are pre-
sented. Characteristics of the universe and a
typical sample are:

Universe Average sample

Number of PSU’S 149 30
Number of segments 7,768 600
Number of persons 131,175 8,772 {approximate)

Table 1 gives the major results for the variance
of a ratio estimate produced by the replication
method, VAR(R 1S) and the linearization meth-
od, VAR(LI).

The proportion of times the standardized vari-
able fell within certain regions was calculated for
each of the five variables. These proportions
were averaged across the five variables and com-
p?xed with the expected proportions of a t dis-
tribution with 19 degrees of freedom, and the
normal distribution, in table 2.

Table 1. A summary of the major findings for design III

Finding

Population parameter /? . . . . . . . . . .

Average sample estimate /?l . . . . . . . .

sample variance of, R~ - .31R . . . . . . .

Average value of the varianc~ estimate

VAR(RIS) . . . . . . . . . . . . . . . .

Biasof VAR(R1.S) . . . . . . . . . . . . .

Variance of VAR(RIS) . . . . . . . . . . .

Relative bias of VAR(RIS) . . . . . . . .

Relative variance of VAR(RIS) . . . . . .

Averaga valua of the variance estimate

VAN .. . . . . . . . . . . . . . . .

Bias of VAR(Ll) . . . . . . . . . . . . . .

Variance of VAR(Ll) . . . . . . . . . . .

Relative biasof VAR(Ll) . . . . . , . . .

Ralative variance of VAR(L.1) . . . . . ,

Relative bias of VAR (R IS)
Relative bias of VAR(LI) “ “ “ “ “ “ “ -

Relative variance of VAR (R IS)

Relative variance of VAR (L 1 ) “ “ “ “ “ “

Family income

6400.0
8392.8

27,447.7

26,554.8
-890.9

10,360.0 X 104
-0.0325

0.1375

26,174.7
-1,271.0

10,480 X 104
-0.0463

0.1391

0.7019

0.9885

Restricted

activity

days

14.6716
14.6595

0.9496

0.9206
-0.0290

1.1370
-0.0305

0.1519

0.8915
-0.0581

0.1310
-0.0612

0.1453

0.4984

1.0454

Variable

T

4.6758
4.6548
0.0168

0.0178
0.0010

0.8132 X 10 ‘4
0.0595
0.2882

0.0175

0.0007
0.7959 x 1o+

0.0417
0.2820

1.4269

1.0220

1.0557
1.0597

7.0474 x 10-3

7.0842 X 10-3
0.0368 X 10 “
0.0129 X 10-=

0.0052
0.2596

6.7380 X 10 ‘3
-0.3084 x 10-3

0.0113X 10-3
-0.0439

0.2275

-0.1185

1.1411

Proportion seeing
physician

0.6842
0.6840

7.8942 X 10-’

8.3010 X 10-’
0.4068 X 10-s
0.1089 X 10-*

0.0515
0.1747

8.1135 X 10-5
0.2193 X 10-S
0.1086 x 10-8

0.0278
0,1743

1.8525

1.0023

4



RI -“E(R, ) RI -’E(R1)

‘able 2“ ‘distributions ‘f VAR(RIS) and VAR(L1 )
compared

with expected values under t, ~f and normal’

Standardized
deviate Normal

‘l~f-

~
‘The hypothesized degrees df frebdoin are the number of

strata 19.

RwiEw oF LITERATURE

Replication Method

Although, in the past three decades, methods
for selection of sampling units and procedures
for producing estimates from sdrvey data have
become sophisticated, only in rekifively recent
years have the methods of tialyzing ddta for
such complex surveys begun to be considered.
The first articles in the literature on the topic
described and discussed a variety of techniques:
random grotips, replicated samples, interpetie-,.
tratifig samples, &d duplicate samples, which
are the forerunners of the ge,neral replication
method as applied in this study. Mce this in-
vestigation is concerned with the technique in its
present-day form, the previous methods will not
be reviewed here, but their essential features are
described elsewhere.6

Before giving a brief, account of the develop-
ment and evidence of the reliability of the repli-
cation estimator of variance, its main features
are outline& The basic premise of the method is
a very simple one. Th6 estimator X’ of a popula-
tion parameter is calculated from the entire
body of sample data (parent sample). Another
estimator Y’ of the same population parameter
is made, using only the data from half the sam-
ple, randomly selected. The quantity (Y’ - X)2
is an estimate of the vaiiance based on one-half
sample (replicate). Howevet, this estimate, de-
pending on only one differertce t&m, has a high
variance; repeated differences are required to
produce a stable variance estimate. The esti-
mator of variance is simply the mean of these
half-sample estimates.

k

VAR(X’) = + ~ (~’ - X’)2
.

Cl=l

where k is ‘the number of replicates used. There
are three other rather similar forms of variance
estimators.

k

1. +~(Y: - X’)2
a=l

tvhere Y’fa * the estimator of the parameter
made from the complementary set of data for
the oih replication (the half of data not used in
the Y’a estimator).

The U.S. Bureau of the Census7S8 was the
first major smvey organization to employ the
method. The technique was used to estimate
samplitig errors of ratio estimates produced from
the Current Population Survey (CPS) from 1954
through 1964.b Gurneyg worked on the theoret-
ical development of the method for the U.S.
Bureau of the Census.

The National Center for Health Statistics
draws inferences from data gathered in complex
@obdbility sample surveys. The Center uses the
replication method to provide variance estimates
for the estimates produced from the Health
Examinatiori Survey (HES), which consists of a
direct physical examination of a probability
sample of approximately 7,000 noninstitutional
U.S. civiIians.l 0 Its purposes are to make preva-
lence estimates for certain medical and dental
conditions and to determine the distributions of
many physiological characteristics. The survey is
conducted in cycles with different age groups
sampled for each cycle.

bCPS is a monthly nationwide survey of sample households
conducted to provide measurements of the labor force. National
estimates of cmploymen~ unemploymen~ and other labor force
charzctcristics arc made.

5



The sample design of the survey includes the
components stratification, clustering, and two
stages of sampling. Along with this highly
sophisticated sample design, an equally refined
estimation process is used. Features of the pro-
cedure are simple inflation of the basic data col-
lected on each sample unit by the reciprocal of
the probability of selecting that unit, adjustment
for nonresponse, poststratification, and possibly
another adjustment factor.

The National Center for Health Statistics, in
its efforts to provide the best estimate of vari-
ance for this ratio estimate, has used several ver-
sions of the replication technique and, from this
experience, has developed a routine computer
program to provide the analyst with prevalence
estimates and their variances. The analyst, by
simply requesting the estimates for the total or
specified subgroups of the population, receives
an estimate of the aggregate value of the health
characteristic (numerator), an estimate of the
population of the total or subgroup (denomi-
nator), and the ratio of the two values. In addi-
tion, the analyst obtains an estimate of the
standard errors for these three quantities. A
more detailed description of the development
and use of the replication method can be found
elsewhere.6 ~11 Y1z Based on research conducted
by NCHS and the performance of the replication
variance estimates, the technique appears not
only appropriate for the type of estimate pro-
duced in its surveys but also useful for variance
estimates of other statistics such as regression
coefficients, multiple correlation coefficients,
and partial correlation coefficients; moreover,
the technique has potential for being employed
in other forms of statistical analysis. For in-
stance, replication variance estimates are used in
a modified sign test and in the calculation of a
pseudo-chi-square statistic, which provides a test
of independence in a two-way table.

Valuable theoretical work has been done on
the replication method.6 If a subset of all the
possible half-samples that could be formed is
selected randomly, the number necessary to pro-
duce a stable variance estimate is large. By the
use of a stratified design with two independent
selections made from each stratum and an esti-
mate of the mean, it was demonstrated that the
variability among the half-sample estimates of
variances comes from the between-strata contri-

butions to these estimates.~ It was then shown
how to eliminate these cross-product terms by
choosing a relatively small subset of half-samples
in a particular fashion that would yield an un-
biased estimator of the true variance of the
linear estimator. Thk variance estimator, in fact,
is equal to the value that would be obtained if
all possible half-samples were formed to calcu-
late the variance estimate. The haJf-samples
chosen in this manner are said to be orthogon-
ally balanced. This set of half-samples is referred
to as an orthogonal set or a balanced set.

The steps involved in composing a balanced
half-sample are explained. Assume a sample de-
sign of two independently selected units from a
stratum. First, the digit 1 or 2 is arbitrarily as-
signed to each sampled unit from a stratum.
Then the number of replicates needed is speci-
fied. This number, k, has the restriction that it
must be a multiple of 4, in order to obtain an
orthogonal set. The value is equal to the number
of strata, L, plus either O, 1, 2, or 3, depending
on which integer added to L will yield a number
divisible by 4. The next step is to form a k X L
matrix with entries aij of either plus or minus 1
such that the columns (strata) of the matrix are
orthogonal to one another. This means

~ aajaaj) = O where j # j’

Plackett and Burmanl 3 describe the construc-
tion of such a matrix. Finally, the cith half-
sample is made by including the unit numbered
1 if CZij = +1 and the unit numbered 2 if aij = -1.
The names “balanced pseudorep~ication” and
“balanced repeated replication” are given to the
method in which the minimum number of half-
samples are needed. (Throughout this text, the
term “replication method” means the full ortho-
gonal balanced version unless otherwise speci-
fied.)

Also considered in the report6 was the situa-
tion in which the number of strata was so large
that the number of half-samples necessary for
fuIl orthogonal balancing would be too numer-
ous to be feasible because of computer costs. In
this case, a method is suggested whereby the



half-samples are partially balanced. To achieve
partial balance, the L strata are divided into L/t
groups, where t is an arbitrary integer that
divides L evenly. The steps ‘~ven for full orthog-
onal balancing are carried out for one group of
strata, which results in the elimination of the
between-strata contributions for these strata.
The matrix that is formed is applied to each of
the remaining groups. Thus, within orthogonal
sets there is no between-strata contribution, and
the cross-product ‘terms partiaIly disappear.
However, the other cross-products do not drop
out. In the case of a stratified random sampIe
and an estimated mean, this subset of half-
samples has a lower estimated relative variance
than a set of k randomly selected half-samples.

Leel 4 has recently published theoretical and
empirical work on a method of selecting a par-
tially balanced set of half-samples. He also con-
sidered the problem of the best possible value of
t. There will be a larger variance when the repli-
cates are only partially bahuiced than when they
are fully balanced. However, this loss can be re-
duced when the semiascending order arrange-
ment (SAOA) of selecting half-samples is em-
ployed. To accomplish an SAOA, the strata are
first arranged in ascending order of the magni-
tudes of their within-stratum weighted popula-
tion variance. After this is done, the last L/2 or
(L - 1)/2 (if L is odd) strata are reversed. This
means that these strata are put in descending
order of magnitude of their within-stratum vari-
ance, and the first L/t strata form the first group
and so on.

Another factor in reduction is to choose a
small t value, but the smaller the value oft, the
more half-samples are needed. Therefore, when
the investigator decides on the value of t, he
must weigh the loss in precision against the in-
crease in computer costs due to a larger number
of half-samples.

The behavior of the replication method when
a ratio estimator is used was also examined.15
The findings were primarily based on empirical
data from the first cycle of the HES, a sample of
approximately 6,600 adults. Body measure-
ments were analyzed from a subsample of
approximately 3,000 U.S. adult males.16 Six-
teen regression equations with age, weight, and
height as the independent variables and each of
the other 16 anthropometric measurements in

turn as the dependent vafiable were tabulated.c
A variance estimate for a regression coefficient
can be produced by the replication method.
Using the data in a replicate, a regression equa-
tion identical to the one computed for the par-
ent sample can be calculated. Then an estimate
of variance is obtained from the average of the
deviations of the half-sample regression coeffi-
cient estimates from the parent sample estimate.
Using a balanced set of 28 replicates, estimates
of variances were computed for two types of
estimates: ratio estimates of population means
for the physicaI body measurements, and multi-
ple regression and correlation coefficients.
According to the study, the set of balanced half-
samples gave the same results as would have
been obtained by employing the full set of repli-
cates. Also developed was an expression for the
relationship between the replication variance of
the estimator of the population means and the
replication variance of the average of the k half-
sample estimated population means. Because the
results from a sample provide values for the
quantities in the expression, an inference as to
whether adequate variance estimates are being
obtained can be made. It was concluded that
these data showed that the replication variance
estimates were sufficient.

Simmons and Baird,l Z following a suggestion
by Kish at the Survey Research Center, Univer-
sity of Michigan, investigated whether an
approximating variance formula requiring less
computer time could be used in place of the
exact equation. In the replication method, the
data for a haIf-sample are subjected to the full

estimation procedure in exactly the same man-
ner as the data from the parent sample. This
operation can use extensive computer time, es-
pecially when steps such as ratio adjustment by
a concomitant variable and poststratification
must be carried out in each half-sample. How-
ever, by ,weighting the individual sample observa-
tions ,more simply than the usual way designated
by the sample design, the correct replication
variances can be approximated. The gozd of the
study was to weight the data in three ways to
observe whether the approximations could be
substituted for the correct variance estimate.

cThese calculations were provided by the Survey Research
Center, UNversity of Michigan, in accordance with NCHS speci-
fications.



The data for the research were the same physical
measurements as those used elsewhere.1s

Operationally, when making the parent sam-
ple ratio estimates, a ratio adjustment factor due
to the use of a concomitant variable is computed
for each of six residence-region classes. This was
done only on the data coUected in the first cycle
of the HES. A poststratification factor for each
of 60 age-sex-color classes is also calculated.
Both adjustments are in the form of multipliers
applied to the weight (reciprocal of the selection
probability) for each sampled person. In the rep-
lication method, the replicate estimate of the
population parameter undergoes the ordinary
estimating process. Hence, the multiplication
factors of these adjustments should be recalcu-
lated in each half-sample to bring the distribu-
tion of the sample into as close agreement as
possible with the distribution of the universe. By
using the two multipliers from the parent sample
instead of recalculating them in each half-
sarnple, Simmons and Baird ,hoped that an ade-
quate approximation involving less computer
time could be made. The weighting schemes
were to assign each observation (1) a weight of 1
as if the data were collected in a simple random
sample, (2) the weight it received when the par-
ent sample estimate was constructed, and (3) the
appropriate weight for the specified half-sample
containing the observation. A brief summary of
the conclusions is offered. The estimates of vari-
ance produced from the unweighted data
(scheme 1) were not acceptable as approxima-
tions to the true variance. The ratios of the vari-
ance estimates using weighting scheme 2 to the
variance estimates using weighting scheme 1
were all greater than unity, indicating that the
simple random sample variance estimates are
underestimates. The variability of the ratios for
the different statistics was wide. Therefore, the
application of a constant adjustment factor to
simple random sample variances is not feasible.
Simmons and Baird then compared the variance
estimates resulting from weighting schemes 2
and 3. The analyses consisted of computing the
ratio of replicate variances using the parent sam-
ple adjustment factors to variances using unique
adjustment factors. These ratios fluctuated
around unity. The ratios for the ratio means of
the physical body measurements and for the
simple correlation coefficients were slightly

greater than unity, but the ratios for the partial
and multiple correlation coefficients were just
below unity. The variability of these ratios was
not negligible. Because of this, the investigators
concluded that analysis on similar variances for
more statistics was required before making a de-
cision about the use of the simple weighting pro-
cedure (scheme 2) in place of scheme 3,,

The SRC has produced variance estimates by
the replication technique since 1957. Kish and
Frankell T~1g presented the empiricaI evidence
on the reliability of the method from SRC’S
projects and from their analysis of the NCHS
body measurement data for the HES. In these
studies, the replication method was employed to
provide standard error estimates for regression
coefficients, correlation coefficients, and partial
correlation coefficients. The analyses examined
the square roots of the ratios of the true stand-
ard errors calculated by balanced repeated repli-
cations to variances assuming a simple random
sarnple. These ratios are referred to as the design
effect (DEFF).

