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FOREWORD 
The Center contracted with the School of Public Health, Johns Hopkins 

University and Dr. Richard Royall to investigate the possible application to the 
Hospital Discharge Survey of the prediction approach to finite population sampling. 
This report presents the results of the research completed under these contracts. 

The prediction approach is based on “super-population” probability models. 
It is an alternative to the conventional theory of sampling from finite populations 
and does not apply the conventional concept of repeated random sampling from a 
fixed population. Rather, it applies classical prediction theory to solve sampling 
problems. Viewing finite population sampling problems as prediction problems is 
a relatively new development and hence is probably known to only a few statis­
ticians. Furthermore, Dr. Royall’s style is throughout the report quite elegant. 
Therefore, we asked him to prepare a nonmathematical description of the predic­
tion approach and indicate how it differs from the classical approach. This material 
is presented in the Introduction. 

We commissioned this research project in anticipation of redesigning the 
Hospital Discharge Survey. Overall, the findings presented in this report throw a 
favorable light on the existing design and estimator. The findings suggest some 
changes for improving the design and also identify some areas for further 
research. We believe this report will help us to develop an improved design for 
the Hospital Discharge Survey. 

Dr. Jay Herson worked with Dr. Royall and the Office of Information in pre-
paring this manuscript for publication. 

MONROE G. SIRKEN 
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THE PREDICTION APPROACH TO FINITE 
SAMPLING THEORY: APPLICATION TO 

DISCHARGE SURVEY 

Richard M. Royall, Ph. D., Associate Professor, Department of Biostatistics, 
Johns Hopkins University 

INTRODUCTION 

POPULATION 
THE HOSPITAL 

School of Public Health, 

The material presented is the result of an un­
orthodox approach to finite population sampling 
problems. Specifically, it describes the elements 
and results of an application of this approach to the 
Hospital Discharge Survey (HDS), a continuing 
sample survey of the Nation’s short-stay hospitals 
conducted by the National Center for Health 
Statistics. It is not presented as a finished and 
polished analysis but as a basic sketch whose 
contents must be critically evaluated, adjusted, 
and refined if it is to be of real value in HDS. The 
mathematical model used in this work expresses 
plausible initial assumptions about certain variables 
of interest. With experience will come increasing 
knowledge concerning the HDS population and 
relationships among its variables. Such information 
must be used to alter and develop the basic model 
described in this report. 

In this section the approach guiding the investiga­
tion will be contrasted with the conventional ap­
proach to finite population sampling problems. For 
purposes of illustration, an imaginary population of 
50 hospitals in some relatively homogeneous geo­
graphical region will be considered. The number of 
beds in each hospital. is known. A sample of 10 
hospitals is selected, and the number of patients 
discharged from these 10 during some given time 
period is observed. The problem is to estimate the 
total number of discharges from all 50 hospitals 
(the population total). 

In its basic, simplest version, the conventional 
approach treats the 50 unknown nu”mbers of dis­
charges as unknown constants. The only random 
variation in the problem is injected by the sampler, 
who uses a random sampling plan to decide which 
10 hospitals will comprise the sample. This sampling 

plan specifies the probability of selection of each 
potential sample. A sampling and estimation pro­
cedure consists of a sampling plan together with an 
estimator or formula for calculating estimates from 
samples. ..The characteristic feature of orthodox 
sampling theory is that a procedure is evaluated in 
terms of the statistical properties of the estimator, 
principally its expected value and variance, under 
the random sampling plan chosen by the sampler. 
Of course other factors, e.g., costs, feasibility, and 
ease of estimation of variance from the sample 
influence the choice of a procedure. Nevertheless, 
the basic objective is to find, subject to limitations 
such as cost, a procedure whose estimator is un­
biased (at least approximately) and has small 
variance. 

For present purposes only one sampling plan and 
two estimators are considered. The plan calls for 
simple random sampling— only samples which con­
sist of exactly 10 different hospitals are allowed, and 
all such samples are equally likely to be selected. 
I.et t,,t2,. . .,t50represent the respective numbers 
of discharges from the 50 hospitals, let b 1, b2, . . ., 
b~o be their respective numbers of beds, and let s 
represent the set of 10 hospitals in the sample. A 

50 , 

simple estimator of the population total, T= ~ ti, 
I 

is the product of {the average number of discharges 
per hospital in the sample} X {the number of 
hospitals in the population}, i.e., 

(z ti/10 )50. (1) 
x 

This is called the simple expansion estimator. Under 
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the present- (simple random) sampling plan it is 
unbiased. 

Another estimator (the ratio estimator) esti­
mates T by the product of {the average number of 

‘discharges per bed in the sample} X {the total 
number of beds in the population}: 

(2) 

Under the simple random sampling plan the ratio 
estimator is biased. 

Two observations concerning the variances of the 
expansion and ratio estimators are needed: 

(i) both variances are defined as average 
values of squared errors over all samples, 
and 

(ii) the two variances are unequal. 
Such biases and variances are certainly relevant 

in planning surveys and choosing procedures which 
can be expected to produce good estimates. How-
ever, after the sample s is selected the situation is 
drastically changed. As indicators of uncertainty 
in the estimator when it is applied to a particular 
sample, the conventionally defined bias and vari­
ance can be quite misleading. For example, if the 
sample contains mostly small (few beds) hospitals, 
we can be confident that the expansion estimator 
(1) will give an underestimate of T. In this situa­
tion, to describe the estimator as “unbiased” is at 
best irrelevant and at “worst misleading. Here it 
would seem accurate and informative to describe 
the estimator as having a negative bias, yet this is 
impossible —for a given samples there is no proba­
bility distribution with respect to which bias can 
be defined. Similar remarks apply to samples 
containing a disproportionate number of large 
hospitals–in these samples the expansion formula 
tends to produce overestimates of T. In this con-
text, the statement that the estimator is “unbiased” 
in the conventional sense simply means that samples 
containing too many small units, which tend to give 
underestimates of the population total, will be 
balanced, in a ~hypothetical infinite sequence of 
samples, by samples containing too few small 
units, which tend to give overestimates. 

It would appear that when s contains an excess 
of small hospitals, an upward adjustment is required 
if (1) is to deserve the description “unbiased.” 
The adjustment might be made by multiplying 

of {the average number of beds per hospital in 
the population} + {the average number of beds per 
hospital in the sample}. The effect of this factor 
will be to increase the estimate when the average 
sample hospital is small and to decrease the esti­
mate when the average sample hospital is large. 
The resulting estimator, 

is the ratio estimator (2), which, according to the 
conventional definition, is biased. Thus in this 
problem a notion of bias useful for inference from 
a given sample s must be in direct conflict with the 
conventional theory; the unbiasefd estimator should 
be called biased and vice versa. 

The orthodox variance (or its square root, the 
standard error) is not a satisfactory measure of the 
uncertainty in the estimator afters is fixed, although 
it is usually interpreted as such a measure. The two 
estimators (1) and (2) have different variances, yet 
when the sample is such that the average size of 
sample hospitals is equal to the average size for the 
whole population, the results of using (1) and (2) are 
identical. That is, when such samples are selected, 
the ratio and expansion formulas are the same and 
therefore equally precise, equally uncertain, 
equally accurate, etc. Yet orthodox theory assigns 
different standard errors depending on whether 
formula (1) or formu~a (2) was used. 

. The prediction approach recognizes that, after 
the sample is observed, the population total can be 
written 

where; denotes the collection of hospitals not in the 
sample. Since the first of the two sums in (4) is now 
known, the problem is to estimate the second sum, 
the total number of discharges in hospitals not in 
the sample. Any estimator of T can be written in a 
form comparable to (4), i.e., 

(5) 

Using ~ to estimate T is, in effect, using ~– ~ ti 
8 

(1) by the factor (, to estimate ~ ti.Clearly the questions of whether~ bi/50)/ (~bi,lo),the ratio s 
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a particular estimator when applied to a particular 
sample s is good or bad, reasonable or foolish, 
unbiased or biased, etc. are answerable only in 
light of the relationship between hospitals in the 
selected sqmple and those not in the sample. An’ 
estimator T is prec~sely as good for estimating T as 
is the difference T —> ti for predicting the un-

S 
observed sum ~ ti. 

;


The prediction approach expresses the relation-
ship between sample and nonsample hospitals by a 
probability model (“super-population” model) in 

. .
which the numbers of interest, tl,tz,. . .,.tSo,are 
thought of as having been produced by some 
probabilistic process described by a mathematical 
model. This process serves as a vital link between 
the observed and unobserved totals. What these 
two totals have in common and what enables us to 
use the observed to make inferences concerning 
the unobserved is that they were all produced by 
one underlying probabilistic process. Inferences 
from the sample can be made concerning certain 
important characteristics of the process; this 
information can then be used to predict the values 
of the totals not observed. 

