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FOREWORD

The Center contracted with the School of Public Health, Johns Hopkins
University and Dr. Richard Royall to investigate the possible application to the
Hospital Discharge Survey of the prediction approach to finite population sampling.
This report presents the results of the research completed under these contracts.

The prediction approach is based on “super-population” probability models.
It is an alternative to the conventional theory of sampling from finite populations
and does not apply the conventional concept of repeated random sampling from a
fixed population. Rather, it applies classical prediction theory to solve sampling
problems. Viewing finite population sampling problems as prediction problems is
a relatively new development and hence is probably known to only a few statis-
ticians. Furthermore, Dr. Royall’s style is throughout the report quite elegant.
Therefore, we asked him to prepare a nonmathematical description of the predic-
tion approach and indicate how it differs from the classical approach. This material
is presented in the Introduction.

We commissioned this research project in anticipation of redesigning the
Hospital Discharge Survey. Overall, the findings presented in this report throw a
favorable light on the existing design and estimator. The findings suggest some
changes for improving the design and also identify some areas for further
research. We believe this report will help us to develop an improved design for
the Hospital Discharge Survey.

Dr. Jay Herson worked with Dr. Royall and the Office of Information in pre-
paring this manuscript for publication.

MoNROE G. SIRKEN
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THE PREDICTION APPROACH TO FINITE POPULATION
SAMPLING THEORY: APPLICATION TO THE HOSPITAL
DISCHARGE SURVEY

Richard M. Royall, Ph.D., Associate Professor, Department of Biostatistics, School of Public Health,
Johns Hopkins University

INTRODUCTION

The material presented is the result of an un-
orthodox approach to finite population sampling
problems. Specifically, it describes the elements
and results of an application of this approach to the
Hospital Discharge Survey (HDS), a continuing
sample survey of the Nation’s short-stay hospitals
conducted by the National Center for Health
Statistics. It is not presented as a finished and
polished analysis but as a basic sketch whose
contents must be critically evaluated, adjusted,
and refined if it is to be of real value in HDS. The
mathematical model used in this work expresses
plausible initial assumptions about certain variables
of interest. With experience will come increasing
knowledge concerning the HDS population and
relationships among its variables. Such information
must be used to alter and develop the basic model
described in this report.

In this section the approach guiding the investiga-
tion will be contrasted with the conventional ap-
proach to finite population sampling problems. For
purposes of illustration, an imaginary population of
50 hospitals in some relatively homogeneous geo-
graphical region will be considered. The number of
beds in each hospital is known. A sample of 10
hospitals is selected, and the number of patients
discharged from these 10 during some given time
period is observed. The problem is to estimate the
total number of discharges from all 50 hospitals
(the population total).

In its basic, simplest version, the conventional
approach treats the 50 unknown numbers of dis-
charges as unknown constants. The only random
variation in the problem is injected by the sampler,
who uses a random sampling plan to decide which
10 hospitals will comprise the sample. This sampling

plan specifies the probability of selection of each
potential sample. A sampling and estimation pro-
cedure consists of a sampling plan together with an
estimator or formula for calculating estimates from
samples. .The characteristic feature of orthodox
sampling theory is that a procedure is evaluated in
terms of the statistical properties of the estimator,
principally its expected value and variance, under
the random sampling plan chosen by the sampler.
Of course other factors, e.g., costs, feasibility, and
ease of estimation of variance from the sample
influence the choice of a procedure. Nevertheless,
the basic objective is to find, subject to limitations
such as cost, a procedure whose estimator is un-
biased (at least approximately) and has small
variance.

For present purposes only one sampling plan and
two estimators are considered. The plan calls for
simple random sampling— only samples which con-
sist of exactly 10 different hospitals are allowed, and
all such samples are equally likely to be selected.
Let t1, ¢2, . . ., tsorepresent the respective numbers
of discharges from the 50 hospitals, let by, b2, . . .,
bso be their respective numbers of beds, and let s
represent the set of 10 hospitals in the sample. A

50
simple estimator of the population total, T= Et,-,
1

is the product of {the average number of discharges
per hospital in the sample} X {the number of
hospitals in the population}, i.e.,

( 2 z,-/m) 50. 1)

This is called the simple expansion estimator. Under

1



the present’ (simple random) sampling plan it is
unbiased.

Another estimator (the ratio estimator) esti-
mates T by the product of {the average number of
‘discharges per bed in the sample} X {the total
number of beds in the population}:

(Zti/;bi)i’bi. @)

Under the simple random sampling plan the ratio
estimator is biased. . .
Two observations concerning the variances of the

expansion and ratio estimators are needed:

(i) both variances are defined as average
values of squared errors over all samples,
and

(ii) the two variances are unequal.

Such biases and variances are certainly relevant
in planning surveys and choosing procedures which
can be expected to produce good estimates. How-
ever, after the sample s is selected the situation is
drastically changed. As indicators of uncertainty
in the estimator when it is applied to a particular
sample, the conventionally defined bias and vari-
ance can be quite misleading. For example, if the
sample contains mostly small (few beds) hospitals,
we can be confident that the expansion estimator
(1) will give an underestimate of 7. In this situa-
tion, to describe the estimator as “‘unbiased” is at
best irrelevant and at worst misleading. Here it
would seem accurate and informative to describe
the estimator as having a negative bias, yet this is
impossible —for a given sample s there is no proba-
bility distribution with respect to which bias can
be defined. Similar remarks apply to samples
containing a disproportionate number of large
hospitals —in these samples the expansion formula
tends to produce overestimates of T. In this con-
text, the statement that the estimator is “unbiased”
in the conventional sense simply means that samples
containing too many small units, which tend to give
underestimates of the population total, will be
balanced, in a -hypothetical infinite sequence of
samples, by samples containing too few small
units, which tend to give overestimates.

It would appear that when s contains an excess
of small hospitale, an upward adjustment is required
if (1) is to deserve the description ‘“unbiased.”
The adjustment might be made by multiplying

(1) by the factor (3 6i50) / (3 5410). the ratio
1 8

of {the average number of beds per hospital in
the population} <+ {the average number of beds per
hospital in the sample}. The effect of this factor
will be to increase the estimate when the average
sample hospital is small and to decrease the esti-
mate when the average sample hospital is large.
The resulting estimator,

{ (? bis0) /(3 bio) Hso > unol, @)

is the ratio estimator (2), which, according to the
conventional definition, is biased. Thus in this
problem a notion of bias useful for inference from
a given sample s must be in direct conflict with the
conventional theory; the unbiaséd estimator should
be called biased and vice versa.

The orthodox variance (or its square root, the
standard error) is not a satisfactory measure of the
uncertainty in the estimator after s is fixed, although
it is usually interpreted as such a measure. The two
estimators (1) and (2) have different variances, yet
when the sample is such that the average size of
sample hospitals is equal to the average size for the
whole population, the results of using (1) and (2) are
identical. That is, when such samples are selected,
the ratio and expansion formulas are the same and
therefore equally precise, equally uncertain,
equally accurate, etc. Yet orthodox theory assigns
different standard errors depending on whether
formula (1) or formula (2) was used.

.The prediction approach recognizes that, after
the sample is observed, the population total can be
written

T=3 6+ (4)

where s denotes the collection of hospitals not in the
sample. Since the first of the two sums in (4) is now
known, the problem is to estimate the second sum,
the total number of discharges in hospitals not in
the sample. Any estimator of T can be written in a
form comparable to (4), i.e.,

=3 wt (F=3u) (5)

8

Using T to estimate T is, in effect, using 7'— 2 ti
8

to estimate 2 ti. Clearly the questions of whether

3



a particular estimator when applied to a particular
sample s is good or bad, reasonable or foolish,
unbiased or biased, etc. are answerable only in
light of the relationship between hospitals in the

selected sample and those not in the sample. An'

estimator T is precisely as good for estimating T as
is the difference T— 't for predicting the un-
k]

observed sum 2 ti

8

The prediction approach expresses the relation-
ship between sample and nonsample hospitals by a
probability model (“super-population” model) in
which the numbers of interest, ¢, ts, . . ., tso0, are
thought of as having been produced by some
probabilistic process described by a mathematical
model. This process serves as a vital link between
the observed and unobserved totals. What these
two totals have in common and what enables us to
use the observed to make inferences concerning
the unobserved is that they were all produced by
one underlying probabilistic process. Inferences
from the sample can be made concerning certain
important characteristics of the process; this
information can then be used to predict the values
of the totals not observed.

The simplest model describing the basic structure
of the hospital problem treats ¢;, the number of
discharges from hospital i, as an observation on a
random variable whose expected value is propor-
tional to b;, the number of beds. That is, the ex-
pected number of discharges is Bbi, where B is
some unknown positive constant which can be
estimated from the sample. If (1) and (2) are written
in forms comparable to (4), then the expansion
estimator is

‘Z ti+ 40 (2 t,~/10>, (6)

8

and the ratio estimator is-

gti‘*‘(g ti/z"bi)zbi. (7)

Using the probability model, s can be held fixed and
the statistical properties of the estimators for the
given sample examined. Thus the second terms in
(6) and (7) are actually predictors for the random
total discharges from nonsample hospitals. The
properties of the expansion estimator for this

sample are precisely the properties bf 40 (E t,-/lO)

8

when it is used to predict 2 t;. The expected value of
5

the predictor is 40 (2 Bb,-/lO), while the variable
predicted has expecteﬂ value 3’ Bbi. Since the ex-

s
pected value of the predictor is less than that
of the variable predicted when the average size
of sample hospitals is less than the average size of
nonsample hospitals, the prediction approach

"describes the expansion estimator as “biased” in

this context. The ratio estimator, on the other hand,
is called “‘unbiased” for every s since the expected

value of the predictor, (Z Bbi / > b,-) > bi, equals

the expected value, 8y b, of the variable predicted.

s

The variance used to measure uncertainty in an
estimate under the prediction model is, like that
used in the conventional approach, the variance of
the difference T—T between the estimator and the
quantity estimated. But whereas the conventional
approach calculates the variance of this difference
with respect to the random sampling plan (the proba-
bility distribution over all possible samples), the
prediction approach calculates the variance with
respect to the probability model with the sample s
held fixed. Thus the conventional approach states
for the ratio estimator, say, the same standard
error for all samples of size 10, while the prediction
approach quotes one value when the sample con-
tains mostly large hospitals and a larger value
when most of the sample hospitals are small.
(See formula (3), page 15.) Both the conventional
and prediction variances are unknown and must be
estimated from the sample. There is theoretical
and empirical evidence that the latter is the more
useful measure of the uncertainty in an observed
estimate [1].2

This simplified example suggests the inadequacy
of orthodox notions of bias and variance for pur-
poses of inference and points to the prediction
approach as being more relevant and informative
at the data-analysis stage. However, some of the
most interesting implications of the prediction
approach appear when the problem of sample
selection is considered. When this approach is
adopted random sampling loses its status as the
one and only fundamental and indispensable
component of finite population sampling theory; it

! Figures in brackets indicate the literature references at the end of this paper.



assumes instead the more humble role of a useful
and important tool.

