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[1] Naval submarines have collected operational data of sea-ice draft (93% of thickness)
in the Arctic Ocean since 1958. Data from 34 U.S. cruises are publicly archived. They
span the years 1975 to 2000, are equally distributed in spring and autumn, and cover
roughly half the Arctic Ocean. The data set is strong: we use 2203 values of mean draft,
each value averaged over a nominal length of 50 km. These values range from 0 to 6 m
with a standard deviation of 0.99 m. Multiple regression is used to separate the interannual
change, the annual cycle, and the spatial field. The solution gives a climatology for ice
draft as a function of space and time. The residuals of the regression have a standard
deviation of 0.46 m, slightly more than the observational error standard deviation of
0.38 m. The overall mean of the solution is 2.97 m. Annual mean ice draft declined from a
peak of 3.42 m in 1980 to a minimum of 2.29 m in 2000, a decrease of 1.13 m (1.25 m in
thickness). The steepest rate of decrease is �0.08 meters per year (m/a) in 1990.
The rate slows to �0.007 m/a at the end of the record. The annual cycle has a maximum
on 30 April and a peak-to-trough amplitude of 1.06 m (1.12 m in thickness). The
spatial contour map of the temporal mean draft varies from a minimum draft of 2.2 m near
Alaska to a maximum just over 4 m at the edge of the data release area 200 miles north
of Ellesmere Island.
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1. Introduction

[2] For several decades operational data from submarines
have formed the primary basis of our observational knowl-
edge of arctic sea-ice thickness. At first scientists used these
data to characterize ice topography (pressure ridge statistics
and the ice thickness distribution) and to characterize
variability. By the 1980s enough data had accumulated to
allow the spatial field of draft to be estimated, but it was
clear that the contour maps had small-scale structure and
seasonal differences affected by undersampling in both
space and time [Bourke and Garrett, 1987; Bourke and
McLaren, 1992]. Investigators began to use submarine data
in about 1989 to address the question of interannual change.
Because the timing and tracks of submarine cruises were
designed to meet military objectives and not to provide
optimal sampling of the spatial and temporal variability of
sea ice, formulating analyses of the sparse and irregular
data, either to map the field or to find a trend, has been
problematic. There has been controversy about whether the
data set is sufficiently strong to distinguish any signal of
long-term change from ‘‘natural variability’’ [McLaren et al.,
1990; Wadhams, 1990]. Some studies have ignored the time

of year altogether. Some have segregated the data into
summer or winter seasons, ignoring the facts that summer
and winter data are related via the annual cycle and that the
data are spread over seven months of the year. Some have
focused on certain data-rich regions such as the North Pole
or the strip from the pole to the Beaufort Sea roughly
between 140� and 150�W. Some have compared data from
two different clusters of years. Investigations focused on
interannual change include McLaren et al. [1992], Shy and
Walsh [1996], Rothrock et al. [1999], Tucker et al. [2001],
Winsor [2001], and Wadhams and Davis [2000]. Table 1
summarizes some of the examinations of submarine ice
draft data for signs of interannual change. Unanswered
questions from these studies include, ‘‘Is the interannual
signal truly discernible above the noise of ’natural variabil-
ity’?’’ and, if so, ‘‘Is the interannual change one of continual
decline or is the signal more complicated?’’.
[3] Over the decades, more and more data have become

publicly available. Data on sea-ice draft from 34 U.S. Navy
submarine cruises and two British cruises within the Arctic
Ocean are now available at the National Snow and Ice Data
Center [NSIDC, 2006]. The archived data consist of draft
profiles at nominally one-meter spacing; there are on the
order of 108 data points (100,000 km of profiles), along
with summary statistics including the mean draft over
roughly 50-km sections. The purpose of this paper is to
analyze these mean draft data and determine what they
reveal about sea-ice variability. We purposely avoid any use
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here of other sea-ice information, in particular, from sea-ice
models. This analysis rests purely on the submarine data
and has two strengths. First, the study makes use of data
from 17 cruises recently placed at NSIDC [Wensnahan et
al., 2007; Rothrock and Wensnahan, 2007], providing a
fairly continual record in both spring and autumn from 1975
to 2000 from the total of 34 U.S. cruises. Second, it
capitalizes on the opportunity provided by this expanded
data set to analyze all the U.S. submarine data as a single
data set in order to separate the dependencies on space, on
season, and on year. In taking this approach we begin to
fulfill the vision of McLaren et al. [1990] who saw that ‘‘A
direct approach would involve statistical analysis by season,
region and . . . for each year of all. . .under-ice thickness
distribution data obtained by U.S. and British nuclear
submarines since 1958. Only then might genuine trends
be distinguished from natural variability.’’ We would add
that only then will a spatial climatological field and annual
cycle be identified.
[4] We use multiple regression to determine how draft