The simplest model describing the basic structure 
of the hospital problem treats ti, the number of 
discharges from hospital i, as an observation on a 
random variable whose expected value is propor­
tional to bl, the number of beds. That is, the ex­
pected number of discharges is ~bi, where ~ is 
some unknown positive constant which can be 
estimated from the sample. If (1) and (2) are written 
in forms comparable to (4), then the expansion 
estimator is 

~ti+40 (2ti/10 )7 (6)8 s 

and the ratio estimator is -

(7) 

Using the probability model, s can be held fixed and 
the statistical properties of the estimators for the 
given sample examined. Thus the second terms in 
(6) and (7) are actually predictors for the random 
total discharges from nonsample hospitals. The 
properties of the expansion estimator for this 

sample are precisely the properties of 40 ()ti/10~ 
s 

when it is used to predict ~ ti.The expected value of 
7 

(?@bi’’o),
‘he‘redict0ris40 ‘bile‘hevanable 
predicted has expected value ~ phi. Since the ex-

T 
petted value of the predictor is less than that 
of the variable predicted when the average size 
of sample hospitals is less than the average size of 
nonsample hospitals, the prediction approach 
describes the expansion estimator as “biased” in 
this context. The ratio estimator, on the other hand, 
is called “unbiased” for every s since the expected 

value of the predictor, ~ pbi(s /~@*equ~s
x 

the expected value, /3 ~ b;, of the variable predicted. 
s 

The variance used to measure uncertainty in an 
estimate under ‘the prediction model is, like that 
used in the conventional approach, the variance of . 
the difference T— T between the estimator and the 
quantity estimated. But whereas the conventional 
approach calculates the variance of this difference 
with respect to the random sampling plan (the proba­
bility distribution over all possible samples), the 
prediction approach calculates the variance with 
respect to the probability model with the sample s 
held fixed. Thus the conventional approach states 
for the ratio estimator, say, the same standard 
error for all samples of size 10, while the prediction 
approach quotes one value when the sample con­
tains mostly large hospitals and a larger value 
when most of the sample hospitals are small. 
(See formula (3), page 15.) Both the conventional 
and prediction variances are unknown and must be 
estimated from the sample. ‘There is theoretical 
and empirical evidence that the latter is the more 
useful measure of the uncertainty in an observed 
estimate [l].l 

This simplified example suggests the inadequacy 
of orthodox notions of bias and variance for pur­
poses of inference and points to the prediction 
approach as being more relevant and informative 
at the data-analysis stage. However, some of the 
most interesting implications of the prediction 
approach appear when the problem of sample 
selection is considered. When this approach is 
adopted random sampling loses its status as the 
one and only fundamental and indispensable 
component of finite population sampling theory; it 

LFigures in brackets indicate the literature references at the end of Ibis paper. 
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assumes instead the more humble role of a useful and especially to the identification of samples for 
and important tool. which the conclusions derived from the model 

To apply the prediction approach to arealprob- are relatively insensitive to the most obvious sorts 
lem, we must first be able to produce an adequate of departure from the model. 
model which is simple enough to analyze. The The models in this report are used in two ways: 
adequacy of a model is to some extent a matter of to generate sampling and estimation procedures 
judgment, but mathematical investigations can having certain desirable statistical properties and 
help. Thus considerable attention is paid in this to provide increased appreciation of the properties 
report to the effects of errors in the basic model of procedures currently in use. 
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SUMMARY 

The author has recently been studying finite 
population sampling problems using an approach 
which is based on viewing such problems as straight-
forward classical prediction problems rather than on 
applying the conventional concept of repeated 
random sampling from the fixed population. Previ­
ous work by Royall [1, 2] has suggested that the 
prediction approach, which employs super-popula­
tion probabilityy models, is. a useful alternative to 
$he conventional theory and can be of value in 
illuminating the strengths and weaknesses of 
standard procedures as well as in suggesting and 
providing a theoretical basis for new procedures. 

Other recent studies viewing finite population 
sampling problems as prediction problems have 
been made by Ericson [3, 4], who adopts a Bayesian 
approach, and by Kalbfleisch and Sprott [5], whose 
approach is fiducial. There have also been other 
studies in which the classical (non-Bayesian, non­
fiducial) approach is adopted, e.g., Brewer’s 
paper [6] and parts of the paper by Scott and 
Smith [7], whose basic approach is Bayesian. 

HDS employs a two-s~age sampling plan in which 
hospitals are the first-stage sampling units and pa­
tient discharge records the second-stage units. 
Within each of four geographical regions, hospitals 
are stratified according to size, as measured by the 
number of beds (bed size) listed in the 1963 Master 
Facilities Inventory of Hospitals and Institutions 
(MFI). 

For the purposes of this study, the hospitals in the 
four geographical regions are treated as natural, 
distinct populations which represent four separate 
instances of the same basic problem. Thus the “pop­
ulation” referred to in thk report corresponds to the 
HDS population. within any of the four large geo­
graphical re~ons, and stratification is on the bed 
size variable only, not on geographical region. 

In HDS a sample of hospitals is selected from 
each stratum, and a sample of discharges is drawn 
from each selected hospital. For each discharge in 
the sample a numerical characteristic of interest, 
or response, is observed. Sample discharges from a 
given hospital are used to estimate the total for 
all discharges from that hospital. These estimated 
totals for the sample hospitals are then used, along 

with the auxiliary variable, bed size, to construct 
a ratio-type estimator for the stratum total. This 
estimation procedure is applied independently 
within each stratum. 

In Part I of this report complications produced by 
the second stage of sampling are set aside, and only 
single-stage sampling problems are considered. The 
main purpose of this part of the study is to gain an 
increased understanding of the simple and valuable 
ratio estimator. Thus we consider a range of proba­
bility models, but with more attention paid to study­
ing the performance of the ratio estimator u-rider 
such models than to describing optimal sampling 
and estimation strategies for each model. We see 
in Part I a new explanation for the success of the 
ratio estimator in practical applications: although 
real problems are not often depicted with great 
accuracy by the probability model under which 
the ratio estimator is” optimal, frequently, for the 
particular sample drawn, the ratio estimator is 
approximately optimal under a wide range of 
models. 

Stratification on the size variable with separate 
ratio estimation in the strata is examined as a tech­
nique for efficiently insuring unbiasedness. Finallyj 
the effects of errors in the model on the performance 
of variance estimates are considered. 

In Part 11 the second stage of sampling is intro­
duced. The problem is Iirst studied in its simplest 
form; later the phenomena of out-of-scope and 
nonresponse discharges are represented in the 
model. 

Overall, the results throw a favorable light on 
the HDS design and estimator. This investigation 
suggests that the rule used to allocate the first. 
stage sample among the various strata might be 
improved, but that, given the rule actually used, 
the allocation of the second-stage sample is approx­
imately optimal. Another suggestion is that the 
average bed size per hospital in each stratum’s 
sample should be approximately equal to the 
average bed size per hospital in the entire stratum. 
It is supposed that the present method of hospital 
selection produces samples which satisfy this con­
dition, but this should be verified. 

Two areas in which further research with super-
population models is expected to be fruitful are 
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analysis of the HDS variance estimator and study mator should be replaced by one suggested by super-

of the sophkticated sampling technique known as population theory [1].

“controlled selection.” The first of these is of Controlled selection procedures are used by the

more immediate importance since the current HDS .to select the first-stage sample. Investigation

HDS variance estimator is an adaptation of the along the lines leading to defensive samples in

variance estimator conventionally used in single- Part I would probably increase our appreciation of

stage ratio estimation problems. There are theo- precisely what these procedures accomplish and

retical results, supported by some empirical work, how. Such an investigation should provide theo­

which imply that this conventional variance esti- retical support for these selection procedures.
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PART 1. SINGLE-STAGE SAMPLING 

Descriptionof Problem 

Terminology, notation. - The population of inter­
est consists of M units labeled 1, 2 ?. ..? M. &ISO­

ciated with unit k are two numbers (l?~, tJ with B/, 
known and t~ fixed but unknown. The units might be 
hospitals of a certain type with Bk some measure, 
for instance, number of beds, of the size of hospital 
k, and tk some characteristic of interest such as 
number of days of care provided by hospital k 
during a particular month. A sample consisting of m 
units is to be selected from the population and the 
t-values associated with the sample units are to be 
observed. The objective is to estimate the total 

T= ~ t,, (1) 
k=1 

and give a measure of the precision of the estimate. 
The set of m labels identifying the sample units is 
denoted by s, and the set of M-m labels of units not 
in the sample is denoted by F. 

Probability models. - In this study the numbers 
‘tl, t~,. . .,t~,whose sum we’ must estfmate, are 
.con9idered to be realized values of independent 
random variables T1, T2, . . ., T.lf. The expected 
value and variance of TA.depend on the size measure 
B~ and are denoted by h(BI,) and cry v(BA.), respec­
tively. Thus we can write 

TN=h(BA)+e~ w k=l ?. ..9 M 

where cl, . . ., CM are independent random vari­
ables, each having mean zero and variance cr~. In 
particular, attention ‘is focused on models in which 
h(l?) is a polynomial, say, of orderj (at most). That is, 

h(B) = r,,/30+ rl~ll?+ r2&B’+ . . . + rJg?JBJ 

where the r’s are zeroes and ones. If rj = 1, it means 
simply that the term Bjl?j appears in the regression 
function; rj = O indicates the absence of this term. 
When the regression function h has the above form, 
we refer to the probability model as ~(ro, rl, . . ., 
r~ : v(B)). For example, $(0, 1 : B) refers to the 
model 

Tk=&Bk+Ek~, 

in which both the expected value and the variance 
of Tk are proportional to the size Bk. As another 
example, #(l, 1, 0, 1 : 1) refers to the model 

Tk = /i&+ ~&k+ ~a; + ~k. 

Here Var Tk= Var �k= d, a constant. 
It should be emphasized that the fundamental 

problem is that of estimating the sum (1) of the 
actual t-values. If a particular model, say ~(1, 1: B), 
applies, an intermediate step in the process of 
estimating the sum is estimation of PO and &, but 

M 

the objective is to estimate ~ tk, not the parameters 
k=l 

in the super-population model. It will be especially 
important to keep this objective in mind when seeking 
optimal sampling plans since the plan which is best 

h 
for estimating	 ~ tkunder a particular model is not 

k= 1 

generally the best plan for estimating parameters 
of the model. 

Under probability models of the sort considered 
M 

here, the problem of estimating the total ~ tkon 
1 

the basis of a sample s is a version of the general 
problem of predicting future observations on random 
variables. This is evident when the total is expressed 
as the sum of two terms, ~ tk and ~ tk.The first 

a ; 

of these ,two is known after the sample has been 
observed, and estimating ~ tkis equivalent to pre-

S 

dieting the sum of the unobserved random variables 
~ T,. For further discussion of this view of certain 
Y 

finite population sampling problems as prediction 
problems, the reader is referred to Royall [2]. 