The first empirical evidence presented was the
results from 20 linear regression equations calcu-
lated on data for a sub~oup of the population
sampled in three different surveys. The subgroup
was identified as husbands and wives aged 35-44
years living together, with the head of the house
in the labor force and having a family income of
$3,000 or more. There were 1,853 such defined
families. Seven predictors used in various combi-
nations one, two, three, or four at a time ,were
the basis of the regression equations, An esti-
mate of variance for each of 60 regression coeffi-
cients was made. The mean value of th,e square
roots of the 60 DEFF’s was slightly higher than
unity, indicating that simple random sample
variance estimates underestimate the true vari-
ance.

A total of 1,111 people were interviewed
twice to gather data on the political party they
supported and their political attitudes. Then,
using the political part y voted for as the depend-
ent variable and four different attitude scales as
predictors, a regression equation was con-
structed. The mean value of the square roots of
these four DEFF’s was higher than unity, but
lower than the value in the first study. In addi-
tion, the mean of the square roots of the
DEFF’s for the means, the mean value for corre-
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Iation coefficients, and the mean value for par-
tial correlation coefficients all fluctuated near
unity.

Data collected in 3,990 interviews conducted
in three national household samples were em-
ployed to form six dummy variable regression
equations. The predictor variables in this study
were education, type of occupation, family in-
come, family reserves, race, and relationship
with relatives and friends. For the square roots
of 64 DEFF’s, the mean value was again above
unit y.

Kish and Frankel,l 7 under a contract with
NCHS, estimated in the 16 linear regression
dquations based on the physiological measure-
ments of 3,091 males in the HES the ratio of the
replication variance to simple random sample
variance. The mean value here for the regression
coefficients was above 1 and higher than the pre-
vious empiricaI values. The investigators sug-
gested that this higher mean value resulted from
the large clusters used in the HES.

The last set of empiriczd results examined the
variance estimates for statistics computed by the
technique of multiple classification analyses.
This technique is a multivariate analysis that
examines the relationship of each predictor to a
dependent variable that must be an interval scale
or a dichotomy, with the other predictors held
constant. The model is additive; and no assump-
tions of equal cell frequencies, linearity of re-
gression, and orthogonality are required. For
each predictor, there are two estimated statis-
tics, eta and beta coefficients. The squared eta
coefficient is the proportion of variance of the
dependent variable explained by unadjusted de-
viations (cell means minus overall mean), and
the squared beta is the proportion of variance of
the dependent variable explained by a given pre-
dictor, holding the other predictors constant.
Data for a sample of 2,214 family heads were
used in the multiple classification analyses equa-
tion to fit a receptivity index to education of
head of household, age of head, total family in-
come, social participation, achievement orienta-
tion, sex, and marital status. Because of the cost
involved, the replication variance estimates were
computed from 12 partially balanced replicates
and the simple random sample variance esti-
mates from 12 repetitions based on simple ran-
dom splits of the data. For the six eta coeffi-

cients, the mean DEFF’s
were the mean DEFF’s
betas.

were greater than 1, as
for the corresponding

By means of a Monte Carlo approach,’ Levyl g
compared the performance of the balan”ced
replication and jackknife methods for the ratio
estimator when the sampIe design was stratified,
with two PSU’S selected from each stratum.
Within each of 16 strata, a synthetic normal
population with specified mean and variance was
generated for two variables Xh amd Y~. The
parameter to be estimated from the samples was

xx,
R=~

p, ‘
a ratio estimator. The sampling and estimation
procedure was to draw from each stratum two
independent estimates of Xh and two independ-
ent estimates of Y~. These estimates wele
fashioned into a combined ratio estimate, R.
From a balanced set of 1Q half-samples, an esti-
mate of the variance of R was computed. An-
other estimate of this variance was calculated by
the jackknife method.

In the experiment, the parameters Rh were
allowed to vary in succession according to the
ratios 1.01, 1.05, and 1.10 for one value of the
correlation between X and Y and one value of
the relative variance of the population mean X.
The correlation value used equzded 0.9, and the
relative variance was set equal to 0.01.

For analytical purposes, the estimated vari-
ances, biases, and mean square errors for both
the replication and the jackknife method were
expressed relative to thg sampling variance of
the 1,200 estimates of R. The relative variance
equaled the sampling variance of the variance
estimates for a method divided by the square of
the sampling variance of R. The relative bias
squared equaled the square of the mean of the
variance estimates -for a method minus the sam-
pling variance of R djvided by the square of the
sampling variance of R. The relative mean square
equaled the sum of the relative variance plus the
relative bias squared.

The relative mean square
methods increased slightly as

errors for both
the varying ratio

9



increased from 1.01 to 1.10. The jackknife rela-
tive mean square error estimates were lower, than
the estimates produced by replication for all
three cases. The jackknife estimates of relative
variance were also lower than replication esti-
mates for all the varying ratios. When the R ‘h’s
varied by the ratios 1.05 and 1.10, the replica-
tion method had the lower relative bias. These
results indicate that further such studies using
different parameter values are needed.

Several of the design and estimation compo-
nents included in complex sample surveys are
unequal sampling fractions, clustering, stratifica-
tion, first-stage ratio adjustment, nonresponse
adjustment, and poststratification. In an e~piri-
cal investigation, Simmons and ‘Bean20 meas-
ured the effect these components, alone and in
combination, had on replication variance. Data
for the four health conditions–hypertensive
heart disease, myocardial infarction, angina pec-
toris, and syphilis–from the HES were used.
Using six estimation procedures, six estimates of
the proportion of the total population or pro-
portion of a subclass of the population having a
specified health condition were calculated. To
implement these procedures, each examined
person received a set of six weights. The weights
assigned were ( 1) a weight of 1, as if the data
were collected in a simple random sample; (2) a
weight of 10,000; (3) the appropriate weight for
the HES sample design; (4) the weight in 3,
multiplied by a nonresponse adjustment; (5) the
weight in 4, multiplied by a first-stage ratio
adjustment; and (6) the weight in 5, multiplied
by a poststratification factor. A simple random-
sampling variance estimate was calculated for
the estimate produced when the weight of 1 was
used; replication variances were tabulated for
the other five estimates.

Ratios of variances and ratios of mean square
errors formed the basis of comparison. For the
ratios of variances, the numerator was the
variance of one of the estimates, and the
denominator was the variance of another esti-
mate. For the ratios of variances, the numerator
was the variance estimate produced by one
method, and the denominator was the variance
estimate produced by one of the other methods.
To take bias into account, the ratio of the mean
square error of one estimate to the mean square
error of another was examined. The estimate

produced by the full design and estimation
procedure (the last weighting scheme) was sub-
stituted for the true value. Thus, an estimate of
bias equaled the difference between this esti-
mate and the estimate obtained for the method
in comparison.

The results of the comparison based on ratio
of variances and the general conclusions are
presented. The use of unequal sampling fractions
alone showed a 27-percent increase in replica-
tion variance over simple random sample vari-
ance. The combined effect of unequal weighting,
clustering, and stratification produced a 137-per-
cent increase in replication variance over a
simple random sample model. However, the
variance estimate for the estimate produced by
the full design and estimation procedure was
only about double the simple random variance
estimate. Thus, the estimation steps-non-
response, first-stage ratio adjustment, and post-
stratification—improved the precision of the
intimates. Simmons and Bean concluded that
none of the design and estimation components
investigated introduced large biases in the esti-
mates and that these components have substan-
tial impacts on variance estimates.

The strong point of the replication variance
estimator method is that measurement errors,
design components, and estimation procedures
are all accounted for. The technique can be
employed to yield variance estimates for any
statistic and, thus, is flexible. It can also be
adapted to a design that selects more than two
PSU’S from each stratum.

Linearization Method

The other general method for estimating
variances was developed by Keyfitz,z 1 who
outlined a method for estimating the variance of
a poststrati~led estimator. This estimator is
derived from the fact that the variance of a sum
of two independent estimates of a parameter
equals the expected value of the square of the
difference between them. This is

VAR(X~ +X;)= E(XI - Xi )2

where X’l and X’2 are estimates of the pmam-
eter X made from two independent random
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samples drawn with replacement. The key
theorems in developing the method will be
sketched without giving any proofs. This expres-
sion can be extended to include estimates drawn
from another stratum, assuming the selections
among the strata are independent.

The next term needed is the covariance
between characteristics measured on the same
sampled units within a stratum. Assume X’l and
Y’l are estimates from one random sample and
X’2 and Y’2 are estimates from another random
sample. The two samples are drawn independ-
ently with replacement and, thus, COV(X’l, Y’2 )
= COV(X’2, Y’~ ) = O, E(X’l ) = E(X’2), and
E( Y’l ) = E( Y’2 ). Then the covariance can be
shown to equal

The key in the derivation of the linearization
method is the approximation of the relative
variance of a ratio estimator using the Taylor
series expansion. Defining the relative variance
of an estimator as the variance of the estimator
divided by the square of the expected value of
the estimator, then relative variance (F) is

= W(x’)-1-P (Y’)- 2V(X’,Y’)

where

x’
~ = the ratio estimate of the population

parameter +,

V(x’,Y’)=p(x’,Y’)Iqx’)V(Y’),

p(X’,Y’)= the correlation between X’

L’(Y’) = the coefficient of variation

(X’) = the square root of V2 (X’).

and Y’,

of Y’, and

A proof of this result is in Hansen, Hurwitz, and
Madow.22

Assuming again independent random samples
drawn with replacement and using the above
theorems, substitution, and algebraical manipu-
lations, it maybe shown that

If selections are independent among strata, these
results can be generalized to any number of
strata.

The last theorem gives the variance of a
poststratified estimator. The sample design is
two random selections drawn independently and
with replacement from each stratum. The post-
stratified estimator is

where

x“

x’hai

= the poststratified estimate of X charac-
teristic,

= the ith estimate for the ath class of the
hth stratum,

= the ith estimate of population for the
ath class of the hth stratum,

= precalculated total population in the
ath group.

The difficulty in determining the variance of X“
is the lack of independence among the classes.
The variables defining the classes are not used to
stratify the population. Therefore, the covari-
ance between the classes is not zero. This
method evaluates the covariance between the
groups separately in each stratum. These values
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are then summed across the strata. The variance
of X“ is

VAR(X”) = E?

x

In this discussion, random sampling with
replacement has been assumed. If sampling is
without replacement, the finite population cor-
rection factor can be inserted into the formulas.
From these equations, formulations applicable
to complex sample designs have been developed.
Tepping2s developed a more general procedure
for linear variance estimators using a Taylor
series expansion and showed how the method
can be employed to provide variance estimates
for more complicated statistics such as regres-
sion coefficients. Bean presented the theory,
proofs, and description of the form of the
variance estimator for the ratio estimates pro-
duced by the HIS report.24 Shapiro25 and
Wa1tman26 outlined the adaptation of Key fitz’
theorems to the ratio estimation procedures
employed in the CPS. In essence, the lineariza-
tion method fashions a variance estimator from
a linear combination of sample totals for each
Psu.

Statisticians of the Bureau of the Census were
among the first to apply the linearization
method. They investigated its use in the CPS’s
sample design and estimation procedures and
constructed a computer program tabulating the
values needed for each PSU. Banks and Shapiro8
presented and discussed the empirical basis the
Bureau had acquired over the years from its
variance estimates for ratio estimators. They also
assembled the data on the replication variance
estimates. The methodology used in the analysis
was the comparison of design effects for un-
biased estimates, ratio estimates, and composite
estimates for a variety of labor force variables.
The values (true variance as computed by
linearization technique) for the unbiased esti-

mates and ratio estimates indicated that, with-
out exception, the ratio estimate lowered the
variance. In fact, for the variables with large
parameter values, the decrease was substantial.
When the comparison was made between the
ratio estimates and the composite estimates, the
latter reduced variance of some of the labor
characteristics, but not all of them.

Data from 1964 on 13 variables, the relative
variances as estimated by linearization and repli-
cation (not balanced) methods, were displayed
in Banks and Shapiro. Both estimates were
consistently of similar size, but there was more
variability among the monthly replication vari-
ance estimates. The authors concluded that the
linearization estimates were more reliable.

Linearization is the device by which variance
estimates of the ratio-estimated characteristics
of the Canadian Labor Force Survey are calcu-
Iated. Fellegi and Gray27 explained the applica-
tion of this method to the survey with its
particular sample design and estimation proce-
dure and discussed how the analysts actually
make use of the design effect in their analysis.
The comparative findings of the design effects
were consistent with the data from the U.S.
Bureau of the Census study.

The literature on Linearization is small com-
pared to that on replication. There are probably
two reasons for this. Until Tepping’s article,z 3
this method was not available for the estimation
of variances for statistics other than means, and
the method did not generate the interest of the
replication scheme. Furthermore, sam~plers may
have used the technique without reporting its
general behavior. One feature of linearization is
that the variance can be estimated for each stage
‘of sampling, a fact that is important for design-
ing surveys.

An Empirical Investigation of All Three
General Variance Estimators

In the articles reviewed, there are few com-
parisons of the properties and behavior of the
estimates produced by the two meth~ods when
they are applied to the same data. The only
extensive research along these lines has been the
work of Frankel.28 Using repeated sampling
from a universe modeled from real sample
survey data, the validity of three fundamental
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assumptions, important for purposes of statisti-
cal inference, was assessed. The assumptions
were the following:

1. The sample estimate of the population
parameter is approximately unbiased.

2. An approximately unbiased estimate of the
variance of the estimate is computable
from the sample.

3. The distribution of the ratio of the sample
estimate minus its expected value, to its
estimated standard error is reasonably
approximated by the “Student” t within
symmetric limits.d

Frankel regrouped the CPS’S March 1967 data
on noninstitutional families and individuals into
PSU’S consisting of three segments of approxi-
mately five to six households each. These
segments were the basic sampling units of CPS.
The PSU’S were stratified into 6, 12, and 30
strata, and two PSU’S were selected independ-
ently from each stratum for each design. For
design I (6 strata) and design II (12 strata), 300
samples were drawn; for design III (30 strata),
200 samples were chosen. Thus, the sample
design consisted of one stage of sampling,
stratification, and single-stage clustering.

The estimation procedure followed in each
sample was the fitting of two linear regression
equations. The total income of household head
was related to the number of persons in the
household under 18, the number of persons in
the household, and the sex of the household
head. For the second equation, the total income
of the household was the independent variable,
and the dependent variables were number of
persons in household in labor force, age of
household head, and years of school completed
by household head. Estimates were made of
simple means, differences of means, correlation
coefficients, regression coefficients, partial cor-
relation coefficients, and multiple correlation
coefficients. For each of these estimates, the
variance was calculated in nine different ways.
The nine methods included all three of the
general variance estimators: Taylor expansion

(linearization), balanced repeated replication,
and jackknife repe~ted replication.e A descrip-
tion of the specific jackknife formulation used

can be found in Frankel’sz 8 work.
Frankel compared the behavior of the esti-

mates of means, difference of means, regression
coefficients, and simple, partial, and multiple
correlations on the basis of relative bias. Relative
bias is defined to be the difference between the
estimate of the parameter and the parameter
divided by the parameter. The relative biases of
the mean and differences of means were all less
than 1 percent, except for one difference of
means that had a reIative bias of 3 percent. The
regression coefficients had higher relative biases
than did the means. In design I, seven out of the
eight regression coefficients showed relative
biases of less than 4 percent; in design II, only
five out of the eight were less than 4 percent; in
design III, the relative biases for seven of the
regression coefficients were less than 4 percent.
The correlation coefficients (simple, multiple,
and partial) displayed the highest relative biases.
Only for design III did the mean of the relative
biases for simpIe correlations drop below 5
percent.