To apply the prediction approach to a real prob-
lem, we must first be able to produce an adequate
model which is simple enough to analyze. The
adequacy of a model is to some extent a matter of
judgment, but mathematical investigations can
help. Thus considerable attention is paid in this
report to the effects of errors in the basic model

and especially to the identification of samples for
which the conclusions derived from the model
are relatively insensitive to the most obvious sorts
of departure from the model.

The models in this report are used in two ways:
to generate sampling and estimation procedures
having certain desirable statistical properties and
to provide increased appreciation of the properties
of procedures currently in use.



SUMMARY

The author has recently been studying finite
population sampling problems using an approach
which is based on viewing such problems as straight-
forward classical prediction problems rather than on
applying the conventional concept of repeated
random sampling from thé fixed population. Previ-
ous work by Royall [1, 2] has suggested that the
prediction approach, which employs super-popula-
tion probability models, is a useful alternative to
the conventional theory and can be of value in
illuminating the strengths and weaknesses of
standard procedures as well as in suggesting and
providing a theoretical basis for new procedures.

Other recent studies viewing finite population
sampling problems as prediction problems have
been made by Ericson [3, 4], who adopts a Bayesian
approach, and by Kalbfleisch and Sprott [5], whose
approach is fiducial. There have also been other
studies in which the classical (non-Bayesian, non-
fiducial) approach is adopted, e.g., Brewer’s
paper [6] and parts of the paper by Scott and
Smith [7], whose basic approach is Bayesian.

HDS employs a two-stage sampling plan in which
hospitals are the first-stage sampling units and pa-
tient discharge records the second-stage units.
Within each of four geographical regions, hospitals
are stratified according to size, as measured by the
number of beds (bed size) listed in the 1963 Master
Facilities Inventory of Hospitals and Institutions
{(MET).

For the purposes of this study, the hospitals in the
four geographical regions are treated as natural,
distinct populations which represent four separate
instances of the same basic problem. Thus the “pop-
ulation” referred to in this report corresponds to the
HDS population within any of the four large geo-
graphical regions, and stratification is on the bed
size variable only, not on geographical region.

In HDS a sample of hospitals is selected from
each stratum, and a sample of discharges is drawn

from each selected hospital. For each discharge in’

the sample a numerical characteristic of interest,
or response, is observed. Sample discharges from a
given hospital are used to estimate the total for
all discharges from that hospital. These estimated
totals for the sample hospitals are then used, along

with the auxiliary variable, bed size, to construct
a ratio-type estimator for the stratum total. This
estimation procedure is applied independently
within each stratum.

In Part I of this report complications produced by
the second stage of sampling are set aside, and only
single-stage sampling problems are considered. The
main purpose of this part of the study is to gain an
increased understanding of the simple and valuable
ratio estimator. Thus we consider a range of proba-
bility models, but with more attention paid to study-
ing the performance of the ratio estimator under
such models than to describing optimal sampling
and estimation strategies for each model. We see
in Part I a new explanation for the success of the
ratio estimator in practical applications: although
real problems are not often depicted with great
accuracy by the probability model under which
the ratio estimator is optimal, frequently, for the
particular sample drawn, the ratio estimator is
approximately optimal under a wide range of
models.

Stratification on the size variable with separate
ratio estimation in the strata is examined as a tech-
nique for efficiently insuring unbiasedness. Finally,
the effects of errors in the model on the performance
of variance estimates are considered.

In Part II the second stage of sampling is intro-
duced. The problem is first studied in its simplest
form; later the phenomena of out-of-scope and
nonresponse discharges are represented in the
model. ‘

Overall, the results throw a favorable light on
the HDS design and estimator. This investigation
suggests that the rule used to allocate the first-
stage sample among the various strata might be
improved, but that, given the rule actually used,
the allocation of the second-stage sample is approx-
imately optimal. Another suggestion is that the
average bed size per hospital in each stratum’s
sample should be approximately equal to the
average bed size per hospital in the entire stratum.
It is supposed that the present method of hospital
selection produces samples which satisfy this con-
dition, but this should be verified.

Two areas in which further research with super-
population models is expected to be fruitful are



analysis of the HDS variance estimator and study
of the sophisticated sampling technique known as
“controlled selection.” The first of these is of
more immediate importance since the .current
HDS variance estimator-is an adaptation of the
variance estimator conventionally used in single-
stage ratio estimation problems. There are theo-

retical results, supported by some empirical work,

which imply that this conventional variance esti-

mator should be replaced by one suggested by super-
population theory [1].

Controlled selection procedures are used by the
HDS to select the first-stage sample. Investigation
along the lines leading to defensive samples in
Part I would probably increase our appreciation of
precisely what these procedures accomplish and
how. Such an investigation should provide theo-
retical support for these selection procedures.



PART 1. SINGLE-STAGE SAMPLING

Description of Problem

Terminology, notation.—The population of inter-
est consists of M units labeled 1, 2, . . ., M. Asso-
ciated with unit * are two numbers (B, ¢) with B,
known and ¢, fixed but unknown. The units might be
hospitals of a certain type with B; some measure,
for instance, number of beds, of the size of hospital
k, and t), some characteristic of interest such as
number of days of care provided by hospital %
during a particular month. A sample consisting of m
units is to be selected from the population and the
t-values associated with the sample units are to be
observed. The objective is to estimate the total

M
=3 t @
k=1

and give a measure of the precision of the estimate.
The set of m labels identifying the sample units is
denoted by s, and the set of M-m labels of units not
in the sample is denoted by 5.

_ Probability models.—In this study the numbers
b1, 82, . . ., tu, whose sum we must estimate, are
considered to be realized values of independent
random variables Ty, T:, . . ., Ty. The expected
value and variance of T depend on the size measure
B, and are denoted by A(B,) and o v(B;), respec-
tively. Thus we can write

Tl.-=h(Bk)+€k V‘U(B;.-) k‘-—‘l, .. .,M

where €, . . ., ey are independent random vari-
ables, each having mean zero and variance o2 In
particular, attention'is focused on models in which
h(B) is a polynomial, say, of order J (at most). That is,

kB)y=roBo+nrpB+r:8:B*+ . . . +r;8,B’

where the r’s are zeroes and ones. If r; =1, it means
simply that the term 8;B/ appears in the regression
function; r; = 0 indicates the absence of this term.
When the regression function £ has the above form,
we refer to the probability model as £(ro, 1, - . .,
rs : v(B)). For example, £(0, 1 : B) refers to the
model

Ty = BiBr+ e VB, ,

in which both the expected value and the variance
of Ty are proportional to the size Bix. As another
example, £(1, 1, 0, 1 : 1) refers to the model

T= Bo+ BlBk + B:;B;: + €.

Here Var T, = Var €, = 02, a constant.

It should be emphasized that the fundamental
problem is that of estimating the sum (1) of the
actual t-values. If a particular model, say £(1,1: B),
applies, an intermediate step in the process of
estimating the sum is estimation of By and B;, but

M

the objective is to estimate 2 tx, not the parameters
E=1

in the super-population model. It will be especially

important to keep this objective inmind whenseeking

optimal sampling plans since the plan which is best

M
for estimating Z tr under a particular model is not
=1

generally the best plan for estimating parameters
of the model.
Under probability models of the sort considered

M
here, the problem of estimating the total 2 tx on
1

the basis of a sample s is a version of the general

problem of predicting future observations on random

variables. This is evident when the total is expressed

as the sum of two terms, E ¢y and 2 tx. The first
< -

f
of these two is known after the sample has been
observed, and estimating 2 tx is equivalent to pre-
T

dicting the sum of the unobserved random variables
2 Tx. For further discussion of this view of certain

8
finite population sampling problems as prediction
problems, the reader is referred to Royall [2].

Optimality

Best linear unbiased (BLUE) estimators.—For a
given sample s and a given model £, an estimator
T will be said to be unbiased if E;(T—T)=0,
where the expectation is taken with respect to the
probability distribution specified by the model.
For example, for all s the ratio estimator,



(5+/38)50

is unbiased under the model £(0, 1:4(B)) for any
variance function v:

Eg[(g T, / ) Bk) i Bk—i Tk]
“(zan /g o) En-San=o

Under the model £(1, 1: v(B)j

wllgr /33§

mBo+B1 Y, B
= __—'—EBI.—M,BO Bx EB"

:‘, k 1
B’\

Thus under this model the ratio estimator is un-

M
biased only if 2 B, /| M= 2 Bi/m.
1 8

Only estimators which are linear functions of
the s in the sample are considered here. The
determination of a best linear unbiased estimator
under a given model and for a given s is quite
simple. We seek among all linear unbiased esti-

mators T one which minimizes the mean square

error (MSE), Eg(T T)2 The estimator T is un-

biased if and only if the difference between T and

the sample total 2 Ty is an unbiased estimate of
S

the total for nonsaI.ane units, i.e.,
Eg (f‘- E T/.) =E§ (2 T/,)
Thus if T is unbiased,

B(1-7) =5 ((1-3 7-E 2 1)

_@T‘_

E; 2 Tk))2
=£(f DR )

+Var (2 Tk).

g

=Var (f‘— > TI.') +Var ( Z Tk)'

Note that linearity of T is equivalent to linearity of

T—E T;. Therefore, under the model £(ro, 1,

, i v(B)), T is a BLUE estimator for T if and
only if T— 2 T is a BLUE estimator for the ex-

pected value of Y, T, 2 (2 ch) riB;.
s =0 T

The generalized Gauss-Markov theorem (see Rao
[8]) shows that the BLUE estimator for such a linear
function of the regression coefficients is obtained by
straightforward application of the familiar method
of weighted least-squares estimation. Thus under
the present model, T is the BLUE estimator for T if

T=3 T

L]

jz_: (2}; )"J:BJ

where the f’s are the weighted least-squares
estimates of the regression coefficients under the
specified model.
Two examples will perhaps clarify this point:
Example: Under the model £&(1,1 : 1) the weighted
least-squares estimates of B8 and B, are

Bo(1,1:1) = (2 B n—gmgmm}/n,
A1 = (n DEEESES) r,) /b

where



The BLUE estimator for T is thus

T(1,1:1)=3 Ti+ (M—m)Bo(1,1:1)

+41(1,1:1) 3 By

Example: Under the model &0, 1:B), the
weighted least-squares estimator for 8, is

Bi0,1:B)=3 n/}_‘,Bk.