Optimality 

Best linear ‘unbiased (BLUE) estimators. – For a 
given sample s and a given model ~, an estimator 

~ will be said to be unbiased if Et(f– T) = O, 
where the expectation is taken with respect to the 
probability distribution specified by the model. 
For example, for all s the ratio estimator, 



(p/vJ$B~
s 

is unbiased under the model ~(0, l:v(B)) for any 
variance function v: 

8 

Thus under this model the ratio estimator is un­

biased only if ~ BI,./ M= ~ B~lm. 
1 x 

Only estimators which are linear functions of 
the t’s in the sample are considered here. The 
determination of a best linear unbiased estimator 
under a given model and for a given s is quite 
simple. We seek among all linear unbiased esti­. 
maters T one which minimizes the mean square 

. ,. 
error (MSE), Ef (T —T) 2. The estimator T is un­

biased if and only if the difference between ? and 

the sample total ~ TAis an unbiased estimate of 
s 

the total for nonsample units, i.e., 

Thus if ~ is unbiased, 

‘var(f-?T’)+J’ar(y) 
Note that linearity of ? is equivalent to linearity of 
. 
T – ~ Tk. Therefore , under the model f(ro, r], 

s 
. . . , rj : v(B) ),? is a BLUE estimator for T if and 

. 
only if T — ~ Tk is a BLUE estimator for the ex-

S 

The generalized Gauss-Markov theorem (see Rao 
[8]) shows that the BLUE estimator for such a linear 
function of the regression coefficients is obtained by 
straightforward application of the familiar method 
of weighted least-sguares estimation. Thus under 
the present model, T is the BLUE estimator for T if 

fl 

where the /3’s are the weighted least-squares 
estimates of the regression coefficients under the 
specified model. 

Two examples will perhaps clarify this point: 
Example: Under the model f(l, 1: 1) the weighted 

least-squares estimates of /30 and /31 are 

where 

8 



D=m~B~,– (xBk )2 
s s 

The BLUE estimator for T is thus 

I 
T(1, 1: l)=~?’~+ (M–m)& 1,1:1) 

8 

+jiI(l, 1: 1) ~ Bk, 
; 

Example: Under the model <(0, 1: B), the 
weighted least-squares estimator for f?I is 

P@, 1: B)=~T~ ~BL.. 
s / s 

Thus the BLUE estimator for T is 

?(0,1: B)=~T,; +~, (O, 1: B) ~B,,.. 
A’ : 

This estimator can also be written in the more 
familiar form 

?(0, 1: B)= (~T/~BJ$B~. ,2, 

So the BLUE estimator under the model &O, 1:B) is 
the popular ratio estimator. 

Optimal samples. –The model 4(O, 1: B) is of 
particular interest since it is under this model that 
the standard ratio estimator is optimal. Here the 
expected squared error is 

E@(O, 1: B)- T) ’=&( ~B,, /~B.)~B.. 
; S’ 1 

(3) 

From (3) it is apparent that in this context the 
optimal sample is one for which ~ )?~ attains its 

x 
maximum value. This is simply the sample com­
posed of the m units whose B values are largest. 
It is the sample which is optimal for use with the 
optimal estimator under the model t$lO,1 : B) and 
will be denoted by s((), 1: B). (See Royall [2].) 

More generally, under the model $(rO, rl, . . ., 
rJ :v(B)), the sample for which &( T(rO, rl, . . ., 
?_J : v(B)) —T)2 is minimized is optimal for use with 
the optimal estimator. T&s sample will be denoted 
by s(ro, r,, . . . . r~: v(B)). 

Effectsof Errorsin the Model 

We now assume that the population of interest 
is one for which ~(0, 1 : B) is a plausible model but 
cannot ignore the possibility that this model is in-
accurate. Thus we seek strategies which are nearly 
optimal under g(O, 1 :B) but will produce satisfac­
tory results under various other models. 

Overall ratio estimator. -Unde~ the model 
C(O, 1: B) the optimal estimator is T(O, 1: B), the 
ratio estimator, and the optimal sample for use with 
this estimator is s (O, 1 : B), the sample consisting 
of the m units whose B-values are largest. That is, 

of all strategies (s, ~) consisting of a samples and 
~ linear unbiased estimator ~, the pair (s (O, 1: B), 
T (O, 1:B) ) is optimal under the model ~(0, 1:B). 
Many questions arise at this point. How good is this 
strategy when i$(O, 1 : B) is not the correct model? 
If we use ?(0, 1 :B), is s(O, 1: B) a good sample 
when the true model is ~(0, 1 : v(B)) for some 
particular variance function v(B) # B? How can 
we find a procedure which is good under $(0, 1: B) 
but performs adequately under the alternative 
model E(1,1,1 :B)? Answers to some questions of 
this sort are known. For example, it is well known 
that the unbiasedness property of BLUE estimators 
is not destroyed by alteration of the variance func­
tion. Thus ~(0, 1 :B) is unbiased under the model 
&(O, 1: v(B)) for any variance function v. 

More generally, consider the estimator F(O, 1: B) 
under the model f(ro, rl, . . ., rJ : v(B)). The bias is 

Ec(i(O, 1: B) –T) 

‘E’((FT’/TB’)~B’-~)’) 

Note that the summand is zero when j= 1; the bias 
is not affected by the regression coefficient PI. It is 
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clear from this expression that ?(0, 1 :B) is un­
biased if and only if 

x 
; 

for all j such that the term ~j R appears in the 
regression equation (i.e., for all j such that rj= 1). 
It is easily shown that these conditions for unbiased­
ness are equivalent to 

for all j such that rj = 1. Note t~at (4) is always 

satisfied for j= 1. For example, T(O, 1: B) is un­
biased under the model ~(1, 1: v(B)) if (4) is satisfied 
for j=O: 

(5) 

This estimator is unbiased under the still more gen­
eral model ~ (1, 1, 1: v(B)) if, in addition to (5), s 
satisfies 

Suppose it is believed that /j(O, 1: B) is an ade­
quate model for a given problem, but the estimator 
must perform reasonably well when the model is 
in error and the actual regression function is not a 
straight line through the origin. The following 
theorem shows that by careful choice of the sample 
s we can insure the optimality of the ratio estimator 
under polynomial regression models. For any posi­
tive integer J, let s(J) denote any sample satisfying 
(4) for j=O, 1, . . ., J. 

Theorem: If s=s(.1), then i(o, l:B) ‘~(1:1), 
and this is the BLUE estimator under the models 
f(rO, 1, r2, r3, . . . . rJ:B) and ~(1, r], rz, . . ., r~:l) 
for every sequence ro, rl, rz, . . ., rJ of zeroes and 
ones. 

Proojl Note that for anys, ?(1: 1) = M ~ Tklm,. 

and for s= s(]) this statistic is also ~(b, l: B). 

This estimator. has already been shown to be 
unbiased when s =s U) under Yh-order polynomial 
regression models for any variance function. 
One can prove its optimality when s =s (.J) under 
all models of the form g(ro, 1, rz, . . ., rJ:B) by: 

(i) finding the weighted least-squares .
estimates &(rO, 1, r2, . . ., rJ..B) for all 
j=O, 1,2, . . ., J such that rj = 1, under 
the model ~(ru 1, m,. . ., r.r:B); 

(ii) forming the BLUE estimator for T, 

A 

T(rO,l, rl, . . .,r,I:B)=~Tt 
8 

A 

+~ (~M,,)~j(~O, 1, ~2, . . .3 rJ:B) q; 
j=o 

F 

and 
(iii) noting that when s= s(J) this esti­

mator assumes the simple form M ~ Tdm. 
8 

. 
Alternatively, we note that since T(rO, 1, r], 

. . .>ArJ:B ) is unbiased under the model t$(O, 1: B) 

and 2’(0, l:B ) is the BLUE estimator under this 
model, we have for alls 

E{(~(O, l:B) – T)’ [ f(o, l: B)} 

&(O, l:B)}. (6) 

Now when s= s(J), ~(0, 1:-B) is unbiased under 
f(rO, 1, r.., . . ., rJ:B). But T(rO, 1, rz, . . ., r,/:B) 
is the BLUE estimator under this model. Thus 
whens=s(.1) 

A 

E {(T(O, l:B) –T)2 If(rO, 1, rz, . . ., rJ:B)} 

,. 
SE {( T(rO, 1, rz, . . ., rJ:B) – T)’ [ 

$(rO, 1, r.., . . ., rJ:B)}. (7) 

Now 

. 
E {( T(rO, 1, rz, . . ., rxB) – T)’ 

. 
I.g(rO, 1, m, . . . . rJ:B)} =E{(T(rO, 1, r% 

. ..> T’.GB)– T)’ I f(O, l: B)} 
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~or all s, and when s= s(J) this equalhy holds if 
Z’(ro, 1, r2, . . ., r~:ll) is replaced by 2’(0, l: B). 
Thus (6) implies that when s= s(J), equality must 
hold in (7). 

Optimality under <(1, r,, rz, . . ., r,,: 1) can be 
proved by entirely analogous arguments. 

Samples s(J) will be referred to as defensive 
samples. Selection of a defensive sample insures 
that the ratio estimator retains not only its unbiased­
ness but also its optimality under the polynomial 
regression models. As noted above, one convenient 
feature of defensive samples is the simple form 
which the ratio estimator assumes. When ~ BIJ 

M 

m= ~ BA./M, the ratio estimator is simply the ;xpan­

sihn &timator, M ~ Tj,lm. 

Example: Under;he model $(1, 1: B), the BLUE 
estimator is 

~(1, 1 :B)=~ Tk+(M–m)~o(l,l:B) 
s 

where 

and 

with 

When ~ Bk/m= ~ Bk/M= b, we have 
a 1 

Th. 