In analysis of assumption 2, the nine variance
estimators were also considered to be mean
square error estimators, and their performances
in that capacity were studied. The relative bias
was the main measure of evaluation. For means
and differences of means, none of the nine had
minimum reIative bias across aI1 the designs; for
simple correlations, one of the replication meth-
ods emerged with lowest relative bias. However,
for the estimates of regression coefficients, a
jackknife technique displayed minimum relative
bias for two designs and linearization behaved
best for the other design. In all three designs, the
replication estimate, involving the square of the
differences between half-sample estimate and
complement estimate, showed the lowest rela-
tive bias for partial correlation coefficients.

The results provided evidence for the validity
of assumption 2, but the data did not definitely

‘l’here were nine methods becauseeach of the last two
techniquesprovidefour different possiile schemes of variance
calculations (the four produced by replication me outlined in the
Review of Literature section).‘Frankel,28 p. 2.
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resolve the issue of which variance scheme
produced estimates closest to the true variance.
The conjecture that the estimates produced by
the three general methods are really estimates of
mean square errors rather than variances was
studied using another relative bias expression.
For designs I and II, variance estimates for
means and differences were relatively closer to
the mean square error parameter than the
variance parameter. More research is required
before a definite answer can be given as to
whether the estimates produced by the general
methods are mean square error estimates rather
than variance estimates.

Probably the most important conclusion
reached concerned assumption 3. The ratios of
the sample estimate minus its expected value
divided by each of its nine estimates of standard
errors were computed. The evaluation of the
ratios was based on the proportion of times the
ratios fell within symmetric intervals around the
origin. The intervals chosen were normal values.
One-sided intervals were also computed, and
examination of the proportions within these
intervals revealed instances of asymmetry.
Frankel concluded that these findings were
partly real and partly the result of selecting only
several hundred samples rather than several
thousand samples. Because of this, he decided
not to compare the proportions with values in
the t table. To reduce variability of the ratios,
proportions were averaged for similar statistics
within a design. These proportions were c,om-
pared to the value in the t table with degrees of
freedom equal to the number of strata. The
findings indicated that the t distribution within
symmetric intervals could be used to make
inferences. Another vital observation was that
ratios based on the replication scheme were
more likely to be in agreement with the propor-
tions of that distribution than the proportions
based on the estimated standard errors.

The Frankel investigation has contributed
significantly to knowledge concerning the prop-
erties of the variance estimates produced by the
three general variance estimators. The validity of
the assumptions investigated needs to be con-
firmed for different sample designs, for different
variables, and for different estimators.

METHOD

Description of Population

Morbidity data collected by the HIS in 1969
on 131,575 civilian, noninstitutional U.S. indi-
viduals constitute the universe for this investiga-
tion. The HIS29 is a highly stratified, multistage
annual probability sample that provides esti-
mates of disease incidence and prevalence and
health characteristics.

The same basic sampling design has been used
since the survey began in 1957. The :first-stage
unit, PSU, ii a single county or several con-
tiguous counties. The entire geographical terri-
tory of the United States is classified into 1,900
such units. The next step is the stratification of
the 1,900 units into 357 strata, many of which
consist of only one PSU. Geographically, the
PSU’S are divided into subunits (each containing
an expected six households) called segments.
Sampling for the survey is done in two stages:
one PSU is selected with probability propor-
tional to population size from each of the 357
strata. The PSU’S comprising an entire stratum
are included with probability 1 and are referred
to as self-representing PSU’S (SR PSU’S). The
other PSU’S are called non-self-representing
PSU’S (NSR PSU’S). Within each seIected PSU,
segments are interviewed. An interview schedule
on every individual residing in the household is
completed. Thus, the design includes the effects
of stratification and two stages of clustering,
providing the model for this study.

The features of the sample design employed
in this empirical investigation were stratifying
the PSU’S, sampling of two stages, and clustering
at two levels. The steps involved in implement-
ing the design were to sample the first-stage
units with probability proportional to popula-
tion, the largest units entering the sample with
probability 1, and then to subsample within the
selected first-stage units. However, before any of
the details of the sample design—e.g., the deci-
sion on the sampling fraction to be used—could
be determined, the HIS data had to be re-
grouped.

The 357 selected PSU’S, each representing a
stratum in HIS, were taken as the total popula-
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tion. An examination of
orizinal Health Interview

the 1969 data for the
Survey PSU’S revealed

a ~ean of only 18 segments p& PSU, excluding
from the average eight PSU’S having over 100
segments. This average segment size was too
small to support a two-stage design. Therefore,
the 357 units were regrouped to form 149 PSU’S
for the universe. Paralleling the HIS design, the
149 PSU’S were classified into 19 strata, eight
consisting of only one PSU, grouped primarily
by geography and population size. The original
segments were retained, except the real outlierp
(segments with three or fewer persons) were
combined with other segments to reduce varia-
bility of segment size within PSU.

The HIS observations were for persons, but
since in this investigation everyone within a
selected segment was to be in the sample
(eliminating the problem of adjusting for non-
response), the person records were combined to
form a single segment record. To recapitulate
the construction of the population, the 357
PSU’S in the HIS sample were reorganized into
149 units, the units were categorized into 19
strata, the segments were edited for outliers, and
the data coIlected on persons in each segment
were combined into a single segment record.

There are several reasons for using these data
as the population. The data had already been
collected, edited, and made available on mag-
netic tape. However, even after the completion
of these operations, further extensive manipula-
tions were required to put the data into the
form required to perform the necessary calcula-
tions. One purpose of the project was to
measure the effects of stratification and cluster-
ing on the variance estimators studied. The data
reflect the real homogeneity or clustering that
exists in human populations. The estimation
component, poststratification, which was to be
investigated to ascertain whether the variance
estimators were sensitive to estimation proce-
dures, could easily be performed on these data.
Another basis for their use was the variables
collected in the survey. Evidence of the behavior
of the balanced half-sample replication and the
linearization method is needed for a variety of
variables in order to determine if observed
differences between the variance estimators pro-

duced by the
nature of the

two methods are caused
variables themselves or

by the
by the

methods. The variables available from HIS data
are primarily morbidity information based on an
individual’s own perception of his health.

Sample Design

As stated earlier, the population was divided
into 19 strata, 8 self-representing and 11 non-
self-representing. Characteristics of the universe
are given in table 3. First-stage sampling con-
sisted of the selection of the eight SR PSU’S and
the selection of two PSU’S from each of the 11
NSR stratum.

The number of PSU’S in each NSR stratum
was small; thus, the finite population correction
factor (fpc factor) would have a considerable
impact on the variances. The usual procedure
would have been to sample without replacement
and then include the fpc factor in the formulas
for the variance estimator, but unfortunately,
the theory for incorporating fpc factor in these
calculations has not been developed. The solu-
tion was to sample with replacement. One
desirable feature of a design is for the sample to

Table 3. Characteristics of the population

Stratum

1 ..........
2 . . . . . . . . . .
3 . . . . . . . . . .
4 . . . . . . . . . .
5 . . . . . . . . . .
6 . . . . . . . . . .
7 . . . . . . . . . .
8 . . . . . . . . . .
9 . . . . . . . . . .

10 . . . . . . . . . .
11 . . . . . . . . . .
12 . . . . . . . . . .
13 . . . . . . . . . .
14 . . . . . . . . . .
15 . . . . . . . . . .
16 . . . . . . . . . .
17 . . . . . . . . . .
18 . . . . . . . . . .
19 . . . . . . . . . .

Total . . . . . .

Number of
primary

sampling units

1
1
1
1
1
1
1
1

14
15
13
12
13

4
11
12
11
13
13
14

149

Number of
segments

323
324
283
257
270
191
339
271
593
592
526
482
461
449
481
446
455
502
513

7,768

Population
size

5,219
5,295
5,087
4,612
4,649
3,338
5,519
4,517

10,238
10,573

8,815
7,638
7,332
7,808
7,785
7,8Ekl
7,679
8,887
8,610

131,575
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be self-weighting, which means that each ele-
ment has the same probability of being selected.
This feature can be included when the PSU is
sampled with probability proportional to size.
The first stage of sampling included the selection
of two PSU’S independently from the 11 NSR
strata with probability proportional to size and
with replacement.

To determine whether sample size plays a part
in the observed differences in the variance
estimates produced by the methods, three sam-
ple designs were used. The number of PSU’S
sampled was constant, so the subsampling rate
was varied to achieve different overall sample
sizes. To accomplish this, a uniform sampling
fraction J equal to the product of the PSU
selection probability of selecting the PSU times
the subsample fraction within the PSU, was used
in each stratum. The formula is

f=h XJ$!

where

f= uniform sampling fraction,

fi = the sampling rate of first-stage units, and

jj = the sampling rate of second-stage units.

In design I, f equaled 1/75; in design II, 2/75;
and in design III, 2/30. The fraction f2equaled
f/fl.Thus, by setting f and knowing fl,the f2
could be computed. Because two PSU’S were
chosen in the NSR strata, the values 1/15 O,
1/75, and 1/30 were used in the computations.
The expected yields from the two fractions of
designs I and 111 were 4 segments and 20
segments, which approach the two possible
extremes in sampling: simple random and ulti-
mate cluster. The optimum design probably falls
betw-ecn the two rates used. The second stage of
sampling was random subsampling with replace-
ment of the segments at the rate f2 from the
chosen PSU’S.

To clarify the sampling plan, consider design
III, which had an overall sampling fraction of 2
in 30. First, the eight SR strata entered the
sample with probability 1. Within each, seg-
ments were randomly selected at the rate f2=

(2/30)/1 = 2/30. Thus, for stratum 1, approxi-
mately 22 segments were drawn. Next, two
PSU’S were chosen with probability proportional
to population from each of the remmining 11
strata. Within a selected PSU, the segments were
subsampled with the rate f2= (l/30)/fl.

For each design, 900 samples were independ-
ent y drawn. In drawing these samples, not only
was the sampling distribution of the variance
estimators being estimated, but also being esti-
mated was ~he sampling distribution of the ratio
estimators Ri, +1, “ . “ , 900. In repeated sam-
pling, this ratio estimator will settle down to its
expected value, and, thus, the simple sample
variance

900---
& (R, - @2/899

will become fairly stable. The value 900 was
thought to be an adequate number to achieve
stability.

Variables

Five variables were selected from the HIS to
represent a variety of basic distributional forms.
These are as follows:

Variablaf

Family income
Number of restricted activity days in past 2 weeks
Number of physical and dental visits in past 12 months
Number of days spent in short-stay hospitals in past 12

months
Whether or not the person has seen a physician in last 12

months

Quantity estimated

Average income per person
Average number of restricted activity days per person per year
Average number of visits per person per year
Average number of short-stay hospital days per person per

year
Proportion of population seeing a physician in last 12 months

Two criteria for selection of the variables
were that (1) they could be obtained from the
person-record HIS tapes and (2) they would
have a variety of distributions. Ideally, what is

.%ach sample person’s record contained a measure for each of
the five variables; therefore, to obtain a segment record, these
measures were summed across all persons in the segment.
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desired is for the computed variance estimates to
reflect the differences of the variance estimators.
Thus, the possibility that the variables them-
selves cause the observed differences between
the variance estimates is investigated.

It is important to remember in considering
the variables measured in this study that the
ultimate sampling unit is the segment and that
although several variables are converted to a
per-person basis, no direct assessment of within-
segment variability is availabIe. Thus, distribu-
tions of variables in the study directly reflect
segment-to-segment variation.

The income variable is a family income figure.
Thus, each person within a family is assigned the
same value. Income, then, was a highly clus-
tered, continuous variable. However, in the HIS,
income was reported only in group intervals,
with the highest class being open ended. To
convert from grouped data, midpoints of each
interval, except for the open one, were the
values given to individuals. Everyone having a
family income falling into the open intervaI was
assigned the lowest income of the class.

The proportion of persons in the population
visiting a physician in the past 12 months was
selected as an exampIe of a variable distributed
on the unit interval. The variable, number of
restricted activity days, produces an incidence
statistic based on the respondent’s recall of the
past 2 weeks. The respondent’s recall for the
remaining two variables is 12 months. The
variable, number of days spent in short-stay
hospitals in the past 12 months, has a J-shaped
distribution. Most individuals do not spend any
days in the hospital, but there are a few people
whose hospital experience lasts for months.
These two extremes account for the J-shape.

These variables provide an example from each
type and each range class of statistics estimated
in the HIS. The statistics produced by the HIS
are classified by the length of the recall period
and by the usual value of the measure of a
health characteristic for an individual. The
classes are (1) narrow range—the measure is
usually O or 1 and occasionally 2, e.g., the
number of days spent in short-stay hospitals; (2)
medium range—the typical value for an individ-
ual is from O to 5, e.g., the number of physician
and dental visits; and (3) wide range—the meas-

ure for an individual is usually greater than 5,
e.g., the number of restricted activity days.

ESTIMATORS AND VARIANCE
ESTIMATORS

Estimators

Two estimating equations, each producing
from the sample a ratio poststratified estimate
of the population ratio parameter, were
employed with the level at which poststratifica-
tion was done as the differentiating characteris-
tic. Each equation consisted of three basic
operations: inflation by the reciprocal of the
probability of selecting second-stage units, infla-
tion by the reciprocal of the probability of
selecting first-stage units, and poststratification.

The purposes of stratification are to improve
precision of the overall population estimates and
to insure that subgroups of the population
(domains of study) are in the sample in the same
proportions as they are in the universe. Usually,
the universe cannot be stratified into these
subgroups before sampling. However, if the
distribution of the subb~oups in the universe is
known, the sampIe resuhs can be adjusted
(poststratified) so that these domains of study
are appropriately represented and the accuracy
of the estimate increased.

The subgroups in this study were the popula-
tion in 24 ethnic-sex-age classes (white and
nonwhite, male and female, ages O-4, 5-14,
15-24, 25-44, 45-64, and 65+). This spread
resulted in small frequencies in most of the
nonwhite cells, another reason for poststratify-
ing. Typically, the distribution of the subgroups
is known only for the complete population, and
adjustments must be made at this IeveL In this
situation, however, the universe was totally
specified and poststratification could be carried
out either after combining the stratum estimates
for an ethnic-sex-age class or earlier. Poststratifi-
cation was applied at two different leveIs:
universe and region.

Universe level meant that the sample esti-
mates for a class were combined across all the
strata and then adjusted to the totaI population
in that group. Region-1evel poststratification
refers to the adjustment of sample estimate for
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the PSU’S within a region to the regional
distribution of classes. The PSU’S belonged to
one of two regions: the combined East and
North Central regions or the combined South
and West regions.

The first estimator-of a statistic (see appendix
I for the formula for R2 ) is

RI –poststratification at universe level

Y

the final poststratified ratio estimate of
the population parameter R,

the poststratified estimate
characteristic x,

the total population size,

of health

the inflated estimate combined across
all PSU’S of health characteristic x for
ethnic-sex-age class a,

the known population in the ethnic-
sex-age class a, and

the inflated estimate across all PSU’S of
the population in class a.