Thus the BLUE estimator for T is
7(0,1:B)=T:+:(0,1: B) S B..

This estimator can also be written in the more
familiar form

(0, 1 : B)=( Z T,‘./E:B,.)in. @

So the BLUE estimator under the model £(0, 1 : B) is
the popular ratio estimator.

Optimal samples.—The model &0, 1 : B) is of
particular interest since it is under this model that
the standard ratio estimator is optimal. Here the
expected squared error is

Ee(f(0,1: B) = T)2=o2 ZB,_./EBA.) S B..

3)

From (3) it is apparent that in this context the
optimal sample is one for which 2 B attains its
8

maximum value. This is simply the sample com-
posed of the m units whose B values are largest.
It is the sample which is optimal for use with the
optimal estimator under the model £0, 1 : B) and
will be denoted by s(0, 1 : B). (See Royall [2].)

More generally, under the model £(ro, 1y, . . .,
r;:v(B)), the sample for which E;(T(ro, 11, . . .,
rs: v(B))—T)? is minimized is optimal for use with
the optimal estimator. This sample will be denoted
by s(ro, r1y . . ., ry:v(B)).

Effects of Errors in the Model

We now assume that the population of interest
is one for which £(0, 1 : B) is a plausible model but
cannot ignore the possibility that this model is in-
accurate. Thus we seek strategies which are nearly
optimal under £(0, 1 : B) but will produce satisfac-
tory results under various other models.

Overall ratio estimator.—Under the model
£(0, 1 : B) the optimal estimator is T'(0, 1 : B), the
ratio estimator, and the optimal sample for use with
this estimator is s(0, 1 : B), the sample consisting
of the m units whosg B-values are largest. That is,
of all strategies (s, T) consisting of a sample s and
a linear unbiased estimator T, the pair (s(0,1 : B),
T (0,1: B)) is optimal under the model £(0, 1 : B).
Many questions arise at this point. How good is this
strategy when £(0, 1 : B) is not the correct model?
If we use T(0, 1 : B), is s(0, 1 : B) a good sample
when the true model is £(0, 1 : v(B)) for some
particular variance function v(B) # B? How can
we find a procedure which is good under £(0, 1 : B)
but performs adequately under the alternative
model £(1, 1,1 : B)? Answers to some questions of
this sort are known. For example, it is well known
that the unbiasedness property of BLUE estimators
is not destrgyed by alteration of the variance func-
tion. Thus T'(0, 1 : B) is unbiased under the model
£(0,1 : v(B)) for any variance function v.

More generally, consider the estimator T 0,1:B)
under the model £(ry, 11, . . ., 17 : v(B)). The bias is

E«(T(0,1:B)—T)

- ((gn/38)30-31)

(3B 2
=2 B TSE 2Be

j=0

Note that the summand is zero when j=1; the bias
is not affected by the regression coefficient 8. It is



clear from this expression that T(O, 1:B) is un-
biased if and only if

for all j such that the term B; B/ appears in the
regression equation (i.e., for all j such that r;=1).
It is easily shown that these conditions for unbiased-
ness are equivalent to

L

(4)

Tg, L4

m zx" 7 2

for all j such that rj=1. Note that (4) is always
satisfied for j=1. For example, T(0, 1:B) is un-

biased under the model £(1, 1 : v(B)) if (4) is satisfied
for j=0:

1 A A
w2 B —MEIB""
= {
B
1

1 1 M
- ; Bi=%; Z By (5)

This estimator is unbiased under the still more gen-
eral model £(1, 1, 1:0(B)) if, in addition to (5), s
satisfies

Suppose it is -believed that £(0, 1: B) is an ade-
quate model for a given problem, but the estimator
must perform reasonably well when the model is
in error and the actual regression function is not a
straight line through the origin. The following
theorem shows that by careful choice of the sample
s we can insure the optimality of the ratio estimator

-under polynomial regression models. For any posi-
tive integer J, let s(J) denote any sample satisfying
4) for j=0,1, .. ., J. '

Theorem: If s=s(J), then T(0, 1:B)=T(1:1),
and this is the BLUE estimator under the models
E(ro, 1,2y 13, . . yr:B)and (1, r, 12, . . ., 120)
for every sequence ro, I, I2, - - ., I of zeroes and
ones.

Proof: Note that for any s, f’(l:l) =M Tilm,.
a2
and for s=s(J) this statistic is also 7'(0, 1:B).
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This estimator has already been shown to be
unbiased when s=s(J) under J"-order polynomial
regression models for any variance function.
One can prove its optimality when s = s(J) under
all models of the form &(ro, 1, 12, . . ., 7s:B) by:
(i) finding the weighted least-squares
estimates B;(ro, 1, 12, . . ., r;:B) for all
j=0,1,2,. . .,J such that ;=1, under
the model &(ro, 1,72, . . ., rsB)s
(ii) forming the BLUE estimator for T,

f'(ro, 1,r,. . .,ri:B) =2 T
[

J -
+> (EBJ’*) Bi(ro, 1, 12y . . ., 1siB) 133
=0 } &

and

(iii) noting that when s=s(J) this esti-

mator assumes the simple form M 2 Twlm.
8

Alternatively, we note that since f"(ro, 1, r,
. « - 1s:B) is unbiased under the model £(0, 1:B)

and T(0, 1:B) is the BLUE estimator under this

model, we have for all s
E{(T(0,1:B) — T)2| £(0, 1:B)}

sE {(i‘(ros 1, T2y o+ o oy rJ:B) —'T)2|

£(0,1:B)}.  (6)
Now when s=s(J), T (0, 1:B) is unbiased under
E(ro, 1, 72y o « oy r:B). But T(ro, 1, 12y . . ., r2B)

is the BLUE estimator under this model. Thus
when s=s(J)

E {(T(0, 1:B) = T)2 | £(ro, 1, s, . . ., r2:B)}
=E {(f‘(ro, 19 T2y + o o rJ:B) ‘_T)2|

E(ro, 1,12 . . ., 1:B)}. 1))
Now

E{(T(ro, 1, r2s. . .,rs:B) —=T)2
|£Gro, 1, 1oy - - ., 1s:B)} = E{(T(r0, 1, 12,

.. o r:B)—T)2| £(0,1:B)}




for all s, and when s=s(J) this equality holds if
T(ro, 1, rey . . ., rs:B) is replaced by T(0, 1:B).
Thus (6) implies that when s=s(J), equality must
hold in (7).

Optimality under f(l ry sy o o .y ryi 1) can be
proved by entirely analogous arguments.

Samples s(J) will be referred to as defensive
samples. Selection of a defensive sample insures
that the ratio estimator retains not only its unbiased-
ness but also its optimality under the polynomial
regression models. As noted above, one convenient
feature of defensive samples is the simple form
which the ratio estimator assumes. When 2 B,/

M
m= 2 Bi/M, the ratio estimator is simply the éxpan-
1
sion estimator, M 2 Ti/m.
8
Example: Under the model ¢(1, 1: B), the BLUE

estimator is

(1, 1:B)= Ti+ (M—m)Bo(1,1:B)

+Bi1(1,1:B) 3 By

3

where

AL 1:B)=(3 3£ S Be-m 3 )0,

and

AL1:B=(3TSg-n3 %)/Dz;

with
1 2.
b0 g
M -
When 2 Bk/m=2 B./M =B, we have
8 1

T(1,1:B)=7 T\+

<M—m>[23—’ ~2T (%2 ?Bk“g—;)g]
BZBL

M—m)

=2 Tl.+(

ST

8

When a defensive sample is used, the mean
square error (MSE) of the ratio estimator under

£(0, 1:B) is, from (3),

E(T(0, 1:B) — T)? =Mi(1——)aziz. )

When the estimator is unbiased, the MSE is simply
the variance, and the variance does not depend on
which terms appear in the regression model. Thus
we see that when s is s(J), expression (8) applies
under the model ¢(ro, 11, . . ., ry:B) for any
combination rg, ry, . . ., r; of zeroes and ones.
(Note that (8) does not apply under &(ro, 115 - - -
rs:1).) It follows that when 7(0, 1:B) is the chosen
estimator under the model ¢(0, 1:B), the ratio of
the MSE when s is the optimal sample s(0,1:B)
to the MSE when s=s(J) foranyJ =1is

min ( § B M—m >/( 25: Bi/m )

These results may be interpreted as follows:
When £(0, 1:B) is the true model, the ratio esti-
mator is optimal for any s. If the ratio estimator is
used but the model is actually £(1, 1:v(B)), a
bias is incurred. We can guard against such a
bias by choosing the defensive sample s(1) instead
of the sample s(0, 1:B). Protection against.a certain
type of error in the model £(0, 1:B) is gained,
and some efficiency under this model is lost. If
we now decide to impose the additional conditions

M
ZB{/m:z B}l’./M, j=29 39 .y J, thereby
3 ‘1

insuring the unbiasedness of our ratio estimator
under any model.of the form &(ro, 11, . . .,rs:0(B))
(and insuring the optimality of our estimator under
any model &(ro, 1, 12y . . ., ri2B) or £(1, 11, 1o,
< r;:1)), we incur no additional loss in effi-
ciency. Protection against many types of error
in the model £(0, 1:B) has been gained at no cost
in terms of additional loss of efficiency under
£(0,1:B). )
Some rough idea of the cost of such protection
can be gained by looking at a population in which

11



the B; are uniformly distributed over the interval
(a, a(1+A)) for any a, A=0. In this case, for
m<M,

mxin (;B/.-/ M—m )/(;Bk/m )=1

A
m
2+A(2—M

When A is very small, this ratio is nearly 1. When
A=1, so that the largest By is twice the smallest,
the ratio is between %3 and ¥a. When A=2, the
ratio is between Y2 and %3,

Suppose now that for some known or unknown
characteristic C;; of unit %, the regression function
ET) contains a term B'g(Ci) for some arbitrary
function g. The ratio estimator incurs no bias from
such a term if the sample s is such that

§s) &(Cy) i g(C.)
S8 SB
8 1

M
If a defensive sample is drawn so that 2 B./M =E

1 []
Bi/m, then the term B'g(C;) contributes no bias
if the sample is “representative in the sense that z

g(Ci)m= 2 g(Cr)IM, i.e., if the average value of

g(C;) in the sample is the same.as the average
value in the population.