When a defensive sample is used, the mean 
square emor (MSE) of the ratio estimator under 
$(0, l:B) is, from (3), 

E(?(O, l:B) –T)2 = # 1 –; cr’ ~. (8)
() 

When the estimator is unbiased, the MSE is simply 
the variance, and the variance does not depend on 
which terms appear in the regression model. Thus 
we see that when s is s(J), expression (8) applies 
under the model &(rO, rl, . . ., rJ: B ) for dny 

. .
combination ro, rl, . . ., rJ of zeroes and ones. 
(Note that (8) does not apply under ~ (rO, r,, . . ., 
rJ :1).) It follows that when ~ (O, 1:B ) is the chosen 
estimator under the model &(O, 1:B ), the ratio of 
the MSE when s is the optimal sample s(O, 1: B) 
to the MSE whens =s (J) for any.1 >1 is 

mjn	(~ BIJ M–m )/(~B~/m). 
z 

These results may be interpreted as follows: 
When <(0, l:B ) is the true model, the ratio esti­
mator is optimal for any s. If the ratio estimator is 
used but the model is actually #(1, l:v(B) ), a 
bias is incurred. We can guard against such a 
bias by choosing the defensive sample s(1) instead 
of the samples (O, 1:B ). Protection against .a certain 
type of error in the model ~(0, 1:B ) is gained, 
and some efficiency under this model is lost. If 
we now decide to impose the additional conditions 

~ ~lm = ~ ~/M, j=2, 3, . . . . J, thereby 
s ‘1 

insuring the unbiasedness of our ratio estimator 
under any model,of the form &(rO, rl, . . ., rJ: v(B)) 
(and inskng the optimality of our estimator under 
any model $(rO, 1, rz, . . ., rJ:B) or ~(1, rl, rz, 

. ..3 rJ: 1) ), we incur no additional loss in effi­
ciency. Protection against many types of error 
in the model f(O, 1:B) has been gained at no cost 
in terms of additional loss of efficiency under 
4(O, l: B). 

Some rough idea of the cost of such protection 
can be gained by looking at a population in which 
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R

the Bk are uniformly distributed over the interval 
(a, c-z(1+ A) ) for any a, A >0. In this case, for 
m<M, 

h’ 
min (x “;’ ‘-m)i(?B’’m)=’r 

-* 

When A is very small, this ratio is nearly 1. When 
A= 1, so that the largest BL. is twice the smallest, 
the ratio is between 21~and 3/4. When A= 2, the 
ratio is between 1/2 and 2/3. 

Suppose now that for some known or unknown 
characteristic Cl,. of unit k, the regression function 
ETk contains a term /Yg(C~) for some arbitrary 
function g. The ratio estimator incurs no bias from 
such a term if the samples is such that 

If a defensive sample is drawn so that ~ Bk/M=~ 

B~/m, then the term /3’g(CK) contrib~tes no bi~s 
if the sample is “representative” in the sense that ~ 

x 

g(Ci)/m = y g(C/:)/M, i.e., if the average value of 

&(C/,) in th~ sample is the same. as the average 
value in the population. 

The foregoing results provide some theoretical 
support for the procedure of selecting a sample at 
random and using either the simple expansion esti­
mator or the ratio estimator. The average value of 

j=l,2, . . . . In precisely the same sense that the 
mean of a simple random.,sample can be expected to 
be approximately equal to the population mean, a 
sample selected at random can be expected to 
approximate s(1). This iq true because s is s(1) 

M 

when ~ Btlm = ~ BJM. The same reasoning
8 I 

applied to higher powers of B implies that simple 
random sampling will frequently produce a sample 

which is a fair approximation to s(J) for some J >1. 
Whenever this occurs, the expansion and ratio 
estimators are approximately the same; both are 
approximately unbiased under the model <(1, 
19 ...? 1: v(B)) and approximately optimal under 
this model when v(B) = B or v(B) = 1. The same 
argument applies to the unobservable (or simply 
unobserved) regressor g(c). Unbiased estimation 
of T is pos’sible only if the effect of g(c) is negligible 
or if the sample is “representative” in the sense 
defined above. 

An important role of random sampling is to pro-
vide samples which are “representative” with 
respect to such regressors. Of course random sam­
pling cannot guarantee successful choice of a repre­
sentative sample, and the probability of a successful 
choice depends on the unknown distribution of 
g(c) in the population. Nevertheless, random sam­
pling provides a basis for optimism, as shown by the 
Tchebycheff inequality. 

The use of simple random sampling as a means 
of obtaining a sample approximatings ( J ) produces 
samples which are not all good approximations to 
s(j) and tie, on the average, less efficient than 
s(j). Under the model f(O, 1 :B), for a given 
sample s the MSE of the ratio estimator is & 

~B~f Bk/~ B,. Theaverage value of this quantity 
Y 1 8 

over all m possible samples of the required size 
(7 

is u’ $ B, (~ ~ B~-1) where c is the average 

v~ue~f @40vera~ (:) ‘ampleso ‘owa 
well-known fnequalitya shows that c is greater than 

or equal to 1/ ~ Bk/M ), with equality only in case(: 
‘B~=Bz for aIlk~l=l, . . ., M. Thus, except when 
all B’s are equal, the average MSE over all possible 

J42 -

samples of size m is greater than ; 1 — M W2D, 
() 

the MSE when the sample is s (J). 
We have seen that the strategy (s(J), i(O, 1 :B) ) 

produces unbiased estimates under the model 
g(l, l,A. . . l:v(B)). The strategy (s(1, 1, . . ., 
l: B), T(l, 1, . . ., 1: B) ), which is optimal under 
g(l, 1, . . ., 1 :B), also produces unbiased esti-

11 
‘For any nonnegative random varMdeX, E ~ 2 ~ Equ&y holds if and only if X 

is a constant (with probability one). 
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mates under this model. The MSE for this strategy 
is the minimum value over all s of 

E{(f(l, 1, , . ., l:l?)-1’)’lg(l,l, . . ., I:B)}, 
(9) 

which is less than the value of this expression when 
s =s (j). But ~when s =s (/) we know from the 
theorem that T(O, l: B)= Z’(1, 1, . . ., 1 :B) and 
thus that 

E{(?(l, 1, . . ., l’:B)–T)’lg(l, 1, . . ., l:B} 

=E{(?(o, 1:11) -1’) ’lg(l, 1, . . ., l: B)} 

=E{(i(o, l: B)–7’)’ [g(o, l:B)}. 

Therefore, under f(O, lA:B) the MSE of the strategy 
(S(1, 1, ., ., l: B), 7’(1, 1, LA. ., l: B)) is less 
than that of the strategy (s(j), 2’(0, 1: B) ). Never­
theless, because of the popularity and simplicity of 
the ratio estimator, as well as because the current 
HDS estimator is of the ratio type, the remainder 
of Part I is devoted to situations in which the ratio 
estimator (or a sum of ratio estimators) is to be used. 

Stratification on the size variable.—We have 
seen that the unbiasedness of the ratio estimator 
can be preserved under Jth-order polynomial 
regression models by the choice of a sample s(j) 
which is “like” the population in the sense that 

~B~lm=~BQM forj=l,2, . . .,J. 
8 1 

An alternative means of preserving the unbiasedness 
property employs stratification on the size (B) 
variable and use of a separate ratio estimate in 
each stratum. 

The double subscript hk denotes quantities associ­
ated with unit k in stratum h. Thus Bh.+is the size 
and TI,k the response of unit k in stratum h. The 
number of units in stratum h is MI!, and TIj and BIi 
are the totals for stratum h. In this notation the 
grand total T is expressed as 

T+,=~’~ TM 
11=1 h=l k=l 

The strata are defined as follows: the M, smallest 
units form stratum 1, the next Mz smallest units 
form stratum 2, etc. Thus when h < h’, B),k < Bl,,kt 
for all k= 1$. ..> M/, and A’=1, . . ., MI,I. 

A sample Sl,consisting of ml, units is chosen from 
stratum h, and the total T/, for that stratum is 
estimated by 

.	 x ‘“~.,,,, 
;T,, = —B,,. ~, B,,L.. (lo) 

v 

.\fh 

Any sample s), for which ~ B{,k / ml, = ~ Bf,K I MI, 

~li 
for j= 1, 2, . . . ~J will be referred to al sh (J). If 
sit= sh(j), then Th is an unbiased estimate of Th 
under the model 

TI,h= $ rj~jB{,k + IEI,~=) 
j=,, ‘“ 

k=l,2, . . ., M// (11) 

where the e’s are independent, each with mean zero 
and variance U2, and ro, rl~ . . ., rJ is a sequence of 
zeroes and ones. The case in which (11) applies for 
h=l,2, . . ., H will, as previously, be denoted by 

f(ro, rl, . . .,rJ: V(B)). 

~rom th~ earlier results we see that the estimator 

T= ~ TI, is unbiased with MSE 
h 

under ~(0, 1: B). The estimator is unbiased and 
has the MSE (12) under the more general model 
$(ro, rl, . . ., rJ:B) ifsh=sh(j) forh=l, . . .,H; 
Note that when such a sample is chosen, the esti­

mator T becomes simply 

where H is the number of strata. 

13 



and the MSE is 

(13) 

where ~h ‘Bh/Mh. 

If a defensive sample is drawn within each stra­
tum, i.e., if sh= s1,(J) for some J >1 and every 
h=l,2 , . . ., 1-f, then with proportional allocation 

(m/,/M,, constant) the estimator ~= ~ ~A is simply 
h 

the overall expansion estimator 

M ~ ~Thk/m. 
/1=1 X11 

In this case the MSq (13) becomes simply crz ~ 
M(M – m) /m, where B denotes the grand average 

~ B,,IM. 
/)=1 

Optimal allocation, subject to fixed total sample 
size m and with defensive sampling within strata, is 
easily seen to require that mll be proportional to 
MI,fl=G for h=l !. ..? H (cf. Cochran 
[9]). With optimal allocation the MSE (13) becomes 

In order that proportional allocation be optimal, 
we must have MI, proportional to MI(a, which 
means that ~h must be constant. But with stratifica­
tion on the size (B) variable, El, can be constant 
only in the degenerate case of a population whose 
units are all of the same size. Thus in nontrivial 
cases, proportional allocation cannot be optimal. 

The foregoing results establish the superiority, 
with respect to MSE, of the stratification procedure 
to the nonstratified defensive sampling procedure. 
We refer to these procedures as II and I, respec­
tively, and summarize the argument establishing 
the superiority of the former. 