Variance Estimators

The main objective of the study is to examine
the behavior of the variance estimators produced
by two general variance estimation methods,
replication and linearization. Ideally, the vari-
ance of each estimator produced by one of the
two estimating equations would be estimated
using the correct application of both variance
formulas and each of the approximate formulas,
but due to computer costs and volume of
numbers, this was not feasible. For estimator 1,
variance estimates were computed by the correct

replication and linearization methods and two
approximate schemes, while for estimator 2,
only the correct replication method was used.
(See appendix II for the formulas for the
approximate variance estimates and for the
correct replication variance estimator for R.z.)

An assumption of both general methods is
that two PSU’S are chosen independently from
each stratum. The sample design for this study
with SR PSU’S violates the assumption giving
rise to the problem of how to treat these PSU’S.
The solution was to divide randomly the sam-
pled segments of each SR PSU into two groups
and to assume that these two groups, pseudo-
PSU’S, were two independent selections from
the same stratum.

Variance Estimators for Estimator 1

The variance for the estimate R ~ was esti-
mated in 10 different ways. Three replication
methods, each yielding three estimators, and one
linearization method were used.

The process for computing the correct replica-
tion variance estimator is as follows; Assume
that from each stratum one of the two sampled
primary units is selected. Nineteen PSI-Y’Sform a
half-sample. The data from these 19 l?SU’S are
inflated by the reciprocal of the probability of
selection to their stratum level. These estimates
for a particular ethnic-sex-age class are combined
across all the strata. Then, within the classes, the
estimates are adjusted by poststratification fac-
tors. These factors are calculated, using the
population estimates for the class produced by
only the PSU’S in the half-sample, on the
universe level, in the same manner used to
calculate the factors for the parent sample. The
19 PSU’S in the complement replicate undergo
an identical process to yield a similar estimate of
the parameter. This is repeated for 20 such
half-samples. The three variance estimates pro-
duced for qach sample estimate obtained from
estimating R ~ are

20

VAR(R lH) = ~ ; (R[,a - RI )2
a

20
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and

VAR(R 1S) = ; [VAR(R lH) + VAR(R lC)]

where

& = the parent sample ratio estimate,

% = the cxth half-sample ratio estimate of
the population parameter R by an iden-
tical estimation equation to the one
that yielded R1, and

R~a = the cxth complement half-sample ratio,
estimate.

The 20 half-samples are composed from the
orthogonal pattern in table 4. This design was
constructed by following the method described
in Plackett and Burman.l 3 The pattern is
determined by the rotation of the first 19
entries of the first column and by specifying the
20th row to always be mifius.

The linearization formula empIoyed in this
study was derived from the theorems given by
Keyfitz.21 The form of the method used here
can be described as foHows: Remembering that
R ~ = x’: /y, the formula for the aggregate X{ is

This equation can be rewritten as Iinear combi-
nations of the simpIe inflated estimates of the
PSU’S from each stratum. Expressed this way,
the equation becomes

Replicate

1 ................
2 . . . . . . . . . . . . . . . .

3 . . . . . . . . . . . . . . . .

4 . . . . . . . . . . . . . . . .

5 . . . . . . . . . . . . . . . .

6 . . . . . . . . . . . . . . . .

7 . . . . . . . . . . . . . . . .

8 . . . . . . . . . . . . . . . .

9 . . . . . . . . . . . . . . . .

lo . . . . . . . . . . . . . . . .

11 . . . . . . . . . . . . . . . .

12 . . . . . . . . . . . . . . . .

13 . . . . . . . . . . . . . . . .

14 . . . . . . . . . . . . . . . .

15 . . . . . . . . . . . . . . . .

16 . . . . . . . . . . . . . . . .

17 . . . . . . . . . . . . . . . .

18 . . . . . . . . . . . . . . . .

19 . . . . . . . . . . . . . . . .

20 . . . . . . . . . . . . . . . .

Table 4. Orthogonal pattern for 20 replicates

Stratum

SR PSU’S NSR PSU’S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Note.–SR PSU indicates self-representing primary sampling unit; NSR PSU indicates non-self-representing primary sampling

unit.
1..+,, denotes +1 and “-” denotes -1.
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where

X;ai = the inflated estimate of health charac-
teristic x for class a of the ith PSU in
the h th stratum and

YL’ = the inflated population estimate, for
class a of the ith MU in the h th stratum.

From this expression, the linearization variance
estimator of R 1 is derived. The formula is

VAR(X:)
VAR(L 1) =

Y2

where

X;i = the inflated estimate for the ith PSU of
the h th stratum,

‘l,a = the final poststratified ratio estimate of
the health characteristic x for the ath
ethnic-sex-age class.

For more detailed formulas and discussion, see
Bean.30

RESULTS

Introduction

The main objective of the investigation was to
determine if either or both of the general
variance estimator methods, replication and
linearization, yields acceptable variance esti-
mates for a complex ratio estimator employed in
multistage probability sample surveys. The prop-
erties considered critical for acceptability are the
extent of the bias of the variance estimates, the
degree of their variability, and the amount of
their mean square error. Another very important
point is whether inferences can be made when
variance estimates are used. The other result
presented is the effect of the estimation tech-

nique poststratification on variances. The bias of
the two ratio estimators employed and the
substitution of approximate variance estimates
are discussed in appendixes I and II. Beans O
presents a more in-depth report on other proper-
ties of. the ratio estimators, other approximate
variance estimate methods, and the results, using
several different procedures for estimating the
variance component from SR PSU’S.

Comparison of Replication and Linearization

The primary purpose of this investigation was
to compare replication and linearization meth-
ods of variance estimation for a sample design
that includes stratification, two stages of cluster-
ing, and poststrati~led ratio estimation. The
comparisons are in terms of bias, variamce, and
mean square error.

Only for the sample estimator R ~ were both
the appropriate replication and linearization
variance estimates computed. “Appropriate”
here refers to the best application of the theory
of the methods to the particular sample design
and estimation process employed. For the repli-
cation method, this means that the data for the
PSU’S in a half-sample were (1) inflated to the
PSU level, (2) inflated next to the stratum level,
and (3) poststratified by adjustment factors
computed from the half-sample itself. Thereforej
the half-sample estimate of the poptdation
parameter contained all the elements of the
sample design and estimation procedure. For the
best application of the linearization theory, the
basic equations by Key fitzz 1 were interpreted
to include inflation to PSU and stratum levels
and to include an adjustment for poststratifica-
tion. For each estimate of R ~, one linearization
and three replication variance estimates were
calculated. The replication estimates VAR
(R 127), VAR(R 1C), and VAR(R 1S) all have the
same expected value. Because VAR(R 1S) is an
average of the other two, its precision is ex-
pected to be greater. Since the estimator
VAR(R lH) is the one most often used ‘by statis-
ticians, the discussion will deal with it and with
VAR(R 1S).

One important question is whether the meth-
ods yield biased statistics. To compute true bias,
the real variance of R ~ for this sample design is
needed. Unfortunately, this value was not
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knoyn, but with 900 samples, the distribution
of R 1 should become. quite stable; and the
sample variance of 900 R 1 estimates shpuld be a
good criterion. The sample variance of R ~ is

where

900
=

‘L ZR’lj

‘1 – 900 j.1

By assuming s’fi ~ to be the true variance,

measures of bias can be calculated. These are

bias [VAR(R

where

VAR(R W

H)] = “Vmp7iq - s?
RI

bias [VAR(RIS)] = VAR(RIS) - S2=

Table 5. The bias of the RIH, R’

Variance estimator

VAR(RIH) . . . . . . . . . . . . . . .
VAR(RIS) . . . . . . . . . . . . . . .
VAR(L1) . . . . . . . . . . . . . . . .

VAR(RIH) . . . . . . . . . . . . . . .
VAR(RIS) . . . . . . . . . . . . . . .
VAR(fl) . . . . . . . . . . . . . . . .

VAR(RIH) . . . . . . . . . . . . . . .
VAR(/?lS) . . . . . . . . . . . . . . .
VAR(L1) . . . . . . . . . . . . . . . .

K]

where

900

VAR(ll 1s) = & ~ [VAR(R 1s)] j,

and

bias [VAR(L 1)] = VAR(L 1) - s’.
Rl

where

900

~ [VAR(L1)] jvAR(~I.) ‘ & j.1

Inspection of table 5 reveals that the bias of
the R lH estimator decreases across the three
designs for four of the five variables. Only for
the variable proportion seeing a physician does
the bias, which goes from -6.083 X 10-6 in
design I to 1.614 X 10-5 in design II and then
down to 4.206 X 10-6 in design III, not follow
the pattern. For physician visitsand hosp’~al
days; the bias is always positive, while for farndy
income and restri-cted activity days, it switches
from’ positive to negative.

, and L 1 variance astimatom of the sample estimator F, of the population parameter R

Variable

Family income
Restricted

Physician visits Hospital days
Proportion seeing

activity days a physician

3.857 X 10’
4.103 x 10’

-3.191 x 10’

2.736 X 10-’
2.783 X 10-’

-1.085 X 10-’

1.489 X 10’ -4.337,x 10-2
1.640X 103 -4.082 x 10-2

-3.211 X 102 -1.598 X 10 “

-8.772 X 102
-8.809 X 10’
-1.271 X 103

-2.934 X 10 ‘=
-2.900 X 10 “
-5.818 X 10 ‘z

Design I

2.751 X 10 ‘3
2.558 X 10 ‘3

-4.050 x 10-3

Design II

2.693 X 10 “
2.668 X 10 ‘3
1.022 x 10-3

Dasign III

1.073 x 10-’
1.042X 10-3
7.121 X 10-4

3.750 x 10-3
3.765 X 10 ‘3

-2.242 X 10 ‘3

1.928 x 10-3
1.785X 10-3

-6.848 x 10-5

-6.083 X 10-s
-7.095 x 10-6
-4.944 x 10 -s

1.614X 10-5
1.581 X 10-s
6.845 X 10-s
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For family income, restricted activity days,
and hospital days, the bias of VAR(R 1S) also
decreases with increasing sample size. For the
first two variables mentioned, the bias is positive
in design I, but in design III, it is negative. For
physician visits, the bias in design II is slightly
greater than the bias in design I, while for design
III, it is at its smallest value. VAR(R 1S)’s bias
shows a different trend for proportion seeing a
physician. The bias is -7.095 X 10-6 in design I,
which increases to 1.581 X 10-T in design II and
then drops to 4.069 X 10-6 in design III. This is
the only example for VAR(R 1S) and VAR
(R lH) for which the bias first is negative and
then becomes positive.

VAR(L 1) exhibits a different pattern. The
biases for physician visits and proportion seeing
a physician are negative for design I. These
biases decrease across the designs. However, the
method goes from underestimating to over-
estimating the variance. The bias is the smallest
in design 11 for family income and hospital days.

Comparing the biases of the three methods
does not yield a consistent pattern of one of the
methods having less biaa than the other. The
important fact is that for all three estimators,
the bias is small and tolerable. However, turning
to the variances of the methods in table 6, more

of a trend is found. The variances of the variance
estimates are:

VAR[VAR(R lH)] = &

VAR[VAR(R 1S)] = &

VARIVAR(L1)] = &

900

x ~ {[vAR(~l)]j- rA~}2

The first point to consider when examining
the variance of estimators is to check to make
sure the variance does decrease with increasing
sample size. This is true for all three methods.

Tab!e 6. The variance of the RIH, R1.$, and f. 1 variance estimators of the sample estimator ~1 of the population parameter R

Variable
Variance
estimator

Family income
Restricted

Physician visits Hospital days
Proportion seeing

activity days a physician

Design I

VAR(RIH) . . . . . . . . . . . . . . . . . . . 1.144 x 109 2.052 2.859 X 10 “ 2.428 X 10-3 1.733X 10-8

VAR(RIS) . . . . . . . . . . . . . . . . . . . 1. II IX IO$’ 1.976 2.763 X 10 ‘3 1.902X 10-3 1.579X 10-S

VAN .. . . . . . . . . . . . . . . . . . . 1.062 X 109 1.487 2.380 X 10-3 2.833 X 10 “ 1.265 X 10-*

VAR(RIH) . . . . . . . . . . . . . . . . . . . 3.217 X 10*
VAR(RIS) . . . . . . . . . . . . . . . . . . . 3.201 X 10’
VAN .. . . . . . . . . . . . . . . . . . . 3.258 X 10’

Design I I

0.521 8.306 X 10-4 1.199 x 10-4 3.471 x 10-9
0.505 8.274 X 10-” 1.042X 10-’ 3.307 x 10-’
0.460 8.250 X 10 ‘4 5.651 X 10-5 3.338 X 10-9

Design I I I

VAR(RIH) . . . . . . . . . . . . . . . . . . . 1.047 x 1Os 0.140 8.271 X 10-s 1.319X 10-5 1.I04X 10+

VAR(RIS) . . . . . . . . . . . . . . . . . . . 1.036 X 108 0.137 8.132X 10-s 1.288X 10-s 1.089X 10-’

VAN .. . . . . . . . . . . . . . . . . . . 1.048 X 108 0.131 7.959 x 10-’ 1.135X 10-s 1.D86X 10-9
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The variance of the VAR(R lH) is always larger
than the variance of VAR(R 1S). This provides
empirical evidence that R 1S is more precise than
the other forms of replication variance esti-
mators. With three exceptions—family income in
designs II and III and proportion seeing a
physician in design II–the variance of the
VAR(L 1) method is less than the variance of
VAR(RIS).

It is preferable to judge the merits of the
three methods on the basis of the mean square
error, which takes into consideration both prop-
erties of bias and variance. The ideal estimator
would be one that produces minimum mean
square error for all values of the parameter
r32& . Perhaps such an estimator does not exist,

but ;he empirical results here provide evidence
on the behavior of the mean square error for the
R Ml, R 1S, and L 1 estimator methods. The
formulas for the mean square errors (MSE) are

MSE [VAR(R lH)] = VAR[VAR(R I.H)]

MSE [VAR(R 1S)] = VAR[VAR(R 1S)]

+ biasz [VAR(R 1S)]

= VAR[VAR(R 1S)]

+ [VAR(RIS) - S;l] 2

and

MSEIVAR(L1)] = VAR[VAR(L 1)]

+ biasz [VAR(L 1)]

= VAR[VAR(L 1)]

+ [VAR(L1) - s;l]2

As can be observed in table 7, the mean
+ biasz [VAR(R lH)] square errors for the methods for each variable

decrease with increasing sample size. When

= VAR[VAR(R lk?)] looking at the values for the procedures pair-
wke, the results indicate that VAR(R 1S) zdways

+ [VAR(R Ill) - S;l] 2 has a smaHer mean square error than VAR
(R lH), which is easily explained by the less

Table 7. The mean square error of the Rlf+, RIS, and L 1 variance estimators of the sample estimator ~1 of the population parameter R

Variance
estimator

VAR(RIH) . . . . . . . . . . . . . . . . . . .
VAR(RIS) . . . . . . . . . . . . . . . . . . .
VAN .. . . . . . . . . . . . . . . . . . .

VAR(RIH) . . . . . . . . . . . . . . . . . . .
VAR(RIS) . . . . . . . . . . . . . . . . . . .
VAN .. . . . . . . . . . . . . . . . . . .

VAR(J?IH) . . . . . . . . . . . . . . . . . . .
VAR(RIS) . . . . . . . . . . . . . . . . . . .