The foregoing results provide some theoretical
support for the procedure of selecting a sample at
random and using either the simple expansion esti-
mator or the ratio estimator. The average value of

M
Y Bi/m over all (ﬂ”{) samples s is > BJ/M for
" 1

j=1, 2, .. In precisely the same sense that the
mean of a simple random sample can be expected to
be approximately equal to the population mean, a
sample selected at random can be expected to
approximate s(l). This is true because s is s(1)

when 2 Bilm= 2 Bi/M. The same reasoning

applied to higher powers of B implies that simple
random sampling will frequently produce a sample

12

‘By=B;forall k, [=1,

which is a fair approximation to s(J) for some J = 1.
Whenever this occurs, the expansion and ratio
estimators are approximately the same; both are
approximately unbiased under the model £(1,
1, . . ., 1:v(B)) and approximately optimal under
this model when v(B)=B or v(B)=1. The same
argument applies to the unobservable (or simply
unobserved) regressor g(c). Unbiased estimation
of T is possible only if the effect of g(c) is negligible
or if the sample is ‘“representative” in the sense
defined above.

An important role of random sampling is to pro-
vide samples which are “representative” with
respect to such regressors. Of course random sam-
pling cannot guarantee successful choice of a repre-
sentative sample, and the probability of a successful
choice depends on the unknown distribution of
£(c) in the population. Nevertheless, random sam-
pling provides a basis for optimism, as shown by the
Tchebycheff inequality.

The use of simple random sampling as a means
of obtaining a sample approximating s(J) produces
samples which are not all good approximations to
s(J) and are, on the average, less efficient than
s(J). Under the model £(0, 1:B), for a given
sample s the MSE of the ratio estimator is o?

Z Bx z Bklz By. The average value of this quantity

i 1) i
= k m k g

value of i/ (2 Bk/m> over all (A’Z) samples. Now a
8

well-known inequality? shows that c is greater than

or equal to 1/ (i Bk/M>, with equality only in case

‘ ' .s M. Thus, except when

all B’s are equal, the average MSE over all possible

samples of size m is greater than — M (1 — M) a2 B,

the MSE when the sample is s(J).
We have seen that the strategy (s(J), T(O 1:B))

produces unbiased estimates under the model

£(1,1, ... 1:w(B)). The strategy (s(1, 1,
l:B), (1,1, .» 1:B)), which is optimal under
€Q, 1, , 1:B), also produces unbiased esti-

1 1
“For any nonnegative random variable X, E }2 a Equality holds if and only if X

is a constant (with probability one).




mates under this model. The MSE for this strategy
is the minimum value over all s of
E{(f@,1,

L LB =T)|¢(1, 1, . . ., 1:B)},

9)

which is less than the value of this expression when
s=s(J). But when s=s(J) we know from the

theorem that 7(0, 1: B)=T(, 1, , 1:B) and

thus that

E{(dQ,1,. .., 1:B)~T)2|¢Q1,1, . . ., 1:B}
=E{(F(0,1:B)-T)2|¢(1, 1, . . ., 1:B)}

=E{(T(0, 1:B)—T)?|£(0, 1:B)}.

Therefore, under £(0, 1:B) the MSE of the strategy
(s(1, 1, , 1:B), T(l 1, , 1:B)) is less
than that of the strategy (s(J ) T(O 1:B)). Never-
theless, because of the popularity and simplicity of
the ratio estimator, as well as because the current
HDS estimator is of the ratio type, the remainder
of Part I is devoted to situations in which the ratio
estimator (or a sum of ratio estimators) is to be used.

Stratification on the size variable—We have
seen that the unbiasedness of the ratio estimator
can be preserved under J™-order polynomial
regression models by the choice of a sample s(J)
which is “like” the population in the sense that

M
S Bilm=Y BilM forj=1,2,...,J.
3 1

An alternative means of preserving the unbiasedness
property employs stratification on the size (B)
variable and use of a separate ratio estimate in
each stratum.

The double subscript hk denotes quantities associ-
ated with unit % in stratum A. Thus Bpy is the size
and Tj; the response of unit 4 in stratum k. The
number of units in stratum & is My, and T and By
are the totals for stratum h. In this notation the
grand total 7 is expressed as

H My

S 3

h=1 k=

T E Th

where H is the number of strata.

The strata are defined as follows: the M, smallest
units form stratum 1, the next M. smallest units
form stratum 2, etc. Thus when A < A’, By < By
for all k=1, wMyand =1, .. ., M.

A sample s, consisting of m units is chosen from
stratum h, and the total T, for that stratum is
estimated by

S B (10
'_ZB/A )

Any sample s for which y, B, / my= 2 Bi,. | My
*n

for j=1, 2, ., J will be referred to as s» (J). If
sn=sn(J), then T» is an unbiased estimate of T}
under the model

J .
Tne =7, jBiB}, + enc Vo(Bux)

j=0

k=1,2, .. ..My, (11)

where the €’s are mdependent each with mean zero
and variance o2, and ro, 11, . . ., 7y is a sequence of
zeroes and ones. The case in which (11) applies for
h=1,2, . . ., H will, as previously, be denoted by

., ri:v(B)).

f (I'o, r, .

From the earlier results we see that the estimator

T= 2 Ty is unbiased with MSE
"

2 Bhk

H =

2 *n
7 2 Bh 2 Bhk

h=1 ol (12)

under ¢(0, 1:B). The estimator is unbiased and
has the MSE (12) under the more general model
E(ro, iy « .« o, r:B) if sn=sn(J) forh=1, L H

Note that when such a sample is chosen, the esti-
mator T becomes simply

2 (M1 > T/ ma)

*n

13



and the MSE is

o M; My B
G-EE(I—m) A

h=1

3)

where Br=Bn/Mn.

If a defensive sample is drawn within each stra-
tum, i.e., if sp=sn(J) for some J=1 and every
h=1,2, . . .,H, then with proportional allocation

(ma/M), constant) the estimator T="Y' T is simply
h
the overall expansion estimator

MY STufm.

h=1 35h

In this case the MSE (13) becomes simply o* B
M(M~—m)/m, where B denotes the grand average

H
2 Bh/M-

h=1

Optimal allocation, subject to fixed total sample
size m and with defensive sampling within strata, is
-easily_seen to require that m, be proportional to
My,VB,=VMB; for h=1, . . ., H (cf. Cochran
[9)). With optimal allocation the MSE (13) becomes

H 2 H
o [l( > VMIth) -> Bn]-
m h=1 h=1

In order that proportional allocation be optimal,
we must have M, proportional to M/,\/ET,, which
means that B, must be constant. But with stratifica-
tion on the size (B) variable, B, can be constant
only-in the degenerate case of a population whose
units are all of the same size. Thus in nontrivial
cases, proportional allocation cannot be optimal.

The foregoing results establish the superiority,
with respect to MSE, of the stratification procedure
to the nonstratified defensive sampling procedure.
We refer to these procedures as II and I, respec-
tively, and summarize the argument establishing
the superiority of the former.

Procedure I. Choose any s(J) and use the esti-
mator (2).

Procedure II. Stratify on the size variable,
choose any s, (J) from the A" stratum, and use the

Ho.
estimator T= 2 Th.
h=1
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(i) Both procedures (I and II) produce
estimators which are linear and unbiased
under &(ro, r1, . . ., rs:v(B)) for any
sequence ry,ri, . . .,7; of zeroes and
ones,

(ii) Optimal allocation for procedure II
requires that m, be proportional to VM B».

(iii) If proportional allocation is used in
procedure II (mp=mMy/M), then proce-
dures I and IT have the same MSE.

(iv) Proportional allocation cannot be
optimal except in trivial cases.

From (i)-(iv) we conclude that

(v) If optimal allocation is used, then
procedure II has smaller MSE than
procedure I.

Note that (v) is true regardless of the number
and relative sizes of the strata. The only require-
ment is that it be possible to use optimal allocation
and defensive sampling. Now the same argument,
(iy(v), which shows procedure II to be superior to
procedure I can be applied within any stratum to
which more than one observation is allocated. It
pays to substratify. This implies that when J=1,
the optimal number of strata is H=m (and optimal
allocation is mp=1, k=1, . . ., m). Of course, if
we want to guarantee unbiasedness under more
general models (larger J), each m;, must be greater
than or equal to J, because when m, is less than J
it is impossible to select sy=s,(J) except in highly
special, degenerate cases. There are also the
obvious problems encountered in selecting samples

Mp
sn(J); exact satisfaction of 2 Bf,,k/mh=z B, /My,
8 b3
for j=1,2, . . ., J is ordinarily impossible. When
the sampling fraction is small, however, and J is
small, approximate satisfaction of these conditions
is frequently easy to effect.

Note that balanced sampling within strata provides
an unbiased estimator under the more general
model in which B; varies from stratum to stratum,
Such a model, even when J is small, say J=1, is
frequently a good approximation to a model! con-
taining a quite general regression function. That is,
when the intervals of B-values which define strata
are narrow, a straight-line approximation within
each stratum can provide a close fit to a general,
smooth regression function.