Procedure I. Choose any s(J) and use the esti­
mator (2), 

Procedure II. Stratify on the size variable, 
choose any sh(J) from the h’~ stratum, and use the 

H. 

estimator ~=	 ~ 2’/,. 
/)=1 

(i) Both procedures (I and II) produce 
estimators which are linear and unbiased 
under f(ro, r], . . ., r~:v(B) ) for any 
sequence rO, r!, . . ., r.i of zeroes and 
ones. 

(ii) Optimal allocation for procedure 11 
requires that mh be proportional to m. 

(iii) If proportional allocation is used in 
procedure II (T.Vh = mMh/M), then proce­
dures I and II have the same MSE. 

(iv) Proportional allocation cannot be 
optimal except in trivial cases. 

From (i)-(iv) we conclude that 
(v) If optimal allocation is used, then 

procedure II has smaller MSE than 
procedure I. 

Note that (v) is true regardless of the number 
and relative sizes of the strata. The only require­
ment is that it be possible to use optimal allocation 
and defensive sampling. Now the same argument, 
(i)-(v), which shows procedure II to be superior to 
procedure I can be applied within any stratum to 
which more than one observation is allocated, It 
pays to substratify. This implies, that when 1=1, 
the optimal number of strata is H= m (and optimal 
allocation is mh= 1, h== 1, . . ., m). of course, if 
we want to guarantee unbiasedness under more 
general models (larger A, each ml, must be greater 
than or equal to J, because when mti is less than J 
it is impossible to select sh = SI,(j) except in highly 
special, degenerate bases. There are also the 
obvious problems encountered in selecting samples 

.\fh 

sh(J); exact satisfaction of ~ ~h~lmh = ~ ~h~kfh 

41 1 

for j=l,2, . . ., J is ordinarily impossible. When 
the sampling fraction is small, however, and J is 
small, approximate satisfaction of these conditions 
is frequently easy to effect. 

Note that balanced sampling within strata provides 
an unbiased estimator under the more general 
model in which ~.i varies from stratum to stratum. 
Such a model, even when J is small, say J= 1, is 
frequently a good approximation to a model con­
taining a quite general regression function. That is, 
when the intervals of B-values which define strata 
are narrow, a straight-line approximation within 
each stratum can provide a close fit to a general, 
smooth regression function. 

We see, then, that when optimal allocation (m/i 
proportional to Mh -) and defensive sampling 
within strata (s/, = sh(J) for all. h) are employed, 
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stratification produces smaller MSE’S than simple 
defensive sampling (s =s (j) ). The next problem 
is that of finding good rules for stratifying a popula­
tion on the size variable. For J= 1 the optimal 
number of strata is m with one-sample-unit-per-
stratum allocation. How should the m — 1 boundaries 
which define the m strata be chosen? We consider 
a slightly more general problem: For a fixed number 
H of strata, given that equal allocation (nzh = C, 

h=l ?. ..? H) and defensive sampling within 
strata are to be used, how should stratum boundaries 
be chosen? Under these conditions, the MSE under 
any model of the form f(ro, rl, . . ., rJ : B), and 
in particular under the model of most interest, 
~(0, 1: B), is 

Ef(i–n’=aq H/!$(l_zc)Bh-
h=l 

= & H?–MB 1 (14)[x . 
h=l 

Thus optimal stratification for equal allocation 
requires minimization of 

It should be noted that optimal stratification for 
equal allocation is not necessarily obtained by 
stratifying in such a way that equal allocation is 
opti~al. Equal allocation is optimal when all 
Mh (Bh) ’12 are equal, that is, when au Mh Bh m 

equal. But it is easy to produce examples in which 
this way of stratifying does not minimize 

~ ikf@,, . 
h=l 

It can be shown (a proof is contained in the appen­
dix) that for a given stratification scheme to be 
optimal when equal allocation is used, it is necessary 
that 

This is established by demonstrating that for any 
h=l 9 ...7 H – 1, whenever Mh < Mh+l, the MSE 
(14) is reduced if the strata are redefined so that the 
smallest unit in stratum h + 1 is shifted into stratum 

h. It is also true that, except for one special situation, 
for a given stratification scheme to be optimal it is 
necessary that 

B1<f3zS . . .==BH. (16) 

(See appendix.) The exceptional situation can occur 
only when two adjacent strata, say the ht~ and the 
hi- l’t, have Mh ‘Mh+l i-1, and all of the2Mh – 1 
units in these two strata are of approximately the 
same size. Then we can have Bfi > Bh+1, but if .we 
attempt to satisfy (16) by shifting a unit from the hth 
stratum to the h + 1’~, the MSE (14) is increased. 
Note that in this case, shifting the unit introduces 
violation of the inequality Mfi 3 Mii+1. 

The inequalities (15) and (16) indicate the essential 
features of a good stratification scheme for use with 
equal allocation, defensive sampling within strata, 
and the estimator (10). The strata should be so con­
structed that there are more units in stratum h than 
in stratum h + 1, but there should not be so many 
more units in stratum h that the sum of the size 
measures in stratum h exceeds the corresponding 
sum in stratum h + 1. Three special cases in which 
both (15) and (16) are satisfied are: 

(i) Ml= M~=. ..=MH, 
(ii) BI=B, = . . .= B~, and 
(iii) MIBI = MzB~= . . . = MHBH. 

In case (i) equal allocation is proportional allocation, 
while in case (iii) equal allocation is optimal alloca­
tion. In an obvious sense, (i) and (ii) represent two 
extremes among all stratification schemes consistent 
with (15) and (16), with all others, for example (iii), 
located between these extremes. It appears that the 
relative efficiency of (iii), with respect to the optimal 
scheme, is ordinarily quite nearly one. (Cf. Cochran 
[10].) 

Of course, if J = 1, yet fewer than m strata are to 
be created, optimal allocation requires that mh be 
proportional to -. With such allocation, 
optimal stratification is that which minimizes 

~ m. 
h= I 

The relation between stratified random sampling, 
using separate expansion or ratio estimators within 
strata, and the present results concerning defensive 
samplin”g within strata is quite analogous to that, 
discussed earlier, between simple random sampling, 
using either the simple expansion or the ratio esti-
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mater, and defensive sampling. The average value of 
~ B~,/m~ over all samples s, of size m, from stra­
‘h 

Mh 

turn h k ~ B~hI Mti. Thus we should not be sur­

prised to ;nd that stratified random sampling 
frequently produces samples in which sh is approx­
imately sk(j) for some ./ > 1. When this occurs the 
estimator is approximately (10), regardless of 
whether the ratio or the expansion formula is used, 
and is approximately unbiased under rather general 
models. The random sampling procedure chooses 
samples which are, on the average, less efficient than 
the nonrandom defensive strategy, as was shown to 
be the case when simple random sampling and 
defensive sampling were compared. 

Estimation of Variance , 

% detailed study of variance estimation when 
using stratification has not been attempted here. In 
this section the stratum subscript h is dropped, and 
results are stated for an unstratified population. Of 
course, an example of such a population is an 
individual stratum in a stratified population. In 
this section, then, the bed size and the response 
associated with unit k are denoted by Bk and Tk, 
respectively. 

Unbiased variance estimation. —Ufider a partic­
tiar. model f(ro, rl, . . ., rJ: v(B) ), the MSE 
Ef(T– ~) 2 is a measure of how much inaccuracy 
might be expected when T is used as an estimate 
of T. If ? is unbiased under the model,Athen the 
MSE is simply the va~ance of the error T– T. For 
any linear estimator T= ~ #’~T~, this variance is 
easily calculated: x 

Var (~ 
s 

8~Th – ~,TA)=var(ye-~ 
+~T~ 

T ) 

stituted for this unknown constant in (17) since for 
a given estimator, sample, and model, the rest of 
(17) is fixed and known. ,. 

When using the BLUE estimator Z’(rO, rl, . . ., 
rJ: v(B)), the usual estimator of Uz, which is based 
on the weighted least-squares residuals, is unbiased: 

1
&2(r0, rl, . . .,rJ:v(B))=— 

m—c x{s 
T.q– f~ 

(ro, r,, . . ., rJ:v(B) ) 2/V(BA) (18)
} 

where 

A 

!l’~(ro, rl, . . ., rJ:v(B)) = 

$ rj~(ro,, I, . . . . rxv(B))B{. 
j=o 

J 

and c= ~ rj, the number of regression coefficients 
j=l)


estimated. 
Under the model 4(O, 1:B), this estimate of U2 

is given by 

2


;Z(O, l:B) = ~~ Tic-~kBk /B/c. (19) 

.[ ‘TkI 
and the M~E for a givens is estimated by 

s 

This statistic is not the estimate of the variance 
of the ratio estimate, which is usually used whens is 
selected by simple random sampling. As an indica­
t~on of the inaccuracy in an observed estimate 

T, (20) seems usually to be superior to the conven­

x intervals with width proportional to the square root 
of (20) are frequently more accurate indicators of the 

+x v(B/,) . (17) uncertainty in an observed estimate than are the 
; } same intervals with (20) replaced by the usual 

variance estimate. This point is discussed in Royall 

= C# {z (/k–l)’ v(BK) tional variance estimate. For example, confidence 

Unbiased estimation of this variance requires [1], where some theoretical results and empirical 
simply that an unbiased estimate of d be sub- evidence are presented. 
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Effects of errors in the model. –Under the more 
general model with regression function h (1? and 
variance function v(B), i.e., T~ = h(13J+ q J- v(l?k), 
the MSE of the ratio estimator is actually 

The first term in (21) is the variance of the difference 

T –AT, and the second is the square of the bias 

E (?’ – T). Under this general model the estimate 
(20) of the MSE has expected value 

.\l€

(u’F’+D)~B. ~’k/;’k (22) 
1 

; 

where 

V(”) ~ “(BIc)€

V=J-- —–€
m— 1~’k ~ ‘k 

[ 8 1 
and 

h2(’k) (y@’))2 
D=~ 

m — l~’k 
—– ~’k“ 

[ 8 1 
Note that (22), like (21), is naturally represented as 
the sum of two nonnegative terms, the first depend­
ing on the variance function and c-r’ but not on the 
regression function, and the second depending on 
the regression function but not on the variance. 