VAR(.LI) . . . . . . . . . . . . . . . . . . .

Variable
1 1 t I

Family income
Restricted IPhysician visits IHospital days IProportion seeing

activity days a physician
I I 1 I

1.159X 109
1.128X 10’
1.072 X 109

3.239 X 108
3.228 X 10s
3.259 X 103

1.055 x 10’
1.044 x 108
1.064X 10*

2.127
2.053
1.499

0.522
0.507
0.485

0.140
0.138
0.135

Design 1

2.866 X 10-3
2.770 X 10-3
2.396 X 10 ‘3

Design I I

8.379 X 10 ‘“
8.323 X 10 ‘4
7.653 X 10 ‘4

Design 1I I

8.387 X 10-s
8.240 X 10-’
8.OIOX 10-s

2.442 X TO“3
1.916X 10-3
2.883 X 10-4

1.236X 10-4
1.074X 10-4
5.651 x 10-s

1.320X 10-5
1.288X 10-’
1.145X 10-s

1.736X 10-*
1.584X 10-s
1.510X 10-*

3.731 x 10-9
3.557 x 10-9
3.386 X 10-9

1.122X 10-9
1.I06X 10-9
1.091 x 10-9
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variability of VAR(R 1S). The other finding is
that VAR(L 1) has a smaller mean square error
than VAR(R 1S ) aside from the variable family
income in designs II and III. The mean square
error is less even though VAR(L 1) did not
always have the smaller bias. For the only two
cases where the mean square error of VAR(L 1)
is not lower, the variance of VAR(L 1) was
greater. In the other situation, proportion seeing
a physician in design II, of greater variance for
the L 1 method, the difference in the bias was
large enough to cause VAR(L 1) to have the
smaller mean square error.

The behavior of the replication and lineariza-
tion methods for the properties of bias, variance,
and mean square error is very good, which
implies the methods are yielding acceptable
variance estimates. However, there are other
properties to consider when deciding on a
variance method; one of these is examined next.

Normality of Standardized Estimators

As mentioned previously, scientists are in-
creasingly concerned with making inferences
from data collected in scientific sample surveys
rather than just calculating descriptive statistics.
Ideally, an investigator would like to construct
confidence intervals for population parameters.
The statement that the average annual income
per person lies between $7,500 and $9,400 with
95 percent confidence is more useful than a
point estimate of the average income. Such a
statement using the normal distribution could be
made if one is willing to assume that the variable
is sufficiently close tom-being normally distrib-
uted and that the departure from random
sampling is not a severe limitation.

The objective here is to study empirically the
ratio estimate minus its expected value divided
by its estimated standard error. The analysis
consists of computing the proportion, of times
the statistic falls into certain regions. By this
procedure, the applicability of confidence state-
ments based on the normal distribution can be
approached.

In this section, only the statistics for which
VAR(R lH), VAR(R 1S), and VAR(L 1) were

used as the variance estimates will be discussed.
These ratios are

il - -E(iil)

i=mm ‘
RI - E(iJ

@iii@iq ‘
and

RI - E(iil)

@mqzij

where

Such ratios for each estimate in every sample
and the proportion of times the ratio fell within
the regions–(- 1.000, 1.000), (- 1.000, O), (O,
1.000), (-1.645, 1.645), (-1.645, O), (O, 1.645),
(-1.960, 1.960), (-1.960, O), (1.960, O), and
(-2.576, 2.576)–were computed. These regions
were chosen for purposes of comparison with
the normal distribution. The proportion of area
under the normal curve for the four symmetric
intervals are 0.6827, 0.90, 0.95, and 0.99,
respectively.

The proportion of times the ratio fell within
the limits is given in tables 8-10. Considering just
the symmetric intervals, one immediately
notices that intervals based on this type of
statistic usually have a lower confidence than
the normal level, but the differences are gener-
ally very small. There are instances in which the
proportion of time the statistic based on these
different variance estimates fell within the limits
exceeded the corresponding normal values.
These results are good news, indeed, because
coupled with the findings of Frankelz S they
justify the type of inferences consumers of data
collected in multistage complex sample surveys
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often wish to make. For example, a health indicate that such an inference based on the
planner concerned with the use or expansion of normal distribution is really not a bad approxi-
health care facilities would most likely need to mation and could be used with reasonable
draw an inference from the estimated propor- confidence.
tion of the population who saw a physician at A word of caution about these findings is
least once in the past 12 months. The data appropriate. Inspection of the one-sided inter-

Tabla 8. Proportion of timas the sample estimate minus its expected value divided by RIH estimate of standard error is within the

Variable

Family
income .

Restricted
activity
days . . .

Physician
visits . . .

Hospital
days . . .

Proportion
seeing a
physician

Family
income .

Restricted
activity
days . . .

Physician
visits . . .

Hospital
days . . ,

Proportion
seeing a
physician

Family
income .

Restricted
activity
days . . .

Physician
visits . . .

Hospital
days . . .

Proportion
seeing a
physician

stated limits

Limits

*1.000 -1.000,0 0, 1.000 il .645 -1.645,0 0, 1.645 *I .960 -1.960,0 0, 1.960 *2.576

Design I

0.6789

0.6778

0.6444

0.6556

0.6567

0.6944

0.6356

0.6733

0.6722

0.6833

0.6656

0.6511

0.6844

0.6789

0.6900

0.3411

0.3322

0.2989

0.2933

0.3433

0.3567

0.2956

0.3244

0.3233

0.3489

0.3189

0.3322

0.3333

0.3422

0.3511

0.3378

0.3456

0.3456

0.3622

0.3133

0.3378

0.3400

0.3489

0.3489

0.3344

0.3467

0.3189

0.3511

0.3367

0.3389

0.8833

0.8811

0.8744

0.8622

0.8689

0.8833

0.8844

0.8967

0.8733

0.9089

0.8656

0.8700

0.8989

0.8789

0.8756

0.4500

0.4411

0.4300

0.4156

0.4400

0.4333

0.4400

0.4444

0.4467

0.4289

Design I I

0.4467

0.4356

0.4478

0.4367

0.4589

0.4367

0.4489

0.4489

0.4367

0.4500

Design I I I

0.4167

0.4456

0.4456

0.4467

0.4378

0.4489

0.4244

0.4533

0.4322

0.4378

0.9356

0.9367

0.9233

0.9122

0.9300

0.9389

0.9300

0.9367

0.9289

0.9522

0.9278

0.9244

0.9456

0.9244

0.9222

0.4744

0.4711

0.4633

0.4468

0.4633

0.4733

0.4622

0.4744

0.4722

0.4789

0.4522

0.4733

0.4678

0.4722

0.4556

0.4611

0.4656

0.4600

0.4633

0.4667

0.4656

0.4678

0.4622

0.4567

0.4733

0.4756

0.4511

0.4778

0.4522

0.4667

0.9800

0.9789

0.9822

0.9578

0.9811

0.9744

0.9778

0.9811

0.9767

0.9822

0.9767

0.9756

0.9822

0.9656

0.9833
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Table 9. Proportion of times the sample estimate minus its expected value dividad by HIS estimate of standard error is within the

Variable

Family income

Restricted activ-

ity days . . .

Physician visits .

Hospital days . .

Proportion

seeing a

physician . .

Family income .

Restricted activ-

ity days . . .

Physician visits .

Hospital days . .

Proportion

seeing a

physician . .

Family income .

Restricted activ-

ity days . . .

Physician visits .

Hospital days . .

Proportion

seeing a

physician . .

stated limits

Limits

?1.000 -1.000, 0 0, 1.000 *1 ,645 -1.645,0 0, 1.645 *1.960 -1.960,0 0, 1.960 %2.576

0.6800

0.6722

0.6556

0.6611

0.6578

0.6911

0.6344

0.6722

0.6800

0.6767

0.6678

0.6511

0.6878

0.6789

0.6900

0.3456

0.3278

0.3067

0.2956

0.3433

0.3567

0.2956

0.3233

0.3244

0.3456

0.3200

0.3311

0.3356

0.3422

0.3511

0.3344

0.3444

0.3489

0.3656

0.3144

0.3344

0.3389

0.3489

0.3556

0.3311

0.3478

0.3200

0.3522

0.3367

0.3389

0.8822

0.8811

0.8733

0.8644

0.8656

0.8822

0.8833

0.8978

0.8744

0.9133

0.8667

0.8689

0.8978

0.8789

0.8778

vals indicates that they are not symmetric.
Thus, any statements about one-sided intervals
cannot be made, and confidence intervals com-
puted are not of minimum length. An area of
further study could be the direct corroboration
of the skewness and Ieptokurtosis noted in the
tables by computing and examining the third
and fourth sample moments.

1nfluence of Poststratification

Another purpose of the study is to determine
the effect the estimation component poststratifi-
cation has on variances. The reason for adjusting
is to lower the variance. Normally, to reduce
variance a larger sample is drawn, but if the same
thing can be accomplished by the estimation

Design I

0.4478 0.4344

0.4356 0.4456

0.4300 0.4433

0.4178 0.4467

0.4356 0.4300

Design I I

0.4456

0.4333

0.4500

0.4389

0.4611

0.4367

0.4500

0.4478

0.4356

0.4522

Design III

0.4189 0.4478

0.4456 0.4233

0.4422 0.4556

0.4478 0.4311

0.4389 0.4389

0.9344

0.9378

0.9244

0.9156

0.9322

0.9378

0.9311

0.9367

0.9344

0.9522

0.9256

0.9222

0.9422

0.9267

0.9256

0.4733

0.4700

0.4622

0.4533

0.4667

0.4733

0.4644

0.4733

0.4744

0.4800

0.4500

0.4722

0.4656

0.4722

0,4589

0.4611

0.4678

0.4622

0.4622

0.4656

0.4644

0.4667

0.4633

0.4600

0.4722

0.4756

0.4500

0.4767

0.4544

0.4667

0.9789

0.9789

0.9778

0.9578

0.9811

0.9756

0.9756

0.9778

0.9767

0.9822

0.9778

0.9778

0.9822

0.9644

0.9833

procedure, there can be a savings in cost by
using a smaller sample size, unless, of course, the
savings in field costs are offset by costs of
implementing the estimation procedure. Vari-
ance reduction has been demonstrated primarily
using simplified methods and theoretical analy-
sis, while the studies of Simmons and Beanz 0
and Banks and Shapiros gave empirical evidence.
This investigation examines the effect for the
particular design used here.

The VAR(R lH) and VAR(R 1C) schemes call
for the poststratification factors to be computed
within each half-sample and each complement
half-sample, while for the methods VAR(R 2H)
and VAR(R 2C), the parent sample adjustment
factors are used. (See appendix II for :formulas
for VAR(R 227) and VAR(R 2C’).) The orthog-
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Table 10. Proportion of times the semple estimate minus its expected value divided by L 1 estimate of standard error is within the

Varieble

Family income .

Restricted activ-

ity days . . .

Physician visits .

Hospital days . .

Proportion

seeing a

physicien . .

Family income .

Restricted ectiv-

ity days . . .

Physician visits .

Hospitel deys . .

Proportion

seeing a

physician . .

Family income .

Restricted activ-

ity days . . .

Physician visits .

Hospital days . .

Proportion

seeing a

physicien . .

stated I imits

Limits

*1.000 -1.000,0 0, 1.000 *1 .645 -1.645,0 0, 1.645 *I .960 -1.960,0 0, 1.960 t2.576

Design I

0.6733

0.6433

0.6211

0.6200

0.6189

0.6811

0.6178

0.6533

0.6511

0.6544

0.6644

0.6400

0.6811

0.6689

0.6867

0.3400

0.3189

0.2867

0.2844

0.3211

0.3522

0.2867

0.3167

0.3166

0.3378

0.3167

0.3256

0.3311

0.3322

0.3489

0.3333

0.3244

0.3344

0.3356

0.2978

0.3289

0.3311

0.3367

0.3356

0.3167

0.3478

0.3144

0.3500

0.3367

0.3378

0.8622

0.8611

0.8489

0.8344

0.8378

0.8833

0.8644

0.8900

0.8533

0.9022

0.8600

0.8611

0.8956

0.8733

0.8722

0.4378

0.4244

0.4222

0.4011

0.4244

0.4244

0.4367

0.4267

0.4333

0.4133

Design II

0.4444 0.4389

0.4211 0.4433

0.4467 0.4433

0.4256 0.4278

0.4522 0.4500

Design I I I

0.4133

0.4411

0.4444

0.4456

0.4367

0.4467

0.4200

0.4511

0.4278

0.4356

0.9211

0.9244

0.9044

0.8933

0.9022

0.9289

0.9211

0.9356

0.9200

0.9467

0.9256

0.9156

0.9378

0.9233

0.9244

0.4667

0.4667

0.4522

0.4411

0.4511

0.4667

0.4567

0.4744

0.4678

0.4744

0.4489

0.4700

0.4622

0.4744

0.4567

0.4544

0.4578

0.4522

0.4522

0.4511

0.4622

0.4644

0.4611

0.4522

0.4722

0.4767

0.4456

0.4756

0.4489

0.4689

0.9722

0.9711

0.9711

0.9600

0.9771

0.9744

0.9711

0.9767

0.9700

0.9800

0.9767

0.9756

0.9822

0.9644

0.9844

onal Pattern used for the methods was the Only the third replication scheme is discussed.
same, - producing identiczd composition. The
ratio of the variance estimator secured from
VAR(R lH) to the estimator produced by
VAR(R ZH) does measure the relative impact of
poststratification. The average of these ratios
was calculated. The ratios are defined to be

average ratio of variances ~ 900 [VAR(R 1~)] j

for method i = ~ ~ [VAR(R2~)l j

where

i = H,c,s.

Computing the poststratification weights in each
half-sample reduces variance estimates for family
income and physician visits (see the ratio of
VAR(R 1S) to VAR(R2S) in table 11. This is
true for all three designs. A reduction is achieved
for all the remaining variables in design III.
These data provide evidence that poststratifica-
tion does improve precision.

SUMMARY

Introduction

Increasing use of scientific survey sampling
has led to the development of a wide variety of
techniques. These have been produced in re-
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Tabla 11. The relative impact of poststratification on the variance estimates

Variable

Family income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Restricted activitydays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physician visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hospitaldays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion seeingaphysician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Restricted activitydays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physician visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hospital days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion seeingaphysician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Restricted activitydays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physician visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..$... . . . .

Hospitaldays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion seeingaphysician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average value of the ratic) of

I I
VAR(RIH) I VA R(RIC) I VARU?IS)

VA R(R2H) VAR(R2C) vAR(R2s)

0.833

1.030

1.001

1.035

1.034

0.840

1.002

0.973

1.015

0.985

0.851

0.980

0.961

0.967

0.975

Design I

0.833

1.030

1.000

1.036

1.026

Design II

0.844

1.005

0.973

1.004

0.984

Design I I I

0.850

0.982

0.961

0.966

0.973

0.833

1.031

1.000

1.035

1.030

0.842

1.003

0.973

1.009

0.984

0.850

0.981

0.961

0.967

0.974
—

sponse to the need to sample populations that I. Behavior of the two general variance esti-
are geographically scattered, requiring large
PSU’S. Theuseof poststratificationt oadjustthe
distribution of the sample for certain demo-
graphic characteristics has produced further
methodologic refinements. Such features justify
the generic term “complex multistage probabil-
ity samples” to describe the methods. Because
of the complexity of these samples, variance
formulas for estimators are themselves,compli-
cated, and often only approximate expressions
can be obtained. Also, since the criteria of
simple random sampling, independence, and
normality are not met, classical statistical proce-
dures must be examined to determine their
applicability in such an environment. This in-
vestigation has employed an empirical approach
to consider various problems of estimating vari-
ances and making inferences for complex sam-
ples.