We see, then, that when optimal allocation (mp
proportional to M.VB;) and defensive sampling
within strata (sp=s;(J) for all- ) are employed,



stratification produces smaller MSE’s than simple
defensive sampling (s=s(J)). The next problem
is that of finding good rules for stratifying a popula-
tion on the size variable. For /=1 the optimal
number of strata is m with one-sample-unit-per-
stratum allocation. How should the m — 1 boundaries
which define the m strata be chosen? We consider
a slightly more general problem: For a fixed number
H of strata, given that equal allocation (m» = c,
h=1, ..., H) and defensive sampling within
strata are to be used, how should stratum boundaries
be chosen? Under these conditions, the MSE under
any model of the form &(ro, 1, . . ., ry:B), and
in particular under the model of most interest,
£0,1:B),is

M3} c

. H _
E(P-T)=c*3 — (1~37) B

h=1

MpBj

.,[ <
=g*

—ME’]. (14)

Thus optimal stratification for equal allocation
requires minimization of

H
S, M:Bo.
h=1

Tt should be noted that optimal stratification for
equal allocation is not necessarily obtained by
stratifying in such a way that equal allocation is
optimal. Equal allocation is optimal when all
Mn(Br)V? are equal, that is, when all M, B are
equal. But it is easy to produce examples in which
this way of stratifying does not minimize

=

MhBh .
1

h

It can be shown (a proof is contained in the appen-
dix) that for a given stratification scheme to be
optimal when equal allocation is used, it is necessary
that

Mi=zM,= .. .=2M,. 15)
This is established by demonstrating that for any
h=1, ..., H—1, whenever Mp < M4, the MSE

(14) is reduced if the strata are redefined so that the
smallest unit in stratum & + 1 is shifted into stratum

k. Tt is also true that, except for one special situation,
for a given stratification scheme to be optimal it is
necessary that

B,=sB;=...=Bu (16)
(See appendix.) The exceptional situation can occur
only when two adjacent strata, say the A" and the
h + 1%, have My = Mp.1 + 1, and all of the 2M, — 1
units in these two strata are of approximately the
same size. Then we can have By > Br+1, but if we
attempt to satisfy (16) by shifting a unit from the A
stratum to the k& + 1%, the MSE (14) is increased.
Note that in this case, shifting the unit introduces
violation of the inequality M1, = M.

The inequalities (15) and (16) indicate the essential
features of a good stratification scheme for use with
equal allocation, defensive sampling within strata,
and the estimator (10). The strata should be so con-
structed that there are more units in stratum A than
in stratum k + 1, but there should not be so many
more units in stratum % that the sum of the size
measures in stratum h exceeds the corresponding
sum in stratum % + 1. Three special cases in which
both (15) and (16) are satisfied are:

(l) M1=Mg= . . .=MH,
(ll) B1=B-_)= . . .=By,and
(ili) M]B]=Mng= « e =MHBH.

In case (i) equal allocation is proportional allocation,
while in case (iii) equal allocation is optimal alloca-
tion. In an obvious sense, (i) and (ii) represent two
extremes among all stratification schemes consistent
with (15) and (16), with all others, for example (iii),
located between these extremes, It appears that the
relative efficiency of (iii), with respect to the optimal
scheme, is ordinarily quite nearly one. (Cf. Cochran
[10}.)

Of course, if J =1, yet fewer than m strata are to
be created, optimal allocation requires that ms be
proportional to VMB, With such allocation,

optimal stratification is that which minimizes
H

2 VM hBh.

h=1

The relation between stratified random sampling,
using separate expansion or ratio estimators within
strata, and the present results concerning defensive
sampling within strata is quite analogous to that,
discussed earlier, between simple random sampling,
using either the simple expansion or the ratio- esti-
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mator, and defensive sampling. The average value of
2 Bi . | my over all samples sy of size m, from stra-

)
M h . .
tum k is 2 Bi | Mp. Thus we should not be sur-

1 . .
prised to find that stratified random ‘sampling
frequently produces samples in which s is approx-

imately s,(J) for some J = 1. When this occurs the.

estimator is approximately (10), regardless of
whether the ratio or the expansion formula is used,
and is approximately unbiased under rather general
models. The random sampling procedure chooses
samples which are, on the average, less efficient than
the nonrandom defensive strategy, as was shown to
be the case when simple random sampling and
defensive sampling were compared.

Estimation of Variance

A detailed study of varidnce estimation when
using stratification has not been attempted here. In
this section the stratum subscript % is dropped, and
results are stated for an unstratified population. Of
course, an example of such a population is an
individual stratum in a stratified population. In
this section, then, the bed size and the response
associated with unit k are denoted by By and T%,
respectively. : ‘

Unbiased variance estimation.—Under a partic-
ular, model ¢(ro,r1, . . ., 72 »(B)), the MSE
E¢(T—T)*is a measure of how much inaccuracy
might be expected when T is used as an estimate
of T. If T is unbiased under the model, then the
MSE is simply the varjance of the error T—T. For
any linear estimator T=2 £ Tk, this variance is
easily calculated: g

var(;fm.—ﬁ T)=Var (3 (¢e— D)1,

+3 Tk>

2

=0

{2 (¢ x=1)" v(By)

8

+3 v(B;.-)l. an

Unbiased estimation of this variance requires
simply that an unbiased estimate of o? be sub-
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stituted for this unknown constant in (17) since for
a given estimator, sample, and model, the rest of
(17) is fixed and known. .

When using the BLUE estimator T'(ro, ry, . . .,
r;: v(B)), the usual estimator of o2, which is based
on the weighted least-squares residuals, is unbiased:

6‘2("0, T1y .

- orn(B) == {1~

(rosrl, .

. .,mv(B>)}2/v<Bk) 18)

where

Tr(ro, 1, . . ., ryv(B)) =
J .
zrjﬁ(rOarh s ey rJ:v(B))B{,
j=0

J
and c=z rj, the number of regression coefficients
j=o0
estimated.
Under the model ¢(0,1:B), this estimate of g2

is given by

02(0,1:B) = m_l——iz
8

s

Tk_éﬁBk} [Br. (19

and the MSE for a given s is estimated by

S B,

a2(0,1:B) i B, ; Bk. (20

This statistic is not the estimate of the variance
of the ratio estimate, which is usually used when s is
selected by simple random sampling. As an indica-
tion of the inaccuracy in an observed estimate

T, (20) seems usually to be superior to the conven-
tional variance estimate. For example, confidence
intervals with width proportional to the square root
of (20) are frequently more accurate indicators of the
uncertainty in an observed estimate than are the
same intervals with (20) replaced by the usual
variance estimate. This point is discussed in Royall
[1], where some theoretical results and empirical
evidence are presented.



Effects of errors in the model.—Under the more
general model with regression function i (B) and
variance function o(B), i.e., Tr= h(B;)+ e+ Vo(B:),
the MSE of the ratio estimator is actually

- EBk :
E(T—T)'-’:o-z{z v(Bx) (%Bk) +3 v(Bk)}

3

Y, Bi _ 2
+ [i g2 (B~ X h(Bk):l :
¢ s 1)

The first term in (21) is the variance of the difference
T'—T, and the second is the square of the bias

E(T—T). Under this general model the estimate
(20) of the MSE has expected value

(O‘2V+D)§Bk23k/23k (22)'
1 r £

where
v(Bx) Y, v(Bk)
y=—1 [ -
m-*ll_; Bk 2 Bk
and
po_l hz(Bk)_(gh(Bk)) .
T m—1 2 By S By

Note that (22), like (21), is naturally represented as
the sum of two nonnegative terms, the first depend-
ing on the variance function and o2 but not on the
regression function, and the second depending on
the regression function but not on the variance.

When v(B)=B the first terms of (21) and (22) are
equal, and when A(B)=pgBB the second terms in
both expressions vanish. In particular, under the
model (0, 1: B) the two expressions are equal and
{20) is an unbiased estimate of E(T—T)2,

If a defensive sample s(J) is chosen, the actual

MSE under &(ro, r1, . . ., rs : v(B)) is

0-2%:—2(1~%) [ (1—1—"» S o(B)/m

+T";§~:v(3k)/M—m:|,

which can be rewritten as
M2 m 1
27 (1) =
o (1 M) [ Es: v(By)

+Mﬁ—m(ﬂlév(3k)—;,l;§v(&-))]-_ (23)

In this case the estimate (20) of this MSE has ex-
pected value

o2 —
m

M2
(-3

m\ = 1
1——)B{V+;;D}- 24)

Note that when y(B) is a J'™-order polynomial and
=s5(J), the MSE is simply

The choice of s=s(J) protects the ratio estimator
against bias in case a J"-order polynomial regres-
sion model applies. This protection does not extend
to the estimate (20) of the variance of the ratio
estimator, whose expected value depends, through
the quantity D, on the regression coefhicients. If the
model £(0, 1 : B) is correct with respect to its specifi-
cation of the variance function v(B) =B but errone-
ous in its specification of the regression function,
the variance estimate is biased by the amount
((24) minus (23) with »(B)= B):

”74”3 (1 ——%) BD. 25)

The Cauchy-Schwarz inequality shows that D is
nonnegative. Thus when we use the estimates (2)
and (20) which are appropriate under £(0, 1:B), we
choose a defensive sample s(J), and the true
model is &(ro, 11, . . ., ry:B) with r;=1 for some
j#1, we encounter a positive bias in our estimate
of variance.

When the model £(0, 1:B) is correct in its speci-
fication of the regression function but erroneous
in its variance function, how does the actual MSE
(21) compare to the expected value (22) of our
estimate? If in fact the true model is £(0, 1:v(B)),
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then the expected value of the ratio of the estimated
MSE to the actual MSE, the ratio of (22) to (21),
can be written

e)~——e
1+ l1+e
where
By
o= m 2 ’ ZV(BI-)
" m-1 zv(m)m
and
M M
Zv(Bk)sz > Br
= -1 — —1¢.  (26)
) 2”(3*’23 /233*'

When v(B) = B2, the actual MSE is no less than

ZBA-)’
(o ().

while the expected value of the estimate is no
greater than

18

o)) (o)

The ratio of (22) to (21) is thus no greater than
M

(2 Bk/M) / (2 Bi/M -m). It is equal to this
1 ~

value only in the degenerate case of all By equal.
Thus when v(B)=B2, with defensive sampling
the variance estimator has a negative bias.