When u(B) = B the first terms of (21) and (22) are 
equal, and when h(B)=~B the second terms in 
both expressions vanish. In particular, under the 
model $(0, 1: 1?) the two expressions are equal and 
(20) is an unbiased estimate of E(T– T)~. 

If a defensive sample s(J) is chosen, the actual 
MSE under f(rn, rl, . . ., rJ : v(B)) is 

‘2+’(1-+)[Hy’’)’n’


+;~v(BA.)/M-nz ,1

T 

which can be rewritten as 

+~:m .(~’$d’k)‘:~v(’~)
8 

)1.(23) 

In this case the estimate (20) of this MSE has ex­
pected value 

‘2%1-W{D}” ’24) 
Note that when v(B) is a Jth-order polynomial and 
s =s (j), the MSE is simply 

The choice ofs = s(J ) protects the ratio estimator 
against bias in case a Jth-order polynomial re~es­
sion model applies. This protection does not extend 
to the estimate (20) of the variance of the ratio 
estimator, whose expected value depends, through 
the quantity D, on the regression coefficients. If the 
model &O, 1 : B) is correct with respect to its specifi­
cation of the variance function v(B) = B but errone­
ous in its specification of the regression function, 
the variance estimate is biased by the amount 
((24) minus (23) with v(B) =13): 

K 1–; BD. (25) 
m ()

The Cauchy-Schwarz inequality shows that D is 
nonnegative. Thus when we use the estimates (2) 
and (20) which are appropriate under &(O, 1: B), we 
choose a defensive sample s ( J), and the true 
model is f(rt], rl, . . ., rJ: B) with rj= 1 for some 

j # 1, we encounter a positive bias in our estimate 
of variance. 

When the model ~ (O, 1: B) is correct in its speci­
fication of the regression function but erroneous 
in its variance function, how does the actual MSE 
(21) compare to the expected value (22) of our 
estimate? If in fact the true model is f(O, 1: v(B)), 
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then the expected value of the ratio of the estimated 
MSE to the actual MSE, the ratio of (22) to (21), 
can be written 

1+= 
l+ez 

where 

and 

(26) 

When v(B) = B2, the actual MSE is no less than 

~~_;)Jg), 
. 

while the expected value of. the estimate is no 
greater than 

H%)’(ZNM. 
The ratio of (22) to (21) is thus no greater than 

($ B@)/(EBJM-m). lt ‘s ‘qua] ‘0 ‘his 
F 

value onlj in the degenerate case of all BA.equal. 
Thus when u(1?)= B2, with defensive sampling 
the variance estimator has a negative bias. 

When the sample is such that 

and v(B) =1, the ratio of (22) to (21) is no less than 

which is no less than 1. Thus when s =s (J), and 
our model &(O, 1:1?) is erroneous in that the 
actual variance function is not v(B) = B but in-
stead v (B.)= 1, our estimator of the variance of 
the ratio estimator has a positive bias. 

18 



PART Il. TWO-STAGE SAMPLING 

Description of Problem” 
Terminology, notation. – In Part I a simple 

population of M units with associated size measures 
BI, . . ., BM was considered. For present purposes 
the units are hospitals and the size measures are 
their bed sizes as measured by MFI in 1963. The 
basic sampling unit in HDS is a patient discharge 
record. On this record the variable of interest, Z, 
is found. Thus for k= 1?. ..7 M 

B~ is the bed size of hospital k; 
Nk is the number of discharges from 

hospital k during the period studied; 
Z~t is a number associated with discharge 

/(4’=1, 2, . . ., NJ from hospital k; 
and 

Tk is the sum, over all discharges from 
hospital k, of the Z-values: 

The sample is selected in two stages. First a 
samples of m hospitals is choien; then, if hospital k 
was selected, Nk is observed and a sample sh of 
discharges is selected from hospital k. The number 
of discharges in the second-stage sample is nh. 
The samples s and Sk are represented as subsets of 
the sets {1, 2, . . ., M} and {1, 2, . . ., N~}, 
respectively. The expression “k in s“ means that 
hospital k is in the sample of hospitals, and ‘$/’ in 
sk” means that discharge / is in the sample of 
discharges from hospital k. 

The objective is, to estimate the total, 

T=f ~zkt=fT)c,
k=l /=1 k=l 

which can also be expressed as 

where 3 is the set of hospitals not in the sample, and 
SKis the set of discharges from hospital k which are 
not in the sample SA..The first term in (27) is known 

from the sample; the second and third terms must 
be estimated. 

Most but not all discharges from the M hospitals 
are within the scope of HDS. Thus a discharge 
record which has been selected for the sample 
might be found to be either (i) out of scope or (ii) 
in scope but nonresponding (e.g., missing from its 
folder or lacking necessary information). These 
possibilities will be considered later, but for the 
moment attention is confined to the simplified case 
of all discharges in scope and 100 percent response. 
In this case the analogue of the HDS estimator 
[11] is 

~?,M 
A 

—~Bh. (28)‘=;& ,

s 

‘.=Nk~&, ?@where Tk 
/

‘k 

This estimator can also. be written as 

Here the first term is that part of T which is known, 
the second term estimates the sum of the un­
observed discharges from sample hospitals, and 
the third estimates the sum for nonsample hospitals. 
(Compare with expression (27).) 

Probability moo!els. – The number of discharges 
NA.is treated as a random variable whose expected 
value and variance are proportional to BK : E NK 
= /3Bk and Var NA.= ~4~Ic, with N~ and Nj un­
correlated for j # k. For a given value of Nh, the 
responses Z!+t, / = 1, 2, . . . , NA.are treated as 
exchangeable random variables. That is, all of the 
permutations of Z.M, Zw, . . . vZM~ have the same 
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joint probability distribution. Thus these random 
variables have a common mean 6A.and variance 
~:; au the pairs (Z~t, Zkj) have the same covariance 

pka;. “ 
Although ~k and &k are treated here as constants 

(not depending on Nk), they might be more real­
istically represented as functions of Nk and Bk. For 

‘Vk 
example, if the sum ~ Zw is fixed, then exchange-

1 

ability of the Z’s impties that, given Nk, cov (ZkC, 
Zw) = – Var(Zw)/(N~ – 1) for Z # t“. Thus if 
dk is fixed, ~k = – l/(N~ – 1). what functions might 
represent the relation between $~, pk and l~k, Bk 

with useful accuracy and whether such representa­
tions have a nonnegligible influence on the analysis 
are questions which call for further investigation, 
both theoretical and empirical. “ 

The expected values 01, f3z,,., ., ., $M associated 
with M hospitals are themselves treated as realized 
values of random variables @i, 02, . . . ,@,w, which 
are uncorrelated and have a comrno’n’ mean value 0 
and variance ~z. The random variables @k and Nj’ 
are uncorrelated for all k, j= 1, 2, . . ., m.b 

Optimality Considerations 

If all the Nk were observed and if &, for k in s, 
and Owere known, then the best unbiased estimator 
of T would clearly be 

If all Nk were observed but the 6k and 6 were un­
known, then the best linear unbiased estimator 
of T would be 

where 

# ~Z khkk+/)u;(l + (n~– l)pk)/n. 

a.= ‘k 
#+u;(l+ (nk–l)p~)/nk 

bThat the & have the mme mean is an moumption whose plmtsibfit y ia specific 
to a particular charactaisticZ under consideration, For a characteristic such as kngth 
of stay, the expected value ofe~ is prohahly detwtdent on B~ and is thus not the same 
for all hospitals.. Sensitivity of subsequent results to deviation from the assumption 
of a common mean for the et requires further investigation. At present it is uncertain 
as to how much deviation from this assumption can he safely disregarded. 

and 

This estimator was obtained in a Bayesian analysis 
for the case p= O by Scott and Smith [7]. They 
showed that, given the observations, (30) is the 
expected value of T when all the distributions 
concerned are normal and 6 is itself given a uni­
form distribution over the entire real line. They 
also showed that under the present model (6 
fixed), (30) is the best. among linear estimators 
whose mean square errors are bounded functions 
of e. 

‘It might seem objectionable to estimate the 
parameter 6k for a sample hospital, not by the 
mean ~ Z,Ifl/nk of the sample from that hospital, 

Sk 

but instead b~ a weighted average of this statistic 
and ~, where @depends on the samples drawn f~om 
other hospitals. However, considering the case of 
6 knoivn and ?kksmall will make it clear that such 
an estimator is quite reasonable under the present 
model. 

In (29) the expression (y+pk)vk
F 

estimates ~ N,. Thus in the case of N. known for 

all k=l, ;, . . ., M, the analogue of the HDS 
estimator (29) is 

.! 
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If the three conditions (i) p~= O for all k in s, (ii) 
r2 = O (no variability among the expected values 
01, . . ., t?,~~),and (iii) n~/N~=constant for all k in 
s ‘(proportional allocation) are met, then (30) and 
(31) are the same–in this simplified problem the 
analogue of the HDS estimator is the BLUE esti­
mator. If U2= O the two estimators differ only in 
their third terms. Even if the two formulas differ, 
they produce the same estimate when the sample 
is such that the sample means ~ Z~//n/f, k in s, 

‘k 

are all equal; they produce approximately the same 
*estimate when the means are approximateely equal. 
The analogue (31) of the HDS estimator is thus 
approximately optimal when the hospital sample 
means show little variability, as well as when 
(i)–(iii) are satisfied. 

When, as is the case in practice, the Nhk, for k 

not in s, are unknown, the estimator obtained by 

replacing ~ NK. in (30) by its BLUE estimator 
s 

Using the same estimate for ~ NA.in (31) gives (29), 

the analogue of the HDS estimator for this case. The 
conditions for equivalence of (32) and (29) are again 
(i)-(iii), and, as before, the two formulas produce 
the same estimate when the within-hospital sample 
means are all equal. 