By the procedure of Monte Carlo sampling
from a completely specified universe, the follow-
ing points were investigated:

mater methods: Iinea;ization and replica-
tion

2. Distribution of the ratio of an estimated
mean minus its expected value divided by
its standard error with the normal distribu-
tion

3. Study of the bias of two estimators
4.1nvestigation of a simpler variance estima-

tor as an approximation to the correct
replication and linearization procedures

5. Measurement of the impact of poststratifi-
cation on variance estimates produced by
the two general methods

The study considered a particular sample design
and estimation process. The design was complex,
involving stratification and two stages of cluster-
ing with poststratification. The results are for
900 samples drawn for three different sample
sizes and, thus, are based on a considerable
body of evidence.
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Behavior of Linearization and
Replication

The variance of a poststratified ratio esti-
mator was estimated by the replication and
linearization methods. Three different variance
estimators were computed from the replication
method. For each of 900 samples drawn for
three sample sizes, two ratio estimates and their
variances were computed. The variance estimates
produced by these techniques VAR(R I-H),
VAR(R 1S), and VAR(L 1) were compared on
the bases of bias, variance, and mean square
error.

For the sample design and estimation proce-
dure employed here, both the replication and
linearization methods provide generally ade-
quate variance estimates. Almost no severe
abnormalities were observed. The biases of the
methods are satisfactory, and the measures of
total mean square error for the methods are
adequately small with one exception. The vari-
ance of the VAR(L 1) method is generally less
than the variance of VAR(R 1S’), especially for
the variable hospital days.

Normality of Standardized Estimators

The distribution of the ratio

sample estimate -E(sample estimate)

~ VAR(sample estimate)

was studied. When the sample design and estima-
tion procedure result in a complex survey, the
exact distribution of this ratio is unknown. For
this study, such ratios were computed for each
estimator, VAR(R W) , VAR(R 1S), and
VAR(L 1). To examine confidence interval state-
ments, the proportion of times the ratio fell
within stated limits was computed. The sym-
metric limits chosen were the normal deviates
for the 99th, 95th, 90th, and 68.27th quartiles
of a normal distribution. Also calculated was the
proportion of times the ratio fell in the one-
sided intervals (- 1.000, O) (O, +1.000), (- 1.645,
O) (O, 1.645), (- 1.960, O), and (O, 1.960).

Proportions for the symmetric intervals with
VAR(R 1S), VAR(R lH), and VAR(L 1) as the
variance estimator were exceedingly close to

corresponding normal
the proportions for

values. For the most part,
the three methods were

smal~er ~han the proportions for the normal
distribution. Examination of the one-sided inter-
vals showed that the proportions on either side
of zero are not the same. This fact and the
indication of Ieptokurtosis provided evidence
that the distributions of the ratios are not
symmetric.

This body of empirical data indicates that
approximate interval estimates based on normal
distribution theory can be made. Other impor-
tant points are that (1) the true confidence level
is somewhat lower than the nominal IeveI of the
normal, (2) one-sided intervals cannot be con-
structed, and (3) because of asymmetry, these
intervals are not minimum Iength.

Comparison of Two Ratio Estimators

Sampling theory states that ratio estimators
are biased.z 24 In the present study, two esti-
mators, distinguished by the-Ievel of poststratifi-
cation, were investigated: R 1 was a~justed to
the universe totals of a ckiss, and R2 was a
combined ratio estimator with the poststratifica-
tion adjustment at the region level. These
estimators were czdculated for each of the five
variabIes for every seIected sample.

The bias and relative bias were reported. The
differential] bias between 71 (average of rqplicate
and complement estimators of R) and R 1 was
also determined using the first replication equa-
tion. None of the relative biases was greater than
1 percent. Thus, these ratio estimators are
essentially unbiased for the sample sizes studied.

Approximate Variance Estimators

Two computationally simpler methods were
included in the study to determine whether one
of them could be use~ to produce approximate
variance estimates of R 1. The fkst method was a
replication method in which the parent sample
adjustment factors were used in place of sepa-
rate factors for each half-sample. The second
methgd produced an overall variance estimate
for Rl by fi~st estimating the variances of

fiEN c,1 and RS w,1 and then combining the
two correctly. Included in this discussion were
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the results of estimating variances correctly for
R2.

Only the first approximation VAR(R2S) can
be seriously considered for possible use. This
method was more biased than the correct
procedure, but the mean square errors were
within tolerable bounds. The proportions pro-
duced when this variance estimator was used do
not have large deviations from the normal
values. However, the direction of the deviations
varied more than for the VAR(R 1S) method.

The behavior of VAR(R4S), which is a linear
combination of subuniverse estimators, was ade-
quate. The difference between this method and
the approximate one, VAR(R 3S), is that VAR
(R4S) is the appropriate variance estimato~ for
the ratio estimator R2, The ratio estimator R2 is
poststratified to the regional distribution. There-
fore, the variances are weighted averages of the
variance estimators of the region estimators. The
bias, variance, and mean square error were found
to be acceptable and not to be extremely large.
The findings on the ratio of the sample esti-
matm- minus its expected value divided by its
standard error were that for VAR(R4S) the
empirical proportions for the symmetric inter-
vals compared favorably to the proportions for
the normal distributions.

Influence of Poststratification

Theory states that the benefits derived from
adjusting sample results to population totals for
selected characteristics lie in improvement of the
precision of the ratio estimator by insuring that
domains of study have the same distribution in
the sample as in the population. Assessment of
the effect of poststratification on variances was
a natural byproduct of the calculations done for
the other methods. The estimates of variances
produced by the first replication method were
compared with those secured from the second
equation. In the first scheme, poststratification
factors were computed within each half-sample
and each complement using half the sample
data, while the parent sample factors were
applied when making these estimates in the
second scheme.

VAR(R 1S) showed a reduction in variance for
family income in design I; for family income,

physician visits, and proportion seeing a physi-
cian in design II; and for all the variables in
design III.

Conclusions

The outstanding finding was that both the
replication method and the linearization method
are highly satisfactory methods for estimating
variances of poststratified ratio estimators ob-
tained from complex probability surveys of the
type studied here. Features of the sample design
employed were unequal sampling fractions,
stratification, and two stages of clustering. Since
the methods yield adequate variance estimates,
they provide the means for drawing valid infer-
ences with known precision from such surveys,
For these data, the linearization variance estima-
tion method had slightly lower variance and
mean square error than the replication method.
Neither method showed substantial bias.

The proportions based on the ratios of the
sample estimate minus its expected value divided
by its standard error as estimated. by the
replication method were closer to the corre-
sponding normal values than the proportions
with the linearization method as the variance
estimator. However, the ratios with the L 1

variance estimator had a more consistent pattern
than the ratios with the standard error estimated
by replication method. The consistency was
evidenced by the difference between empirical
proportions and the corresponding ones for the
normal distribution getting smaller as sample
size increased.

The applicability of confidence intervals by
using normal distribution theory has been shown
to be adequate. The true level of confidence is
usually lower than the confidence stated, which
should be brought out when making inferences.
Another item that should be mentioned is that
the distributions of the ratios are not symmetric.
Thus, one-sided intervals are not valid and the
intervals constructed are not of minimum
length.

The biases of the ratio poststratified estima-
tors were negligible for the sample sizes studied.

The VAR(R 2S) estimator proved to be an
excellent approximation, and its use is recom-
mended. However, there is a tradeoff involved
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when using an approximation. The gain in
simpler formulas may be offset by larger biases.
Also, the proportions produced when the
VAR(R2S) was used to estimate standard errors
varied widely in the direction of its deviation
from the proportions of the normal distribution.
The investigator should consider that consumers
of the statistics may make such inferences
whether or not he does. Then each must weigh
the losses and the consequences when deciding
about a variance estimation method.

The effect of the estimation component
poststratification was to lower variance and
mean square error. This reduction is important
in making inferences from complex sample
surveys and can be converted into cost savings.

Relevancy to the H IS

The striking feature of this investigation has
been to provide empirical evidence that data
collected in complex multistage probability sur-
veys such as the HIS can be used for analytical
purposes. Variance estimates, which are essential
in analyses, can be calculated by using either the
replication or the linearization variance esti-

mator method. Having adequate variances opens
avenues of further research in developing testing
techniques and other refined analyses, perhaps
along the Iines of multivariate procedures, com-
parable to classicaI ones.

Equally rewarding as finding that suitable
variance estimates can be computed was the
result that tests and confidence intervals can be
approximated by normaI distribution theory.
This allows one to draw inferences about the
morbidity estimates published by the HIS.

The HIS has now a choice of either of the two
methods to use in computations. The variability
of the linearization method was slightly lower
than that of the replication method, but neither
is very biased. The Linearization equations can
easily be interpreted to obtain estimates of
components of variance, which are crucial in
planning such surveys. Another factor to con-
sider when choosing a variance estimator
method is that the replication technique is easiIy
applicable to the estimation of variances for
many types of estimators without deriving new
theory or new computer programs for each
estimator. This is not true for the linearization
method.

000
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APPENDIX I

EXTENT OF BIASNESS OF

Introduction

Another objective of the study was to
determine the extent of biasness of two ratio
estimators. The formulas used and the results
follow.

Estimators

The two estimators of a statistic follow:

1. R ~–poststratification at universe level. The
formula is given in the section Estimators
and Vaiiance Estimators.

2. R2 –poststratification at region level

‘:NC,2 + X;w,2
R2 =

Y

where

ENC = East and North Central regions,

SW = South and West regions,

Rz = poststratified ratio estimate of the pop-
ulation parameter R,

=E YENC,.
‘:NC,2 ‘~N C,a t@1

)’ENC,a‘

TWO RATIO ESTIMATORS

x~Nc,a = the sample estimate for class a in the
ENC Region,

yEI’Jc,a = the population size in class a in the
ENC Region,

=E YSW,.
%i’W,2 U=l‘iW,a t

Ysw,a

‘kW,a = the sample estimate far class a in the
SW Region,

y~w,a = the population size in class a in the
SW Region,

Y; W,a = the sample estimate of population size
for class a in the SW Region.

Comparison of Two Ratio Estimators

Ratio estimators are commonly employed in
complex multistage sample surveys and
usually contain the features of unequal sam-
pling fractions and poststratification. The
distributions of these ratio estimators are un-
known. In this investigation, two such ratio
estimators were employed in order to study the
extent of their biasness.

Each estimation procedure included inflation
by the reciprocal of the selection probability
and poststratification by 24 ethnic-sex-age
classes. This probability of selection is the
product of the probabilities of selection from
each step of selection: PSU and segment. The
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level at which poststratification wzy performed
differentiates the estimators. Thee R ~ estimator
was adjusted to a universe level; R2 was adjusted
to the distribution of subgroups within the ENC
Region and within the SW Region.

Ratio estimators are biased estimators. The
extent of this bias has been studied both
theoretically and empirically. Since these ratio
estimates were calculated for each of fllve varia-
bles for 900 samples for three sample sizes,
sample empirical evidence was available to in-
vestigate the magnitude of the bias of the
poststratified ratio estimators employed here.
The universe was completely specified, so the
parameter R was known. A measure of the bias
is

design I, with the exception of jhe variable
proportion seeing a physician, R ~ has the
smaHer value. For the other two designs, R ~
does not compare as well, and in fact, only
exhibits the smaller bias for the variable propor-
tion seeing a physician in design II and for
hospital days in 111.

The relative bias of the estimators used for
another evaluation of the estimators is defined
to be

Ri-R
relative bias (fii) = ~

where

R = the population parameter,
bias (Ri) = ii - R

fii = the sample mean of the estimates pro-
duced by ratio estimator i,

900

= ~+ ~R~j, i=l,2
j

where

R = parameter value,
900

T
L X R;, +1,2‘i = 900 i=l

Table II shows the values for the two esti-
mates for each variable and design. The relative
bias is always less than 1 percent for any of the

Table I shows that neither of the two esti-
mators consistently had the smaller bias. In

Table 1. The bias of two ratio estimators Table 11. The relative bias of two ratio estimators

Variable Variable
EstimatorEstimator

Design I Design I

-0.0006 -0.0015
0.0031 0.0014

-0.0029 -0.0040
0.0083 0.0078
0.0009 -0.0004

Design II

-0.0047 “ -0.0124
0.0049 0.0021

-0.0135 -0.0197
0.0097 0.0082
0.0059 -0.0035

Family income . . . . . . . . . . . . . . . . . . .
Restricted activity days . . . . . . . . . . . .
Physician visits . . . . . . . . . . . . . . . . . . .
Hospital days . . . . . . . . . . . . . . . . . . . .
Proportion seeing a physician . . . . . . . .

Family income . . . . . . . . . . . . . . . . . .
Restricted activity days . . . . . . . . . . . .
Physician visits . . . . . . . . . . . . . . . . . .
Hospital days . . . . . . . . . . . . . . . . . . . .
Proportion seeing a physician . . . . . . .

Design II

0.0055
-0.0008
-0.0119

0.0016
0.0035

Desi

0.0047
-0.0004
-0.0112

0.0009
0.0041

1 Ill

Family income . . . . . . . . . . . . . . . . . . .
Restricted activity days . . . . . . . . . . . .
Physician visits . . . . . . . . . . . . . . . . . . .
Hospital days . . . . . . . . . . . . . . . . . . . .
Proportion seeing a physician . . . . . . . .

Family income . . . . . . . . . . . . . . . . . . .
Restricted activity days . . . . . . . . . . . .
Physician visits . . . . . . . . . . . . . . . . . . .
Hospital days . . . . . . . . . . . . . . . . . . . .
Proportion seeing a physician . . . . . . . .

0.0007
-0.0006
-0.0025

0.0015
0.0006

Desi!

0.0006
-0.0CS03
-0.0Q24
0.0008
0.0006

I Ill

Family income . . . . . . . . . . . . . . . . . . .
Restricted activity days . . . . . . . . . . . .
Physician visits . . . . . . . . . . . . . . . . . . .
Hospital days . . . . . . . . . . . . . . . . . . . .
Proportion seeing a physician . . . . . . . .

-0.0082
-0.0012
-0.0210

0.0040

-0.0064
-0.0010
-0.0198

0.0045

Family income . . . . . . . . . . . . . . . . . . .
Restricted activity days . . . . . . . . . . . .
Physician visits . . . . . . . . . . . . . . . . . . .
Hospital days . . . . . . . . . . . . . . . . . . . .
Proportion seeing a physician . . . . . . . .

-0.0010
-0.0008
-0.0045

0.0038
-0.0003

-0.0008
-0.0007
-0.0042

0.0043
0.00010.0021 I 0.0007
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Table I I 1. Distribution of differential bias of ;I and Al as a fraction

Lessthan –.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–.30to–.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.25to-.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–.20to–.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.15to–.lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–.loto–.05 . . . . . . . . . . . . ’. . . . . . . . . . . . . . . . . . . . .

-.05to-.oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.ooto .05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.05to.lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.loto .15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.15to .20 . . . . ..’...... . . . . . . . . . . . . . . . . . . . . . . .