When the sample is such that

(i BA./M) =3 Biln

and v(B) =1, the ratio of (22) to (21) is no less than

iz 2S5 1)

which is no less than 1. Thus when s=s(J), and
our model £(0, 1:B) is erroneous in that the
actual variance function is not v(B)=B but in-
stead v(B)=1, our estimator of the variance of
the ratio estimator has a positive bias.



PART Il. TWO-STAGE SAMPLING

Description of Problem

Terminology, notation.—In Part 1 a simple
population of M units with associated size measures
B,, . . ., By was considered. For present purposes
the units are hospitals and the size measures are
their bed sizes as measured by MFI in 1963. The
basic sampling unit in HDS is a patient discharge
record. On this record the variable of interest, Z,
is found. Thus for k=1, .. ., M

By is the bed size of hospital k;

N, is the number of discharges from
hospital % during the period studied;

Z,,is a number associated with discharge
=1, 2, ..., Ny) from hospital k;
and

T: is the sum, over all discharges from
hospital &, of the Z-values:

Ve

=]

The sample is selected in two stages. First a
sample s of m hospitals is chosen; then, if hospital £
was selected, Ny is observed and a sample s; of
discharges is selected from hospital k. The number
of discharges in the second-stage sample is ng.
The samples s and s are represented as subsets of
the sets {1, 2,..., M} and {1, 2,.. ., N},
respectively. The expression “k in s’ means that
hospital & is in the sample of hospitals, and *¢ in

”

sx” means that discharge ¢ is in the sample of .

discharges from hospital £.
The objective is.to estimate the total,

M Vi M
T= 2 2 Zk(’ = 2 Tk9
k=1 ¢=1 k=1

which can also be expressed as

Ni
T=EEZI:! +EZZ/¢ +22Zk( 27
& 8

L%

where 3 is the set of hospitals not in the sample, and

3k is the set of discharges from hospital £ which are
not in the sample si. The first term in (27) is known

-permutations of Zx1, Zr2, « .

from the sample; the second and third terms must
be estimated.

Most but not all discharges from the M hospitals
are within the scope of HDS. Thus a discharge
record which has been selected for the sample
might be found to be either (i) out of scope or (ii)
in scope but nonresponding (e.g., missing from its
folder or lacking necessary information). These
possibilities will be considered later, but for the
moment attention is confined to the simplified case
of all discharges in scope and 100 percent response.
In this case the analogue of the HDS estimator
[11]is

ST,

T=2 B: 28
e )
where i'k=Nk 2 Zk/ /n;.-.
. 8
This estimator can also.be written as
=33 2, +3 M=) (3 Zie /)
8 Sk s 3.
ENA(ZZ"’ "">2Nk
+ * : B 29
SF S RIE @

Here the first term is that part of T which is known,
the second term estimates the sum of the un-
observed discharges from sample hospitals, and
the third estimates the sum for nonsample hospitals.
(Compare with expression (27).) ’
Probability models.—The number of discharges
N is treated as a random variable whose expected
value and variance are proportional to By : E Ny
=pB; and VarNy=02B;, with Ny and N; un-
correlated for j # k. For a given value of Nk, the
responses Ziw, £=1, 2, . . . , Ny are treated as
exchangeable random variables. That is, all of the
. » Zin, have the same
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joint probability distribution. Thus these random
variables have a common mean 6; and variance
o'; all the pairs (Z,,, Z;) have the same covariance

Pra%:
Although pi and 02 are treated here as constants

(not depending on N), they might be more real-

istically represented as functions of Ny and By. For
lvk ’

example, if the sum > Zie is fixed, then exchange-
1

ability of the Z’s implies that, given Ny, cov (Zxe,
Zie) = — Var(Z)[(Nx — 1) for ¢ # ¢'. Thus if
0% is fixed, pr =—1/(N; — 1). What functions might
represent the relation between 0%, px and Ny, Br
with useful accuracy and whether such representa-
tions have a nonnegligible influence on the analysis
are questions which call for further investigation,
both theoretical and empirical.

The expected values 8;, 02, . , Oy associated
with M hospitals are themselves treated as realized
values of random variables ©,, @2, . . .,0y, which
are uncorrelated and have a common mean value
and variance 72. The random variables ®; and N;
are uncorrelated for all £, j=1, 2, ., mb

Optimality Considerations

If all the N, were observed and if O, for k in s,
and 0 were known, then the best unbiased estimator
of T would clearly be

ZEZIM-}'Z (Nk—-nk)0k+02Nk

3 k 8
If all Nx were observed but the 6x and 8 were un-

known, then the best linear unbiased estimator

of T would be

222k!+2(Nk—nk)0k+02Nk (30)

L Sk 8
where
TZEZ k('nk+ 90§(1+ (nk—-l)pk)/nk
9k= L3

#+ a2 (1+ (me— 1) pr) i

*That the ©4 have the same mean is an assumption whose plausibility is specific
to a particular characteristicZ under consideration. For a characteristic such as length
of stay, the expected value of @ is probably dependent on Bx and is thus not the same
for all hospitals. Sensitivity of subsequent results to deviation from the ‘assumption
of a common mean for the @ requires further i igation. At present it is uncertain
a8 to how much deviation frnm this assumption can be safely disregarded.
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Ezkl/nk
Es: ?+oZ(l+ (nk"'l)Pk)/nk/

1
g 7+ o2 (1+ (me—1)pe)/n

This estimator was obtained in a Bayesian analysis
for the case p=0 by Scott and Smith [7]. They
showed that, given the observations, (30) is the
expected value of T when all the distributions
concerned are normal and 8 is itself given a uni-
form distribution over the entire real line. They
also showed that -under the present model (0
fixed), (30) is the best among linear estimators
whose mean square errors are bounded functions
of 6.

Tt might seem objectionable to estimate the
parameter 0. for a sample hospital, not by the
mean EZkz/nk of the sample from that hospital,

s

but instead by a weighted average of this statistic

and g, where g depends on the samples drawn from
other hospitals. However, considering the case of
0 known and n; small will make it clear that such
an estimator is quite reasonable under the present
model.

In 29) the expression (3 Ne / S Be) 3 B
8 8 ~
8
estimates 2 Ni. Thus in the case of N known for

all k=1, 2,
estimator (29) is

s,
S 2T

, M, the analogue of the HDS

33 Zut S (Nk— nk) (% Z“/nk)

8 8 s

; N (gk: Zkl/nk)
S W

S Ne. (D)



If the three conditions (i) pr=0 for all k in s, (ii)
72=0( (no variability among the expected values
61, . . ., Ox), and (iii) ny/Nr=constant for all £ in
s (proportional allocation) are met, then (30) and
(31) are the same—in this simplified problem the
analogue of the HDS estimator is the BLUE esti-
mator. If 02=0 the two estimators differ only in
their third terms. Even if the two formulas differ,
they produce the same estimate when the sample
is such that the sample means » Zu/nk, k in s,
S

are all equal; they produce approximately the same
sestimate when the means are approximately equal.
The analogue (31) of the HDS estimator is thus
approximately optimal when the hospital sample
means show little variability, as well as when
(i)—(iii) are satisfied.

When, as is the case in practice, the Ny, for &
not in s, are unknown, the estimator obtained by

replacing > Ny in (30) by its BLUE estimator

SBSN. [ S Buis

SN
in ZBI\‘. (32)

Ezzm‘l‘z (Nk_nk)ék'l'é
3 38K . s

Using the same estimate for ) Ny in (31) gives (29),

8
the analogue of the HDS estimator for this case. The
conditions for equivalence of (32) and (29) are again
()—(iii), and, as before, the two formulas produce
the same estimate when the within-hospital sample
means are all equal.

The estimator (32) is calculable only when all of
the ratios nit*/o?, k in s,"are known. For some
response variables it may be known that these
ratios are all quite large (or small), in which case an
approximately optimal estimator can be calculated.
For general values of the ratios when the nx and m
are large, an approximately optimal estimator can be
obtained by substituting estimates of the ratios for
their actual values. This approach is not developed
here. Instead the HDS-type estimator is considered,
and questions of unbiasedness, stratification, and
allocation are studied.

The HDS Estimator

Case of all discharges in scope and 100 percent
response.—The HDS design is stratified, and the
actual estimator is the sum of estimates of the form
(28). The stratification variable is bed size. Suppose
the hospitals are divided according to bed size into
H strata (H can be 1), and let M, denote the number
of hospitals in stratum k. Now for A=1,2, . . ., H
and k=1,2, ..., M,
B is the bed size of hospital k, stratum

h;
Nux is the total number of discharges
from hospital k, stratum h, for [=1, 2,
e v vy Nis
Zne is the response variable associated
with discharge [ from hospital k in stratum

h;
Np
Twe=Y, Znx is the total for hospital £,
=1

stratum h; and

My
Th= 2 Trx is the total for stratum h.

k=1
The underlying model is as before, except for
obvious notational changes to indicate strata.

For the present, attention is confined to the sim-
plified problem with all discharges in scope and
100 percent response. The HDS estimator for this
case is

> (vz;. Bm.-) (2 T / S Bhk>. 33)

kesp

Where f’hk=Nhk 2 Z il nnke, sn is the sample of mp
Shi

hospitals from stratum h, and sk is the sample of

nne discharges from hospital k in stratum A. This

H
estimator has the form 2 T where
h

-~ My ~
Th= (E Bhk) (E Thse E Bhk)
k=1 Sp s

is a ratio-type estimator for the stratum h total Th.
a. Condition for unbiasedness.—The condition

for unbiasedness, E(T—T)=0, applied to the
estimator (33) is equivalent to

21



i (g‘, B"k) (2 E(T;m ) ZBhk)

" M

=Y > E(Tw). (34
h=1 1

Suppose E(f’hk)=E(T/,k). for all £ in sp. Under any

model for which this is true, (34) is an unbiased

estimator of the grand total T if within each stratum
the sample is “representative” in the sense that the

ratio of the total expected value E (Z Thk) to
n

total beds 2 Bk in the sample is the same as the
2
corresponding ratio for the entire stratum.