The estimator (32) is calculable only when all of 
the ratios rwzlcr~!, k in S, ‘me known. For some 

response variables it may be known that these 
ratios are all quite large (or small), in which case an 
approximately optimal estimator can be calculated. 
For general values of the ratios when the n~ and m 
are large, an approximately optimal estimator can be 
obtained by substituting estimates of the ratios for 
their actual values. This approach is not developed 
here. Instead the HDS-type estimator is considered, 
and questions of unbiasedness, stratification, and 
allocation are studied. 

The HDS Estimator 

Case of all discharges in scope and 100 percent 

response. —The HDS design is stratified, and the 
actual estimator is the sum of estimates of the form 
(28). The stratification variable is bed size. Suppose 
the hospitals are divided according to bed size into 
I-Zstrata (H can be 1), and let ~h denote the number 
of hospitals in stratum h. Now for h= 1, 2, . . ., H 
and k=l,2, . . ., kfh 

Bh~ is the bed size of hospital k, stratum 
h; 

Nhk is the total number of discharges 
from hospital k, stratum h, for 1=1, 2, 
. . ., Nk; 

Zhkl is the response variable associated 
with discharge 1 from hospital k in stratum 
h; 

Thk =	 ~ Zhkl is the total for hospital k, 
1=1 

stratum h; and 
Mh 

Th=	 ~ Thkis the total for stratum h. 
k=l 

The underlying model is as before, except for 
obvious notational changes to indicate strata. 

For the present, attention is confined to the sim­
plified problem with all discharges in scope and 
100 percent response. The HDS estimator for this 
case is 

Where fhk= Nhk ~ Zhkdnhk, Sh is the sample of mh 

‘hk 

hospitals from stratum h, and Shk is the sample of 
nhk discharges from hospital k in stratum h. This 

H.. 

estimator has the form ~ T), where 
h 

fh=(&hk) (; fhk/~B’k) 

‘h 

is a ratio-type estimator for the stratum h total Th. 

a. Condition for unbiasedness. —The condition 
for unbiasedness, 11(~– T) = O, applied to the 
estimator (33) is equivalent to 
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NM,61M)I . 

=	 f “~ E(7’,,). (34) 
h=l 1 (35) 

Suppose E(?hk) = E(TM). for a]] k in sh. Under any The sum of the fir~t two terms in this expression is 

model for which this is true, (34) is an unbiased the variance of Th —Th if T\,’ were observed for 

estimator of the grand total T if within each stratum k in sh. The third term is the increas~ in error 

the sample is “representative” in the sense that the variance caused by estimation of Ttlk by Ttlk fork in 
Sh and can be written in a more explicit form deter-

ratio of the total expected value E 
()

~
8h 

Thk to 
mined by the relation 

total beds ~ BM in the sample is the same as the E [Var(?h’ – Th’ I Nh~, @hk)] 

‘h 
corresponding ratio for the entire stratum. 

If E(Thk) is a Jth-degree polynomial in Bh’, the 
earlier results regarding defensive sampling apply. 
The estimator (33) is unbiased if a defensive first-
stage sample .$h(J) is chosen for h = 1, 2, . . .? H, Expressions (35) and (36) are derived in the appendix. 
and E!ij’ = EThk for all k in Sh(J). If Efh’ = 

c. Design of survey. Allocation of second-stage
ETh’ = ~hBhk fOr SOIIle Constants ~h, then (33) iS 

samples within strata. –From (36) it is easily shown 
unbiased for any choice of the first-stage samples that, for a given sample of hospitals s1, and a fixed 
s 1, sZ, . . ., s~. This result applies to the present total number of discharges nh to be sampled from 

‘hk 

model since EThk = E ~ Zhkl = ENh@hk = 6@h// stratum h, the error variance is minimized when 

1 
nhk = IZhN/,k[ ( 1 —~hk)U;k]1/2

/and‘fh’=E@k~z!’#4=ENhkihk=’@Bhk”
~ N//k[(l -p,,,da;k]’i’. 
‘h 

b. Variance. – Under the present model the HDS If the quantities (1 – /)/iA.)a~k, k in sh, are approxi­
estimator	 (33) is unbiased with 

mately equal, then optimal allocation is proportional 
allocation, nhklNhk = nh /z Nhk, for all k in s/,. Here 

Var f= ~ var(Th) . ‘h 
h=l the constant of proportionality is m /z .Vl,~.If the 

‘h 
Using only the conditions that: (i) given Nhk and constant must be chosen before the denominator 
t?hk, the variables Zhkl e= 1, . . . . Nkk are ex- of this ratio is known, then the total number of 
changeable and (ii) Nhkehk k= 1, . . ., Mh are observations nl, is random. Nevertheless, if the 
uncorrelated, it can be shown that the error variance @ (1 ‘~hk), k in WI, are all equal, then no other 
for stratum his scheme for allocating the nh observations can pro-

Var (~h – Th) = ~ var(Thk) duce a lower error variance. 

‘h Choice of hospitals within strata. – When 

U;k (1 ‘phk), k=l, . . .,~h,are all equal” 

and proportional allocation is used, the 
third term in (35) is a decreasing function 
of ~ Bh’. This implies that if a first-stage 

‘k 
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sample Sh for which	 ~ Bk is a maximum is where A is a constant determined by the 
ah restriction 

optimal for estimating Th in the sin~e-
stage problem. (Tk observed for k in Sh ), 

then it is also optimal for the two-stage 
problem. As in the single-stage problem, 
the choice of a suboptimal sample satis-

Mh If the cr~k(l – Ph~), k in sh, are all equal, 

fying ~ Bhk/?T2h = ~1 Bhi Mh might be jus- then the y~ are such that 
ah 

tified on the grounds that it affords pro- M~


tection against the errors in certain Y: ~ Bhk / ~ Bhk h=l,2, . . ..H


aspects of the regression model. ‘h 1


Allocation of second-stage samples 
among strata. –For a given first-stage are all equal. Note that when sh is such that 

sample and proportional allocation of 
the second-stage sample among sample 
hospitals within each stratum, the third 
term of the error variance is 

for all h, the optimal sampling rates are 
determined by yhmh/Mh = constant. In 
other words, the optimal second-stage 
sampling rates are such that the overall 
sampling rate is the same in all strata. 
This is, in fact, the rule which is used 
in the HDS. 

~ E ~hk (7,‘– 1 (u;k(l–/lhk)) Optimal stratification and allocation of fu-st­
) 1 stage sample. - Suppose that for h= 1,2, . . ., H: 

ah .\fh 

(37) (i) ~Bhk/mh = ~ BhkiMh; 

1 

Here yh is the sampling rate applied within (ii) ~ fixed sampling fraction y~ is to

sample hospitals in stratum h, i.e., be used within all sample hospitals in

nhk/Nh~= yh for all k in sh. If the totid stratum h; and

expected number of second-stage units (iii) the rates yl, . . ., y“ are chosen

in the sample is fixed, say so that the overall sampling rate is con­


stant, i.e., yhmb/Mh = constant. 
Note that the previous analysis provides 

some justification for (i)–(iii). Under 
these conditions, if the variance of Thk 
is proportiomd to Bhk (as is true when 

then what are the optimal rates y~, ~= O and p= O), then the variance (35) 
Hy:, . . ., yj$? The answer is easily shown 

is of the form c1 ~ M@h/mh + cz for some
from (37) to be . 

constants c1 and Cz.Therefore, the problem 
of optimal stratification and optimal alloca-

E(NhkU;k(l~ - ~hk) tion of the first-stage sample (choice of 
Sh 1/2 

ml, m.., . . ., m~) is the same as in the 
~ ENhk single-stage sampling problem considered[1 in Part I. Thus when the above conditions‘h 

are approximately satisfied and it is not 
h=l,2 ?. ..9 H required that Sh = Sh (j) for J >1 (condition 
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(i), means sh= sh, (l)), the optimal number 
of strata is m, and optimal stratification 
must satisfy inequalities (15) and (16). 
If fewer strata (H< m) are to be created, 
then optimal allocation is given by the 
familiar rule mhl(kfhBh) 112= constant. 

Using this allocation rule, optimal strati­

fication is achieved when ~ (Mflh) 1P2is 
1 

minimized. 
The allocation rule used in HDS is 

mh/Bh = constant. Both a~ocation rules, 
mhl(M@h) 112= constant and mh/Bh= 
constant, imply that the larger the average 
bed size 13h/Mh, the larger should be the 
first-stage sampling rate mh/Mh. However, 
with the former rule this rate is propor­
tional to (Bh/il!Zh)112, while with the lat­
ter rule the rate k prOpOrtiOtd to~hi~h. 

Thus the former rule yields a more nearlv 
constant first-stage allocation rate than 
does the latter. Note that with the latter, 
optimal stratification requires minimization 

H 
of ~ ikfh ~ Bh/m, which does not de-

1 1 

penal on the way in which strata are 
formed. Thus when this rule is used, the 
choice of stratum boundaries appears to 
have little effect on the performance of 
the overall estimator. 

E~ects of out-of-scope and nonresponse dis­
cha~ges. – In this section it is recognized that some 
of the discharges from which the sample is drawn 
might be outside the scope of the H.DS study. A.two­
valued variable 8 is used to indicate whether or not 
a discharge is in scope: &k[= 1 if discharge f’ 
from hospital k in stratum his in scope, and k!= O 
otherwise. The variables k #= 1,2, . . ., Nhk 
are treated as realized values of independent 
random variables, and 7Thkis the probability that 
8//kl= 1. 

The response Zhkr can now be represented as the 
product of ~hh’1 and a random variable Xhh.1. Then 
the X-value is the characteristic of interest and 

.vh~ .~h~ 
Th.+= ~ zh/#= ~ ~hklxhkl. Given the number 

1 

.Vhk 

Niik of total discharges, ~ ~hld represents the 
1 

random number of in scope discharges from hospital 
hk. 