.20to .25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.25to .30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Greaterthan ,30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lessthan-.3O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.30to–.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.25to-.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.20to–.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.15to-.lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.loto–.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.05to.oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.ooto .05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.05to.lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,

.loto .15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.15to .20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.20to .25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.25to .30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Greaterthan .30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lessthan -.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.30 to-.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.25to-.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–.20to–.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–.15to-.lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.loto–.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-.05to.oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.ooto .05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.05to.lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.loto .15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.15to .20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.20to .25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,.

.25to .30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Greaterthan ,30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,

theestimated standard error of ~ for replication method 1

Variable

Restricted
Family Physician Hospitel

Proportion

activity
income

seeing a

days
visits days

physician

4

4

5

18

45

142

345

249

66

17

2

3

0

0

0

0

0

0

1

24

327

438

100

7

3

0

0

0

0

0

0

0

0

4

231

578

82

5

0

0

0

0

4

6

8

29

49

139

265

257

98

30

12

2

1

0

0

0

0

2

9

89

333

363

93

7

4

0

0

0

0

0

0

0

0

30

394

437

39

0

0

0

0

0

Design I

5

5

2

13

64

129

304

267

86

20

3

1

1

0

Design II

o
0
0
3

7

42

314

423

100

11

0

0

0

0

Design Ill

o
0
0
0
0
6

270

577

47

0

0

0

0

0

7

3

9

10

42

115

291

264

113

27

10

6

3

0

1

0

1

3

13

78

318

350

111

17

7

1

0

0

0

0

0

0

1

25

328

467

68

9

1

0

0

0

18

12

22

40

97

178

254

i 73

74

22

6

1

2

1

0

0

0

2

1

57

344

369

115

10

2

0

0

0

0

0

0

0

1

13

310

486

82

7

1

0

0

0
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estimates and only approaches 1 percent for R 1
in design I for hospital days. As the sample size
increases, the biases should decrease. However,
here the relative biases are very small and exhibit
no consistent decrease. Also, the relative biases
are not always positive or negative, but vary.
Neither of the two estimators employed yields
the smallest value consistently across the statis-
tics and designs.

McCarthyl 5 developed an analytical tech-
nique for checking on the bias of the ratio
estimate using a byproduct of the replication
variance estimation method. This method was
employed to provide a further study of the bias
of RI, since it is the common estimator in
complex sample surveys. The replicate estimate
R’l~ and the complement estimate R *1,aand
thei’r average 71 are each estimates of R secured
from half the data rather than the entire sample.
Since the bias decreases with increasing sample
size, ~he estimate 71 should have greater bias
th+ RI.Another measure of the absolute bias
of R ~ is the differential bias between 71 and R 1.
If values R ~ and 71 for a set of sample data are
nearly the same, it is reasonable to beIieve the
differential bias is small. Thus, the absolute bias
of either estimator is also smalI.

This approach was used to examine the bias
of the ratio estimator R 1. The half-sample
estimates R‘1~ computed in the VAR(R lEZ)
scheme, and the estimates R *1,calculated in the
VAR(R 1C) scheme, and the average of the two
estimates across all the half-samples were used.
The differential bias of ?1 and R ~wasexpressed

as a fraction of the estimated standard error of
i=l. The formula is

7.. - RI

J VAR(~ )

where

( \F1=+j:R;a+&a,;
Ci=’ ~=1

~~ = the ath half-sample estimate of RR,
computed in the R lkl variance
scheme,

R~a = the ath complement half-sample
estimate of R computed in the
R lC variance scheme, and

As can be seen in table III, biases appear to be
smalI and to decrease with sample size.

These data indicate that the bias of the two
poststratified ratio estimators used in this inves-
tigation is small and is not a factor to be
concerned about. In the properties studied, none
of the two-ratio estimators clearly dominated.
However, R ~, with the exc:ption of family
income, is perhaps better than R2.

000
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Introduction

The purpose of
was to ascertain
estimator can be

A SIMPLER

APPENDIX II

VARIANCE ESTIMATOR

this phase of the investigation
whether a simpler variance

used as an approximation to
the correct replication and lineariza~ion variance
estimates of the ratio estimate R 1. Another
aspect explored was to examine an alternative
ratio estimator for which correct variance esti-
mates are easier to compute.

Variance Estimators for Estimator 1

The following two replication methqds are
approximate estimates of the variance of R 1.

1. VAR(R2H), VAR(R2C), and VAR(R2S)

Here, instead of calculating a new poststratifica-
tion factor for each half-sample and each com-
plement replicate, the multiplication factor de-
rived in the parent sample was used. Again, the
orthogonal pattern in table 4 was used, which
means that these replicates were the same as the
ones in the variance schemes R lH, R 1C, and
R 1S. The formulas are

20

VAR(R2H) = +~(R;,& - RI )2
II

20

VAR(R 2C)= & ~l(R.fa - RI )2
a’

VAR(R2S)=+ [VAR(R2H)+VAR.(R2C)]”

where

%2= the ath replicate estimate of the param-
eter with parent poststratification fac-
tors,

R.$a = the cxth complement estimate with par-
ent poststratification factors.

2. VAR(R2H), VAR(R3C), and VAR(R3S)

The variance estimates for the region ratio
estimates were calculated and then combined to
give another approximation to the variance of
RI. When the number of strata in a sample
design is too large, it may not be feasible to
consider employing an orthogonal pattern of
size k X k, where k is the necessary :number of
half-samples required. An illustration of this
might be a design which has, say, 400 strata. In
this case, an approximation or alternative proce-
dure could be substituted for the correct
formula. By computing the estimate in this
manner, two orthogonal patterns, one for the
ENC Region and another for the SW Region,
each requiring less than k replicates, can be
employed rather than ‘a single pattern of size k X
k.

The ratio estimator R 1 can be =pr~ssed =

‘ENC,l =
YENC~ENC,I + Ysw&w,I

Yand
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where

‘#NC,l
‘ENC,l = YENC

$X;NC .?
‘ Ya.

YENC
,where the sum is over

PSU’S in the ENC Region,

&!Nc, ~ = the poststratified ratio estimate of
health characteristic x for the ENC
Region,

4’W ,1
%w,l – ysw

2xiW,a~~=1
. ,where the sum is over

Ysw

PSU’S in the SW Region,

4’W ,1 = the poststratified ratio estimate of
health characteristic x for the SW
Region.

Then the variance estimator is

VAR(fil) =
Y#NCv~R(fiENC, 1)+Ygwv~R(&w,l)

Y*

The two orthogonal patterns used are in tables
IV and V. Another feature of this approxima-
tion is the level at which poststratification was
done for ~he half-sample estimators. Since the
estimator R 1 is poststratified at a universe leveL
these factors should be computed within each
half-sample at a universe level, in order for the
half-sample estimates to be equivalent. However,
this cannot be done when two different-sized
patterns are used. The solution was to apply the
parent factors. Formulas for these variances are

1 f(R~Nc .- fiENc,I )2VAR(~ENc, I :~) = fia=l ,

1 &R#NC,. - ‘ENC,1)2vAR(kENc,l :C) = fi~=l

VAR(fiENc,l:S)= ~[VAR(kENc,l :~) + VJW~ENC,I :C)l

ijR&v,. - &l,,)2VAR(R5W,1:C) ‘&=l

VAR(&w,l :s) = ~[VAR(&w,l :W + vAR(~sw,l :C)]

VAR(R3H) = y~Nc [VAR(kE~c,l :~~)] + Y;w [vAR(~sw,I :~

VAR(R3C) = y~Nc [vAR(~ENc,l :C)l +Y~w [vAR(~sw,I :Cl
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Table IV. Orthogonal pettern for ENC Region variance estimates

Strata in the ENC Region
Replicate

1 2 34 5 9 10 11 12 13

1 ......
2 . . . . . .
3 . . . . . .
4 . . . . . .
5 . . . . . .
6 . . . . . .
7 . . . . . .
8 . . . . . .
9 . . . . . .

lo . . . . . .
11 ......
12, . . . . .

?- +-- +-++--- - +
+-- +-i-+--- --1--

+++---+- +

● F-F-I----?=- + +

++---+-+- +-

+----+-++ - -+
--- +- i-+-+ +
-- +-4-+--++ +

+-- +-+-+.+ +-
+-++-+++ --

++--4-++- --

--- --- -- --

1 ,~+~~denotes +1 and “-” denotes -1. i

Table V. Orthogonal pattern for SW Region variance estimates

Strata in the SW Region
Replicate

6 7 8 ’14 15 16 17 18 19

1 ........
2 . . . . . . . .
3 . . . . . . . .
4 . . ...4..
5 . . . . . . . .
6 . . . . . . . .
7 . . . . . . . .
8 . . . . . . . .

9 . . . . . . . .
lo . . . . . . . .
11 . . . . . . . .
12 . . . . . . . .

+---+++- -
+--+----4- + i-

++ -+--- + +

++ -+--- +-
+- ++-+-- --
i- i--++--+ --
+-l-+-++- +-

+++-+-i- +
-- +++-++-
--- ++ +-+ +
+---+++ - i-
--- --- ---

“’+r’denotes+l and’’-’’ denoles-l

and

VAR(R3S) = ~[VAk(R3H) + VAR(R3C)]

where

R’ENC,a = the cxth replicate ratio estimate of
health characteristic x for the ENC
Region with parent sample post-
stratification factors used,

R’SW,a = the ath replicate ratio estimate of
health characteristic x for the SW
Region with parent sample post-
stratification factors applied.

Variance Estimators for Estimator 2

The variances for the estimates ~2 were
estimated by the correct replicatilcm method
only.

For R2, the variance estimators are
VAR(R4H), VAR(R4C), and VAR(R4S). This
scheme consists of estimating the va~iances for
the regional estimates RE N~,2 and R~ w,2 and
i~en combining them for a variance estimate of
R2. This process is appropriate since, for the
parent sample estimate, poststratification was at
the regional level. For the half-sample and the
complement half-sample estimates, the regional
poststratification factors were calculated each
time. The orthogonal patterns in tables IV and V
were used in producing the variances for

fiE N c,2 and&w, z. The formulas are

-
~ = YENCRENC,2 + Y~wRsw,2

2 Y

where

RENCz = the ratio estimate for the ENC Re-
9

gion with poststratification at a re-
gional level,

Rswz = the SW Region ratio estimate with
9

poststratification at the regional
level,

VAR(&2 ) =

Y~Nc [VAR(.ENC,J1 + Ysw [vAR@SW,2)~

Y2

1SR’ ‘ENC,2)2,‘AR(RENC,2 ‘H) = ~Q=l( ENC,. - R
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-& R* -~ENC,,)2
‘AR(RENC,2: c, = Iza=l ( ENC,ct

VAR(fi~NC,2:S)=~[VAR(fiENc,2:H)+vAR(~ENc,2:c)l

VAR(RSW,2:S)=;[VAR(fisw,2:H)+ v@~sw,2: c)]

{
VAR.(A!4H)= y$Nc[VAlZ(~Nc,2:.H)]+Y~w [VAR(RSW,2:H)I}-$

VAR(R4C)= {Y:NC[vAR(&J@ c)] +Y:w [vAR@sw,z’ c)]};

vAR(R4.s)=~[vAR(R@ +vAR(R4c)]
L,

where

R’ENC,CY = the ath half-sampIe ratio estimate
for the ENC Region adjusted to re-
gion leveI,

R’Sw,ci = the ath half-sample ratio estimate
for the SW Region adjusted to re-
gion level.

Approximate Variance Estimators

Investigators would like to obtain estimates of
variance by simple methods. The results of two
approximate methods thought to be solutions to
this problem are discussed in this report.g One
of the methods, VAR(R 21Y), has been used both
by the NCHS and the University of Michigan
SRC, The discussion is based on the results of
the third replication form.

For this evaluation, bias, variance, and mean
square error were computed. The definitions of

gTW~more ~pproximations of the correct VzUkiC;oCStimdCS

were also investigated. These results are given in Bean.

these measures are the same as given in the
Results section. Inspection of table VI shows the
biases for VAR(R 3S) for every variable decreas-
ing with increasing sample size. The VAR(R2S)
method displays a different pattern. For family
income and restricted activity days, the biases of
VAR(R 2S) reduce as the sample size increases;
for the other three variables, the values increase,
going from design I to design II, but then drop
to their lowest in design III. VAR(R2S) dpes
sometimes underestimate the variance of R 1.
This occurs in design I for the variable propor-
tion seeing a physician and in designs H and III
for the variable restricted activity days. Regard-
less that the biases for three variables increase,
going from design I to design II, the R2S
method behaves better than the R 3S approxima-
tion. It always has the lowest bias.

Both the quantities variance and mean square
error in tables VII and VIII indicate that the
R2S method outperforms VAR(R 3S) without
any question. This procedure always has the
smaller value of variance or mean square error
just as in the base of bias.

A possible explanation for why VAR(R3S) is
not a good approximate variance estimator is
offered. VAR(R 3S) is a variance estimator for
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Table VI. The bias of the approximate variance estimators of the sample estimator ~1

Variance estimator

VAR(R2S) . . . . . . . . . . . . . . . . . . . .
VAR(R3S) . . . . . . . . . . . . . . . . . . . .

VAR(R2S) . . . . . . . . . . . . . . . . . . . .
VAR(R3S) . . . . . . . . . . . . . . . . . . . .

VAR(R2S) . . . . . . . . . . . . . . . . . . . .
VAR(R3S) . . . . . . . . . . . . . . . . . . . .

Variable

Family Restricted Physician Hospital Proportion

income activity days visits days seeing a
physician

2.469X 10”
1.222X 10s

1.219X 104
5.893X 10’

Design 1

2.164X 10-’ I 3.677X 10-3
5.885X 10-’ 3.498X 10-2

Designll

–2.705X 10-= I 3.984x 10-3
1.334X 10-1 1.884X 10-2

Design Ill

1.621X 10-3
3.647X 10-3

1.656X 10-3
2.489X 10-3

-1.078 X 10-5
6.536 X 10 “

2.027 X 10-s
3.344 x 10-4

4.173 x 103 I -2.912 X 10-3 I 1.097 x 10-3 I 3.593 x 1o+ I 6.765 X 10-$
2.461 X 104 6.099 X 10-2 8,263 X 10-3 7.021 X 10-4 1.437X 10+

Table VI 1. The variance of the approximate variance estimators of the sample estimator ~j

Variance estimator

VAR(R2S) . . . . . . . . . . . . . . . . . . . .
VAR(R3S) . . . . . . . . . . . . . . . . . . . .

VAR(R2S) . . . . . . . . . . . . . . . . . . . .
VAR(R3S) . . . . . . . . . . . . . . . . . . . .

VAR(R2S) . . . . . . . . . . . . . . . . . . . .
VA R(R3S) . . . . . . . . . . . . . . . . . . .

Variable

Family Restricted Physician Hospital
Proportion

income activity days
seeing a

visits days
physician

1.594X 109
2.678X 10]0

4.800X 10s
4.633X 109

Design I

0.190X 10
I

2.989X 10-3

0.244X 10 5.020X 10-3

Design I I

5.320X 10-’ 9.071X 10-4
5.901 x 10-1 1.418X 10-3

5.298 X 10 ‘4
5.904 x 10-4

8.409 X 10 ‘s
8.606 x 10-’

1.541 x 10-*
9.937 x 10-7

3.729 X 10-’
1.810x 10-’

Design I I 1

1.364 X 10s 1,495X 10-1 8.956 X 10-s ‘ 1.373X 10-’ 1.I09X 10-9
1. I06X 10$’ 1.594X 10-’ 1.807 X 10-4 1.447X 10-5 4.402 X 10-8

R ~, the parent sample estimator, obtained from
a weighted average of variance estimators of

RENC,l and Rsw,l. The estimating equation
poststratifies the estimators to universe levels
and, thus, these subuniverse estimators are ad-
justed to an overall distribution of ethnic-sex-
age, rather than to subuniverse distribution.
Questions that should be asked are Wha~ is the
magnitude of the bias in RENC,l and Rsw,l ?
and If the bias is not negligible, what is the

effect on the variance estimator? These ques-
tions cannot be directly answered here because
the biases of the subuniverse estimators were not
calculated. However, VAR(R 4S) is the appropri-
ate weighted variance estimator for a ratio
estimator poststratified to regional levels, and its
performance can be studied.