If ETwe) is a J™-degree polynomial in B, the
earlier results regarding defensive sampling apply.
The estimator (33) is unbiased if a defensive first-
stage sample sn(J) is chosen for =1, 2, . H,
and EThk—-EThk for all £ in sp(J). If EThk—
ETw.=pBnBrr for some constants B, then (33) is
unbiased for any choice of the first-stage samples
S1, S2, - + -, Sy This result applies to the present

Npk

model since ETu=FE 2 Z k1= ENnxOni = 08B
1

and ETw= E(Nhk > Zn / nhk)= ENpOne= BB
Shk -

b. Variance. —Under the present model the HDS
estimator (33) is unbiased with

Var T= i Var(Th) .

h=1

Using only the conditions that: (i) given Nm and
Onr, the variables Zpu =1, . . ., Npx are ex-
changeable and (ii) NuOn k=1, , My are
uncorrelated, it can be shown that the error variance
for stratum h is

Var (f’h —Tw) = Var(Tr)

Ty

Z B hikc 2

: Var(Twe)
3ol 2

% L

22

2 E[ Var(fnk -

8

Tur | Nor Onr)]

h

(35)

The sum of the ﬁfgt two terms in this expression is
the variance of Th—7Ts if Twe were observed for
k in sp. The third term is the increase in error
variance caused by estimation of T, by T for £ in
sn and can be written in a more explicit form deter-
mined by the relation

E [Var(Tw — Toe | Niwr Orie) ]

N2 ik
=E[ Ik (1 _ﬂ) a2, (1~ Plxk)] " (36)

N hike hk

Expressions (35) and (36) are derived in the appendix.

c. Design of survey. Allocation of second-stage
samples within strata.—From (36) it is easily shown
that, for a given sample of hospitals s, and a fixed
total number of discharges n, to be sampled from
stratum h, the error variance is minimized when

npe= nnlNuk[(1 — pre) o2, 112/
2 Niw[ (1= pre) a2, 1.

If the quantities (1 — pnx) 0%, k in su, are approxi-
mately equal, then optimal allocation is proportional
allocation, nux/Nux = nu 2 Nug, for allk in sy. Here
*h

the constant of proportionality is ns 2 Nux. If the
3n

constant must be chosen before the denominator
of this ratio is known, then the total number of
observations n; is random. Nevertheless, if the
0@ (1—pne), k in s, are all equal, then no other
scheme for allocating the n, observations can pro-
duce a lower error variance.

Choice of hospitals within strata. — When
o2, (1~ pw), k=1,..., My, are all equal-
and proportional allocation is used, the
third term in (35) is a decreasing function
of 2 Bri. This implies that if a first-stage

s




sample s, for which ZB"" is a maximum is
8h

optimal for estimating T in the single-

stage problem (7% observed for k in s),

then it is also optimal for the two-stage

problem. As in the single-stage problem,

the choice of a suboptimal sample satis-

My
fying 2 Buxlmp = 2 B/ My might be jus-
L)

tified on the grounds that it affords pro-
tection against the errors in certain
aspects of the regression model.

Allocation of second-stage samples
among strata.—For a given first-stage
sample and proportional allocation of
the second-stage sample among sample
hospitals within each stratum, the third
term of the error variance is

. 2
E Bur

1
z B
s

SE [N (1) Gh1-pw) |

3h

61

Here vy is the sampling rate applied within
sample hospitals in stratum &, ie.,
Ru/Nux = yn for all k in sp. If the total
expected number of second-stage units
in the sample is fixed, say

* H
2 2 Z‘Yth.—ﬂ,
8 h=1

i Mz

then what are the optimal rates vy,
v¥, « . .» v5? The answer is easily shown
from (37) to be

2 Bu: |3 E(Nno, (1 — pm\)-)l "

where X\ is a constant determined by the
restriction

H
> viE (E Nhk) = n.
1 3

If the 0%, (1 — pnx), k in sp, are all equal,
then the yj are such that

k=1,2,..  ,H

Mp
27 Bui |y, Bux
8p 1

are all equal. Note that when sy is such that

2 Builmy = 2 Bu/M»

h

for all A, the optimal sampling rates are
determined by yima/M)= constant. In
other words, the optimal second-stage
sampling rates are such that the overall
sampling rate is the same in all strata.
This is, in fact, the rule which is used

stage sample.—Suppose that for h=1, 2,

in the HDS.

Optimal stratification and allocation of first-

Mp
@) X Bre/mu="Y Bue/Mn;
8 1

(ii) a fixed sampling fraction vy, is to
be used within all sample hospitals in
stratum h; and

(iii) the rates ¥y, . . ., yn are chosen
so that the overall sampling rate is con-
stant, i.e., ynmn/My= constant.

Note that the previous analysis provides
some justification for (i)-(iii). Under
these conditions, if the variance of Ty
is proportional to By, (as is true when
7=0 and p=0), then the variance (35)

) H
is of the form ¢, 2 MBn/my+ c, for some
1

constants ¢, and ¢;. Therefore, the problem
of optimal stratification and optimal alloca-
tion of the first-stage sample (choice of
my, ma, . . ., my) is the same as in the
single-stage sampling problem considered
in Part I. Thus when the above conditions
are approximately satisfied and it is not
required that sp=s,(J) for J > 1 (condition

. H:
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(i) means sp=sn (1)), the optimal number
of strata is m, and optimal stratification
must satisfy inequalities (15) and (16).
If fewer strata (H < m) are to be created,
then optimal allocation is given by the
familiar rule ma/(MpB)Y2= constant.
Using this allocation rule, optimal strati-

H
fication is achieved when Y (MnBnr)'? is
1

minimized.

The allocation rule used in HDS is
mp/Br= constant. Both allocation rules,
mp/ (MpBr)V2=constant and mu/Br=
constant, imply that the larger the average
bed size Bn/M;, the larger should be the
first-stage sampling rate mu/My. However,
with the former rule this rate is propor-
tional to (Bp/M#)V2, while with the lat-
ter rule the rate is proportional to By/Mp.
Thus the former rule yields a more nearly
constant first-stage allocation rate than
does the latter. Note that with the latter,
optimal stratification requires minimization

H H
of 2 M, 2 Br/m, which does not de-
1 1

pend on the way in which strata are
formed. Thus when this rule is used, the
choice of stratum boundaries appears to
have little effect on the performance of
the overall estimator.

Effects of out-of-scope and nonresponse dis-
charges.—In this section it is recognized that some
of the discharges from which the sample is drawn
might be outside the scope of the HDS study. A.two-
valued variable 8 is used to indicate whether or not
a discharge is in scope: Smu=1 if discharge ¢
from hospital % in stratum £ is in scope, and 8p=0
otherwise. The variables &y £=1,2, . . ., Np:
are treated as realized values of independent
random variables, and 7 is the probability that
Sner=1.

The response Zp can now be represented as the
product of 8w and a random variable Xpz. Then
the X-value is the characteristic of interest and

Nk

Nhl‘-
The= E L= 2 OnkiXni.  Given the number
1

.\'h,\-
Nu. of total discharges, 2 Snii represents the
1
random number of in scope discharges from hospital
hk.

The expected response of each in-scope discharge

from hospital ik is denoted by wax; i.e., unx is the
expected value of Xy, given that &uy=1. Thus
EZwii= 0= Eshk;thl = Thkflhk. The variances
and covariances and responses of in-scope dis-
charges are 0%,, and px,; 0%,,. Thus

Var Znni=0%,=Var (8nxilXnrt)
= Tnk0%,, + M2, Tre(1—mnr)
and
Cov (Znkt, Znkt') = prkOh = ThPxniO% 1

The most direct estimator for this case, which is
H
the analogue of the HDS estimator, is T=2 e
1
in which

. sh My :
Tr=g5— > Bu= SnkXnirt 3 (N
n ankZ hk %%\ neiXnrt %}( hk
S Nustnifons
_nhk)'frhkﬁhk'*‘ % T Z B
B -
% " "
where

Tre= N E SrctXnkr/mnses Tne ="y, Snir/ ks
Shk Shic

and

e = E SniXnir / z Okt

Shk Shk

Note that this is the same estimator as (33). The
response Zpm has simply been expressed as the
product &pxXnr. Similarly, the previous analysis
and results remain valid; the parameters Oy, hes
and pmx in the previously stated formulas are
simply recognized as functions of the parameters
in the distributions of the more fundamental random
variables 8, and Xz,

Thus the previously derived error variance
(35) can be expressed in terms of the parameters
in the present, more detailed model, as follows:



Var (T —T) = Var (Tn)

Sh

( B"")2
4+l & S Var (Tu)
B
% " o

M p
Y Bu\?

N2 )
Elm %E [{7 (1—%) (mo%
3h

+a(l—7) p2—a pxo‘?\; )}hk]. (38)

The subscript hk is placed outside the braces in
lieu of its being used repeatedly with N, n, m,
ol and px inside the braces. In this variance
expression

Var (Tw) =Var (Numnepens) +E [{N (wo%
+a (1—a) u2) +N (N—1) 7*p, 0% }nx]

forallk=1,2, .. .,Mh.

The situation is complicated by the introduction
of nonresponse. A second indicator variable is
employed to denote response status: for £ in s,
tma=1 indicates response, and uu=0 indicates
nonresponse. Thus for ¢ in sux, Znr= Z_;;.MS,.k,X,.k, is

observable, and the problem is to estimate
H My Npp

2 2 2 SuiXnut, the sum of X-values over all in-
1 1 1

scope discharges. The response indicator variables
are treated as random, independent, and inde-
pendent of all the other random variables present.
For an in-scope discharge from hospital hk, the
response probability Pr({u.=1) is denoted by @nx.