The expected response of each in-scope discharge 

from hospital hk is denoted by /..i,hh.;i.e., WM.is the 
expected value of Xhkl, given that ~hkl = 1. Thus 
EZh~[= t?h~=E&~&~l = ~h~/.t.h~. The variances 
and covanances and responses of in-scope dis­
charges are Ulhk and pxhk&xhr Thus 

and 

Cov (Zhkt, i?h.ki) ‘ph@~~=~hkpxhku;hk-

The most direct estimator for this case, which is 
. H. 

the analogue of the HDS estimator, is T= ~ T/,, 
1 

in which 

where 

‘hk ‘Ilk 

and 

L/k = ~ ~hklxhkl /z 
8hk/. 

‘hk ‘hk 

Note that this is the same estimator as (33). The 
response Z/ikl has simply been expressed as the 
product 8h,dhk/. Similarly, the previous analysis 
and results remain valid; the parameters %k, u~k, 
and ph~ in the previously stated formulas are 
simply recognized as functions of the parameters 
in the distributions of the more fundamental random 
variables &kl and Xhk!. 

Thus the previously derived error variance 
(35) can be expressed in terms of the parameters 
in the present, more detailed model, as follows: 
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. 

+T(l–t’r) #L~-7Ppxdx) “.}. (38) 
hk 1 

The subscript 1A is placed outside the braces in 
lieu of its being used repeatedly with N, n, m, 
&m and pX inside the braces. In this VarianCe 
expression 

Var (~hk) ‘Var (~hkmhkvhk) +E [{~ (~~; 

+fi (1–r) p’) +N (N–1) +Px@}h~] 

forallk=l,2, . . .,Mh. 
The situation is complicated by the introduction 

of nonresponse. A second indicator variable is 
employed to denote response status: for F in sh~, 
~hkl= 1 indicates response, and {hkl= O indicates 
nOnKx3pOnSf3. Thus fOr e in Shk , Zhkl = {hkl~hklxhkl is 

observable, and the problem is to estimate 

s’co~e discharges. The response indicator variables 
are treated as random, independent, and inde­
pendent of all the other random variables present. 
For an in-scope ‘discharge from hospital M, the 
response probability Pr ( Lttkt 1) is denoted by W.= 

It is assumed that each selected discharge can 
be classified as in scope or out of scope, even if it 
is nonrespondhg. That is, of the nhk flschwes 

selected in the sample from hospital hk, the number 
of in-scope discharges ~ ahkl is obse~able. Of the 

~hli 

n~~ = ~ Shkl in-scoPe discharges? onlY a random 
~hk 

number, njk=~ ~hk@hk/, will respond. A direct 
~hk 

estimate of Tm ‘“~ 8hklXhId is Clearb 

1 

fhk = ~~hkl~hk~hkl+ (n~k– njk)jhk 

Shk 

+ (~hk – nhk);hk~hk (39) 

where 

,. ,. 
~hk = ~~hkl~hk&hkl n~k and *hk= ntk nhk” 

$hk / / 

The first term in (39) is the observed sum of the in-
scope, responding sample discharges. The second 
term estimates the sum of X-vcdues for the (n~k 
—n~k) discharges known to be in scope but unob­
served because of their nonres~onse. The third 
term is the product of (Nhk— nhk) %hk, the estimated 
number in scope among the Nhk—nIIknonsamp]e 
$scharges, and the estimated average response 

/-Lhk. The estimate can also be written in the more 
compact form 

,, ~chklahk~hkl 

‘hk Shk 
~hk = Nhk ~k = Nhk:hk;hk. 

nhk 

If the stratum total Th is estimated by a ratio-
type statistic employing these estimated hospital 
totals, 

and if the grand total is estimated by the sum of 
. H. 

these estimated stratum totals, ~= ~ ~h, then the 
* 

resulting estimator is that used in HDS. 
Note that it is possible to have no responding 

in-scope discharges in the selected sample SIA 

i.e., n~k= O. In such a case if the simplest natural 

course is taken and Thk is defined as zero, a sm~l 
bias appears. Given the v~ues of Nh~, ~h~~ Ph~Y 
and phk, the expected value of Ty is simPIY Nhk 

7ThA./.&hk,while the expected value of Thkis 

Nh~f7/,/#hk[1 – (1 – f#hk) O –fihkqhk)’’hk”’1. 

For all except extremely small values of mw and 
PM and small nhk, the biasAisclearly negligible. 

The error variance of ~ can be shown, by tedious 
but straightforward. calculations, to be given 
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approximately by an expression of the same form 
as (35): 

E [Var (*hL.– i“hk[~hk, %)]. 

The error incurred in using this approximation for 
the true error variance arises from the slight bias in 
~ and .is negligible whenever the bias is. Similarly, 

the last term in this variance is given approximately 
by 

when the nonresponse probabilities 1 —qvw are 
all small. Thus the earlier results concerning alloca­
tion remain relevant when a small probability of 
nonresponse is present at the second stage of 
sampling. For the case of sizable nonresponse 
probabilities, the estimator should he reexamined 
and various alternate estimators considered in 
which 7Thh. and Uhk are estimated by linear functions 
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APPENDIX 

Derivations of Conditions on Optimal Stratification 

with Equal Allocation and Defensive Sampling 

M1>M2 >.. . > MH at optimum. —It will be 
shown that whenever Mh < Mh+l for any h = 1,2, . . . . 
H – 1, the MSE (12) is reduced if the smallest unit 
in stratum h+ 1 is shifted into stratum h. The 
desired result follows directly from this fact. 

No generality is lost if attention is restricted to 
the case of h=l and H=2. Let B(l)< . . . < 
B@I+IM,Jbe the size measures” Bhk, k.= 1, 2, . . ., 
fl{h II= 1, 2 arranged in nondecreasing order. Then 
B(l), B(2), . . .; B(JfI) are the sizes of units in 
stratum 1 and B(JII+I), B@’l+z J?. ..? B(.U1+.~fz)are 

.!{, .}f, 

the sizes of units in stratum 2. ~ B1k= ~ B(k) and 

B] <Bz < . . . <BH at optimum. –Under 
the assumption that the necessary condition 
MI> M2 >.. .> MH is satisfied, it will be shown 
that whenever Bh > Bh+l for any h= 1, 2, . . ., 
H – 1, the MSE is reduced if the largest unit in 
stratum h is shifted into stratum h + 1 unless such 
a shift forces violation of Mh 3 Mh+l. As before, 
no generality is lost by restricting attention to the 
case of two strata. By the same basic argument used 
before, it can be shown that shifting the largest 
unit in stratum” 1 into stratum 2 reduces the MSE 
by the factor 

1 1 
f B(k)+ (M, - l)B(”J-Mf’’’B@) 

,112 ,111+.\i2 1 Ml+l 

~ BM= ~ B(k). The MSE is – (Mz,+ l) B@fI),
M1+l 

“ [Mi;lm’$B(’)+M2:m2which is positive when (Ml —M2—2)B(J’1);;2B(’)] 
M, .V1 +.!12[x

1 

B(k)+ M2 ~ B(’)1=~ M, 
,4f*+l 

Since by assumption Bz – B, <0, the shift results 
Ml +Jf2 in a positive reduction in the MSE if Ml —13 M2+ 1. 

- & ~ B(A) (40) Note that M, – 1 and Mz + 1 are the sizes of the 
1 new strata. 

because ml= mz. Now if the smallest unit in stratum 
Derivation of Expressions (35) and (36) for Variance

2 is shifted into stratum 1, the new MSE is 
For convenience, the conditional expectation 

and variance Of a StatiStiC Y, &Ven @h’, Nh’ 
“k=l, . . ., Mh, are denoted by E(YIC) and ~ar 
(Y1 c), respectively. Then 

Var (~h – T~) = Var [E(fh – Th I(J] 

The difference of (40) minus (41,) is proportional to +E[Var (?h – Thlc)] . (42) 

Mh 

sinCt3 f’h – l’h = ~ Bhk ~ fhk/ ~ Bhk 
1 Ml+l 

1 ‘h ‘h 

which is > (Mz–M1–2) B(ti, +’)-MIB(~, +’) 
+ MzB(M1+‘ J>0 since Ml c Mz. The first inequality 
is strict unless all the B(A) are equal. 
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give: C, i“’hk,and Thk are independent of Thk,,


and Thk,, for k # k’, the second term in (42) is equal / bJ 1

to


E ~ var(Thk I c) + ~ var(Thk I c) 
[ ‘h ‘h 

M& 

– Var(Thk I C) 1. (44) 

. 
If the relation Cov (Thk, Thh. I C) = Var(Td I C) is 
applied to the final sum, then” after some rea~ange­

c) . (43) ment (44) can be rewritten as #1
d 

But from the exchangeability of the Z’s, given C, it is 
easily shown that 

. 
cov(Thk, Thk I C) = Var(Thk I C) . 

Therefore, (43) can be rewritten 
r 

E ~Var(?’hk I C) -1-~ Var(Thk I C)1 ‘h‘h 

The first term in expression (42) for Var (~h - ?’h)is 

kMh 2 

Bhk\ Var [E(?h – Th lC)] = Var 

c) – viii’(T/i, [ c))1 = Var 



Adding (45) and (46) yields (35). .?J 

‘cNow + Z*E 
[( 

Niw ~ Zh.dnhh. – fzhkl “)11
Var (?h~ – TI,klc) ‘E[(?hk – Thk)2Ic] 

() nh/.’ 
‘hk 1 

N 
hk Nh~ 

=E [(i’?iik~ Zhkdnhh. – ~ Zhkl ‘c, where Z* indicates summation over all the 
()nh~ 

‘M. 1 )11
.... 

which is, by exchangeabilityy, the same for all Samples Shh. Of SiZf2 ?Lh,4.. 

samples sh~ containing nh~ units. This quantity Interchanging the order of summation and 
is thus the same as expectation in this last expression establishes (36). 
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