The analysis was based on comparison of bias,
variance, and mean square error. The formulas
for these measures follow:
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bias [VAR(R4S)] = VAR(R4S) - s?
R2

VAR[VAR(R4S)] =

@ {[vWR45)]j - VAR(R4S)}2

MSE[VAR(R4S)] = VAR[VAR(R4S)]

+ bias’ ~AR(R4S)]

where

900

J-z vAR(R4s)]j.VAR(R4S) = 900 j=~ [

The biases, variances, and mean square errors
for each variable and design are given in table
IX. For design I, the R4S method has a range of
4.813 X 10-5 for proportion seeing a physician
to 9.182 X 10-3 for family income. In designs II
and III, the smallest value is again for proportion
seeing a physician and the largest bias for family
income. Unlike the appropriate variance esti-
mator VAR(R 1S) for the ratio estimator R 1, the
biases here decrease with increasing sample size,
which is a desirable property.

The range for the variance of the variance
estimator R 4S is 1.191 X 109 for family income

to 2.077 X 10-8 for proportion seeing a
physician in design I; in design II, the range is
3.297 X 108 to 3.748 X 10-9; and in design III,
it is 1.008 X 108 for the variable family income
to 1.072 X 10-9 for proportion seeing a
physician. The mean square errors exhibit a
similar pattern.

Another consideration is the distribution of
the sample estimate minus its expected value
divided by its estimated standard error. The
ratio computed was

R2 - E(~2)

Wmm

where

900-
E(R2) = i2 ‘&~R2ja

The proportion of times these ratios fell within
stated limits of the normal distribution are
displayed in table X. Only 12 times out of a
possible 60 did the empirical proportions for
VAR(R4S) surpass the normal values. The mag-
nitudes of VAR(R4S)’S deviations are compara-
ble to the amounts for VAR(R 1S) with no
discernible tendency for the differences to be-
come smaller across the designs. The total error
of the variance method is satisfactory, but there

Table VI 11. The mean square error of the approximate variance estimators of the sample estimator ;,
—,-

i Variable

Variance astimator
Family Restricted Physician Hospital

Proportion

income
seeing a

activity days visits days
physician

I Design I

VAR(R2S) . . . . . . . . . . . . . . . . . . . . 2.204 x 109
I

0.195X 10
I

3.003 x 10-3

I

5.324 X 10-4

I

1.552X 10-$

VAR(R3S) . . . . . . . . . . . . . . . . . . . . 3.763 x 10’0 0.278 X 10 6.245 X 10 ‘3 6.037 X 10-4 1.421 X 10-’

Design I I

VAR(R2S) . . . . . . . . . . . . . . . . . . . . 6.289 X 10s I 5.328X 10-’ 9.229 X 10-4 I 8.684 X 10-’ I 4.140X 10-9

VAR(R3S) . . . . . . . . . . . . . . . . . . . . 8.IIOX 109 6.079 X 10-’ 1.774X 10-3 9.226 X 10-s 2.930 X 10-’

Design 11I

VAR(R2S) . . . . . . . . . . . . . . . . . . . . 1.539 x 108 1.495X 10-’ 9.320 X 10 “ 1.386X 10-5 1.155X 10-9

VAR(R3S) . . . . . . . . . . . . . . . . . . . . 1,713X 10’ 1,631 X 10-’ 2.490 X 10-’ 1.496X 10-s 6.470 X 10-8
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Table IX. The bias, variance, and mean square error of R4S variance estimator of Rz

Variable

Family income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Restricted activity days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physician visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hospital days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion seeingaphysician . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Restricted activitydays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physician visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hospital days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion seeingaphysician . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Restricted activitydays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physician visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hospital days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion seeingaphysician . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

are indications that the size of the bias is a
problem. Although it would be difficult to state
any general rules about drawing inferences when
the stated confidence level could be in error in
either direction, constructing such intervals is
conceivable.

The method VAR(R2S) can offer a savingsin
computer time, since the process of calculating
new poststratification weights within each half-
sample is eliminated. Because the comparable
measures used show this method to be a good
approximation, it is also compared with VAR
(RIS). The biasof VAR(R2S) islessin thethree
designs for restricted activity daysand in designs
I and II for the variable hospital days. In the
case of variance, VAR(R2S) has the lower value
for variables restricted activity days, hospital
days, and proportion seeing a physician in d=iw

I and also for hospital days in design II. The
mean square errors of VAR(R 2S) are lower for
the same designs and variables as the variances.

For a better understanding of the comparison
between the two methods, the relative biases
within a design are averaged over the variables.
The relative bias is defined as

(

(

i

T

I

Bias I Variance I Mean squara

error

9.182X 103

3.944 x 10-’
4.517 x 10-3

3.398 X 10-3

4.813 X 10-s

2.425 X 103

4.057 x 10-’

3.626 X 10-3

2.759 X 10-3

2.476 X 10-$

-8.598 X 102

-1.357 x 10-2
1.214X 10-3

3.161 X 10-’

5.098 X 10-6

Design I

1.191 x 109
0.208 x 10
3.173X 10-3
1.961 X 10-3
2.077 X 10-s

Dasign I I

3.297 X 10“
5.433 x 10-’
9.455 x 10-”
2.095 X 10 ‘4
3.748 X 10-9

Design I I I

1.257 X 109
0.224 X 10
:3.193 x 10-3
‘i.973 x 10-3
2.308 x 10-s

3.356 x 108
!5.450 X 10-*
9.587 X 10-4
:2.171 X 10-4
4.362 X 10-9

1.008 X 10a 1.015X 108
1.405X 10-1 ‘1.407X 10-’
8.227 X 10 ‘s 8.374 x 10-*
1.594X 10-s 1.604X 10-s
1.072 X 10-3 ‘1,098 X 10-9

V-4R(R 1S) -<
RI

relative bias [VAR(R 1S)] = ~ -
.
‘1

VAR(RI!S) - #
‘1

relative bias [VAR(R2S)] = ~
-
‘1

The. average relative biases for VAR(R 1S) for
the three designs are 0.0782, 0.0656, and
0.0363 as compared to 0.0862, 0.1231, and
0.3150, the averages for VAR(R 2S). Thus, these
averages show that as the sample size increases,
the magnitude of the bias in VAR(R 2S) in-
:reases, whereas for VAR(R 1S) it decreases.

To complete this discussion, the proportion
of times the ratio of the sample estimate minus
its expected value divided by the R 2S estimated
variance is within certain limits is in table XI.
rhe observation made is that 16 out of 60
empirical proportions are larger than the same
proportions for the normal distribution. Con-
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Table X. Proportion of times the sample estimate minus its expected value divided by R4S estimate of standard error is within the

Variable

Family income .
Restricted activ-

ity days . . .
Physician visits .
Hospital days . .
Proportion

seeing a
physician . .

Family income .
Restricted activ-

ity days . . .
Physician visits .
Hospital days . .
Proportion

seeing a

physician . .

Family income .
Restricted activ-

ity days . . .
Physician visits .
Hospital days . .
Proportion

seaing a
physician . .

stated limits

Limits

*1.000 -1.000,0 0, 1.000 *I .645 -1.645,0 0, 1.645 21.860 -1.960, 0 0,1.960 *2.576

Design I

0.6878

0.6733
0.6578
0.6722

0.6911

0.6922

0.6556
0.6878
0.6789

0.7011

0.6689

0.6578
0.6867
0.6856

0.6822

0.3478

0.3300
0.3144
0.3211

0.3522

0.3489

0.3044
0.3400
0.3189

0.3644

0.3211

0.3356
0.3344
0.3367

0.3378

0.3400

0.3433
0.3433
0.3611

0.3389

0.3433

0.3511
0.3478
0.3600

0.3367

0.3478

0.3222
0.3522
0.3489

0.3444

0.8867

0.8967
0.8722
0.8478

0.9011

0.8833

0.8856
0.8967
0.8833

0.9167

0.8667

0.8700
0.9033
0.8811

0.8856

0.4533

0.4456
0.4289
0.4222

0.4456

0.4433

Q.4611
0.4433
0.4256

0.4556

Design I I

0.4333 0.4500

0.4256 0.4600
0.4578 0.4389
0.4356 Q.4478

0.4678 0.4489

Design III

Q.4167

0.4456
0.4467
0.4456

0.4378

0.4500

0.4244
0.4587
0.4356

0.4478

0.9422

0.8444
0.9366
0.9033

0.8478

0.9344

0.9344
0.9422
0.9367

0.9544

0.9233

0.9256
0.8444
0.9278

0.9322

0.4766

0.4767
0.4700
0.4644

0.4678

0.4633

0.4567
0.4833
0.4711

ID.4867

0.4456

0.4733
0.4689
0.4744

0.4588

0.4667

0.4678
0.4656
0.4389

0.4800

0.4711

0.4778
0.4589
0.4656

0.4678

0.4778

0.4522
0.4758
0.4533

0.4733

0.9844

0.9789
0.9800
0.9556

0.9811

0.9778

0.9778
0.9800
0.9766

0.9856

0.9800

0.9744
0.9844
0.9667

0.9867

trustingly, the VAR(R 1S) estimates exceeded deviations are smaller for VAR(R 2S). These
the normal proportions only six times. This average differences for each statistic across the
comparison is done because, ideally, when an five limits and three designs are +.0145, -.0197,
analyst uses such an approximation, he would -.0081, -.0015, and - .0097. The average dif-
like to know in which direction he could be ferences of VAR(R 1S) are -.0168, -.0200, and
making an error. A somewhat unexpected -.134. This body of empirical evidence supports
observation is that even though the differences the proposal of using VAR(R2S) as an approxi-
are not in the same direction, the average mation.
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Table X 1. Proportion of times the sample estimate minus its expected value divided by /?2S estimate of standard error is within the

Variable

Family income .

Restricted activ-

ity days . .

Physician visits .

Hospital days . .

Proportion

seeing a

physician . .

Family income .

Restricted activ-

ity days . . .

Physician visits .

Hospital days .

Proportion

seeing a

physician . .

Family income .

Restricted activ-

ity days . . .

Physician visits .

Hospital days . .

Proportion

seeing a

physician .

stated limits

Limits

*I .000 –1.000,0 0,1.000 +1.645 -1.645, 0 0, 1.645 * 1.960 -1,960,0 0, 1.960 *2.576

Design I

0.7433

0.6689

0.6567

0.6689

0.6489

0.7256

0.6433

0.6811

0.6722

0,6900

0.7033

0.6533

0.7011

0.6933

0.7011

0.3811

0.3289

0.3100

0.3022

0.3400

0.3711

0.3000

0.3311

0.3267

0.3533

0.3378

0.3344

0.3411

0.3500

0.3556

0.3622

0.3400

0.3467

0.3667

0.3089

0.3544

0.3433

0.3500

0.3456

0.3367

0.3656

0.3189

0.3600

0.3433

0.3456

0.9122

0.8844

0.8744

0.8644

0.8544

0.9133

0.8878

0.9011

0.8800

0.9144

0.4644

0.4367

0.4333

0.4200

0.4311

0.4478

0.4478

0.4411

0.4444

0.4233

Design I I

0.4611

0.4411

0.4522

0.4389

0.4622

0.4522

0.4467

0.4489

0.4411

0.4522

0.9544

0.9333

0.9244

0.9200

0.9256

0.9500

0.9333

0.9378

0.9344

0.9522

Design II I

0.9011 I 0.4344 0.4667 0.9489

0.8744

0.9056

0.8889

0.4478

0.4433

0.4533

0.4267 0.9289

0.4622 0.9489

0.4356 0.9322

0.8822 0.4400 0.4422 0.9300

0.4822

0.4656

0.4644

0.4556

0.4667

0.4800

0.4611

0.4744

0.4767

0.4800

0.4722

0.4678

0.4600

0.4644

0.4589

0.4700

0.4722

0.4633

0.4578

0.4722

0.4611 I 0.4878

0.4733

0.4700

0.4789

0.4556

0.4789

0.4533

0.4589 0.4711

0.9933

0.9767

0.9756

0.9589

0.9833

0.9844

0.9733

0.9853

0.9756

0.9833

0.9900

0.9767

0.9833

0,9689

0.9844

000
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Series 4.

Series 10.

Sen”es11.
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Series 14.

Series 20.

Series21.
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Formerly Public HaaJth Sewvica Publication No. 1000
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Center for Health Statistics and its offkes and divisions, &ta collection methods used, definitions,
and other material necessary for understanding the data.

~ta evaluation and methods research. —Studies of new statistical methodology including: experi-
mental tests of new survey methods, studies of vital ststiatics collection methods, new analytical
techniques, objective evaluations of reliability of collected data, contributions to statistical theory.

Analytical s$udies. —Reports presenting analytical or interpretive studies based on vital and health
statistics, carryfng the analysis further than the expository types of reports in the other series.

Documents and committee reports. - Final reports of major committees concerned with vital and
health statistics, and documents such as recommended model vital registration laws and revfsed
birth and dqath certificates.

Dato from the Health Interw”ew Survev.— Statistics on illness, accidental injuries, disability, use
of hospital, medical, dental, and other services, and other health-related topics, based on data
collected in a continuing national household interview survey.

Data from the Haulth Ezaminatwn Survey. —Data from direct examination, testing, and measure-
ment of nafional samples of the civilian, noninstitutional population provide the basis for two types
of reportsi (1) estimates of the medically defined prevalence of specific diseases in the Unfted
States and the distributions of the population with respect to physical, physiological, and psycho-
logical characteristics; and (2) analysis of relationships among the various measurements without
reference to an explicit finite universe of persons.

lkta from the Institutional Population Surveys. —Statistics relating to the health characteristics of
persons in institutions, and their medical, nursing, and personal care received, based on national
samples of establishments providfng these services and samples of the residenta or patienta.

Data from the Hospital Discharge Survey. —Statistics relating to discharged patients in short-stay
hospitals, based on a sample of patient records in a national sample of hospitals.

Data an health resources: manpower and facilities. —Statistics on the numbers, geographic distri-
bution, and characteristics of health resources including physician, dentists, nurses, other health
occupations, hospitals, nursing homes, and outpatient facilities.

Data on mortality. —Various statistics on mortality other than as included in regular annual or
monthly reportS —special analyses by cause of death, age, and other demographic variables, also

geographic and time series analyses.

Data on nafality, mawiage, and divorce. —Various statistics on natslity, marriage, and divorce
other than as included in regular annual or monthly reports-special analyses by demographic
variables, also geographic and time series analyses, studies of fertility.

Data from the National Natality and Mortality Survevs. — Statistics on characteristics of births
and deaths not available from the vital records, based on sample surveys stemrnfng ftom these
records, including such topics as mortality by socioeconomic class, hospital experience in the

r last year of life, medfcal care during pregnancy, health insurance coverage, etc.

For a list of titles of reports published in these series, write to: Office of Information
National Center for Health Statistics
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