It is assumed that each selected discharge can
be classified as in scope or out of scope, even if it
is nonresponding. That is, of the nnx discharges
selected in the sample from hospital kk, the number
of in-scope discharges Z Snt is observable. Of the

Shic
n,',;c=2 Sni in-scope discharges, only a random
Bhk
number, n,’,k=2 Lnitdnpt, will respond. A direct
Shic

Nag
estimate of Tne="Y, SnXnu is clearly

1

Tye= ZChkzahkzthz+ (Rl — Nhse) e

Shk

+ (Nne— nne) %hkﬁhk (39)

where

Bnke=> LnkiOnirXnxt / e and 7= np, / nk*

Shk

The first term in (39) is the observed sum of the in-
scope, responding sample discharges. The second
term estimates the sum of X-values for the (np
— npy) discharges known to be in scope but unob-
served because of their nonresponse. The third
term is the product of (Nnx— nak)7ne, the estimated
number in scope among the Npr—np, nonsample
discharges, and the estimated average response

[tre. The estimate can also be written in the more
compact form

. . > CnierdniX i

5 P spre 2 2
Thk =N, hk =T =N, 7} b
. e N RETT hic[Lhk

If the stratum total T) is estimated by a ratio-
type statistic emmploying these estimated hospital
totals,

~ - Z Thk Z f‘hk M
j‘h—_-z i‘mf" 2 2 Bhk=fh——" EhB

~ Z Bhk - 2 Bhk - hks
Sh gh

%h

and if the grand total is estimated by the sum of
~ H &

these estimated stratum totals, T=2 T, then the

1
resulting estimator is that used in HDS.

Note that it is possible to have no responding
in-scope discharges in the selected sample suz,
i.e., ny,=0. In such a case if the simplest natural
course is taken and T is defined as zero, a small
bias appears. Given the values of Nuk, mar, tak,
and @, the expected value of T’L"' is simply N

hiMnk, while the expected value of Treis
Nk [L— (1= onr) (1— mnwepni) ek~ ].

For all except extremely small values of m and
o and small npy, the bias is clearly negligible.

The error variance of T can be shown, by tedious
but straightforward calculations, to be given
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approximately by an expression of the same form

as (35):

2 B

A H —~
= ih
Var (T—T) }1: [%: Var (Tre) + 2 B
h

™M

8]

&

Mh
o thk 2
Var (Thk)]—'_Z iBm.. 2
h

2h

E [Var (The— Thi|Nag, Oni) 1.
" The error incurred in using this approximation for

the true error variance arises from the slight bias in
T and .is negligible whenever the bias is. Similarly,

26

the last term in this variance is given approximately

by

Mn
2
u Z B
2 B
h

SE[{T(-F) s

+7(Q—) }Lz""ﬂ'zp.ro'?r)‘}hk]

1

‘when the nonresponse probabilities 1—¢n; are

all small. Thus the earlier results concerning alloca-
tion remain relevant when a small probability of
nonresponse is present at the second stage of
sampling. For the case of sizable nonresponse
probabilities, the estimator should be reexamined
and various alternate estimators considered in
which 7 and uax are estimated by linear functions

2 Enidrn and 2 Chicflik.
sh 3h
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APPENDIX

Derivations of Conditions on Optimal Stratification
with Equal Allocation and Defensive Sampling

M;=M:= ... =My at optimum.—1It will be
shown that whenever My < My, forany h=1,2,. ..,
H—1, the MSE (12) is reduced if the smallest unit
in stratum A-+1 is shifted into stratum k. The
desired result follows directly from this fact.

No generality is lost if attention is restricted to
the case of h=1 and H=2. Let BV=< . . . =
B®Mi+M,) he the size measures Bur, k=1, 2, . . .,
My h=1, 2 arranged in nondecreasing order. Then
B, B@) .. B are the sizes of units in
stratum 1 and B®M+1), BUM+2) , BU+M3) are

My My
the sizes of units in stratum 2. 2 Byx=> B® and
1 1

My MM,

S Bu= 3 B®. The MSE is
1

M+
M, — m, M me MitMy
o [‘__‘2 B 4 —2 2 D B(k)]
1 e My+1

lll+112
- [ 3 o5 ]

u +1

M+M

Z B®)

because m;= ms. Now if the smallest unit in stratum
2 is shifted into stratum 1, the new MSE is

(40)

0-2 My+1
[(M1+1) 2 B® + (M —1)

My+My

My+My
2 B(A)]_o-z 2 B&),

Myt2

1)

The difference of (40) minus (41) is proportional to

My+M,
(M3 — My — 2)B+1) — EBU')"‘ 2 B
My+1
which is = (M;—M,—2) BW +V—M ,BM +1)
+M.BM +1) =0 since M, < M,. The first inequality
is strict unless all the B(*) are equal.

Bi<B:;=<... =By at optimum —Under
the assumption that the necessary condition
Mi=M,= . . .=My is satisfied, it will be shown
that whenever By > Bp4y for any h=1, 2, . . .,
H —1, the MSE is reduced if the largest unit in
stratum £k is shifted into stratum & + 1 unless such
a shift forces violation of M, = Mp+;. As before,
no generality is lost by restricting attention to the
case of two strata. By the same basic argument used
before, it can be shown that shifting the largest
unit in stratum’1 into stratum 2 reduces the MSE
by the factor

M, Mi+M,
S B®+ (M, —1)BM)—" Y B®)

1 M+1

— (Mz+ 1)BO),

which is positive when (M; — M, —2)B®)

> Z B(A)_EB(k)_Bz._Bl

My+1

Since by assumption B; — B; < 0, the shift results
in a positive reduction in the MSE if M;—1 = M,+1.
Note that M,—1 and M.+1 are the sizes of the
new strata.

Derivation of Expressions (35) and (36) for Variance

For convenience, the conditional expectation
and variance of a statistic Y, given Onr, Nux

k=1, . . ., My, are denoted by E(Y|C) and Var
(Y|C), respectively. Then

Var (Tr — Ty) = Var [E(Th — T2 |C)]
+ E[Var (T)—

T»|C)]. 42)

Since Ty —

Mh R
Th="7 Bux ¥, Tnx| >, Bux
1 8 8y
— 2 Thi —
s

2 Thka and,
Sp
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given C, Thk, and Thx are independent of Ty,

and f’hkr, for £ # k', the second term in (42) is equal
to

EI: 2 Var(Tn. | C) + Z Var(Tw: | C)

?’! 3h

My
E By
2= 2 Bor 2 COV(ThA, Thr ' C)
Sh
My, \ 2
2 By
+ ﬁ S Var(Twe | C)|.  (43)
. sh sh

But from the exchangeability of the 2’s, given C, it is
easily shown that

COV(f'h/.-, The | C)= Var (T l 0).

Therefore, (43) can be rewritten
E Z Var(Tw | C) + > Var(Tw: | €)

25, 3 Var(Tue| O

2

My
> B

+ 2‘: 5= X Var(Tw|C)
sh *h

Y B i
sE=| S (Var(Twe | )

Sh

- Va'r(T,,k I C))

=E [2 Var(Th: | C)

®p
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Mp 2
> Bnk

1
+ (1 2 B E Var(T;.k i C)
2h
M) 2
2 B

S E [Var(Tw | C)

1
+ Y, B fh'
%h
— Var (T I C)l. (44)

If the relation Cov (T, Ti | C) = Var(Tht | C) is
applied to the final sum, then after some rearrange-
ment (44) can be rewritten as .

2 Tha

E | Var %B ZBhI\ ZT""IC

. Th T
"h 2
2 B
+ z By
8

S E [Var(Tw—Tw | C)).  ©5)

%

The first term in expression (42) for Var (f';. —Th)is
2 B
Var [E(Th — T4|C)] = Var S N
2 Bh’\ 3,'
- 2 NniOny
#n
2 T
= Var |E B
2 B uE,, hk

- E Tw|C} }. 46)
Y



Adding (45) and (46) yields (35).

Now

Var (P — T C) =E[ (T — Twi)?|C]

N
hk 2
=E[(Nhk 2 Zrifnpg — E thl) C] s
Shte !

which is, by exchangeability, the same for all
samples su: containing na; units. This quantity
is thus the same as

N
hk 2
Nlnk E*E[<Nm.- > Znalnwe — Y, thl) ‘C]
Shi 1
(s

where 2% indicates summation over all the (

N, hk)

N hk

samples sux of size nus.
Interchanging the order of summation and
expectation in this last expression establishes (36).

% U, S, GOVERNMENT PRINTING OFFICE : 1973 515-212/59

31



Series 1.

Series 2,

Series 3,

Series 4,

Series 10,

Series 11.

Series 12,

Series 13,

Series 14,

Series 20,

Series 21.

Series 22,

VITAL AND HEALTH STATISTICS PUBLICATION SERIES

Originally Public Health Service Publication No. 1000

Programs and collection procedures.—Reports which describe the general programs of the National
Center for Health Statistics and its offices and divisions, data collection methods used, definitions,
and other material necessary for understanding the data,

Data evaluation and methods vesearch.— Studies of new statistical methodology including: experi-
mental tests of new survey methods, studies of vital statistics collection methods, new analytical
techniques, objective evaluations of reliability of collected data, contributions to statistical theory.

Analvtical studies.—Reports presenting analytical or interpretive studies basedon vital and health
statistics, carrying the analysis further than the expository types of reports in the other series,

Documents and committee reports.—Final reports of major committees concerned with vital and
health statistics, and documents such as recommended model vital registration laws and revised
birth and death certificates.

Data from the Health Interview Survev.—Statistics on illness, accidental injuries, disability, use
of hospital, medical, dental, and other services, and other health-related topics, based on data
collected in a continuing national household interview survey.

Data from the Health Examination Survey.—Data from direct examination, testing, and measure-
ment of national samples of the civilian, noninstitutional population provide the basis for two types
of reports: (1) estimates of the medically defined prevalence of specific diseases in the United
States and the distributions of the population with respect to physical, physiological, and psycho-
logical characteristics; and (2) analysis of relationships among the various measurements without
reference to an explicit finite universe of persons.

Data from the Institutional Population Surveys .—Statistics relating tothe health characteristics of
persons in institutions, and their medical, nursing, and personal care received, based on national
samples of establishments providing these services and samples of the residents or patients.

Data from the Hospital Discharge Survey.—Statistics relating to discharged patients in short-stay
hospitals, based on a sample of patient records in a national sample of hospitals.

Daia on health resources: manpower and facilities,—Statistics on the numbers, geographic distri-
bution, and characteristics of health resources including physicians, dentists, nurses, other health
occupations, hospitals, nursing homes, and outpatient facilities.

Data on mortality.—Various statistics on mortality other than as included in regular annual or
monthly reports—special analyses by cause of death, age, and other demographic variables, also
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