depends on the independent variables. The goal is to find a
simple algebraic formula or regression model for draft as a
function of space, season, and year, leaving residuals (dis-
crepancies between the data and the regression model) that
are small. We build the regression model by starting with
terms of low order and adding terms of higher order, until
the addition ceases to reduce the variance of the residuals
significantly as determined by statistical tests. The regres-
sion model ‘‘explains’’ a portion of the variance in the
data, leaving the remaining variance in the residuals as
‘‘unexplained’’ variance that can be considered as either
error in the regression model or observational error or both.
We adopt a regression model in which the spatial, annual,
and interannual variations are separated and additive. Of
course this form is somewhat subjective, guided by physical
intuition, but, for instance, whether the spatial dependence
should be linear or quadratic or cubic is determined by the
data.
[5] In section 2, the data set is described and the variables

defined. Section 3 presents the best fit multiple regression
model and the coefficients of the fit: the seasonal cycle,
the spatial field, and the interannual change. Section 4 gives
the relationship between ice draft and the combined mass

of sea ice plus its snow cover and suggests that this
observed ice-cover (ice-plus-snow) mass may be worth
using to test models. Section 5 gives the relationship
between draft and ice thickness. In section 6 these results
are discussed in the context of previous results.

2. Data

[6] The data used here are from 34 cruises of U.S. Navy
submarines from 1975 to 2000. Each cruise lasted roughly
one month; the distribution of cruises by year and month is
shown in Figure 1 (one dot per cruise). Originally classified
secret, the data have been declassified and released for
public use mostly within a data release area (DRA), an
irregular polygon that lies within the Arctic Ocean and
outside the ‘‘exclusive economic zones’’ of foreign countries
(see Figure 2 and Table 2). Data in the archive have been
acquired by two different recording systems: digital record-
ing and paper chart. We believe that the data extracted by
scanning U.S. paper charts and applying digital image
processing techniques have been made equivalent (in the
sense of being unbiased) to those acquired by digital

Table 1. Investigations of Interannual Change Using Submarine Ice Draft Data

Reference # of Cruises Years Studied

NORTH POLE
McLaren et al. [1992] 6 1977–1990
McLaren et al. [1994] 12 1958–1992
Shy and Walsh [1996] 12 1977–1992

FRAM STRAIT & LINCOLN SEA
Wadhams [1990] 2 1976 cf. 1987
Wadhams and Davis [2000] 2 1976 cf. 1996

BEAUFORT SEA TO NORTH POLE
McLaren [1989] 2 1958 cf. 1970
Tucker et al. [2001] 9 1976–1994
Winsor [2001] 6 1991–1997

SUBMARINE DATA RELEASE AREA (DRA)
Rothrock et al. [1999] 9 1958–76 cf. 1993–97
Present 34 1975–2000

Figure 1. Thirty-four U.S. Navy submarines cruises from
which sea ice draft data are analyzed.
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recording [Wensnahan and Rothrock, 2005]. We do not use
here archived data from British cruises, because there are
only two of them, much of their data is outside our study
area, and their manual processing from paper charts may
introduce a positive bias because of difficulty in resolving
the troughs between ridges. For the same reason we also do
not use here U.S. data that were manually digitized (the
1958–1976 data in Rothrock et al. [1999]).
[7] We use as our dependent variable the mean draft D in

meters. The means are taken over nominal 50-km sections
of a draft profile (with drafts given at one-meter spacings, so
nominally 50,000 pings per 50-km mean). A length of
50 km has become a de facto standard for reporting
submarine-derived ice draft statistics. As discussed at the
end of section 3 and again in section 6, the observational
error, which includes both sampling error [Percival et al.,
2008] and the sonar systemmeasurement error [Rothrock and
Wensnahan, 2007], has a standard deviation of 0.38 m.
For archived sections less than 50 km long, data from
multiple sections within 75 km of each other are combined
in a cluster such that the sample length is between 25 and
55 km. Short sections that cannot be successfully clustered
are discarded. These means include open water; they are not,
as some investigators have considered, ‘‘ice-only’’ means
that exclude from the average any ice thinner than some
threshold, say, 30 cm.
[8] The first independent variable, which models interan-

nual variation, is the decimal year t; for example, the first
instant of 1988 is t = 1988.000, which happens to be very
nearly at the midpoint of the data set’s time span. The
second variable is the decimal fraction of the year t, which
marks the seasons; it ranges from 0 to 1 over the course of a
calendar year and is the fractional part of t. To fit the annual
cycle in the regression model we use the two terms sin(2pt)
and cos(2pt) to represent the fundamental frequency; for
easier interpretation, these are later converted to a single

cosine function with a phase that gives the times of the
annual maximum and minimum. The final two independent
variables are spatial: x and y defined from latitude f and
longitude l (in degrees) by

r ¼ 2R* sin 45� � 0:5fð Þp=180�½ �
x ¼ r* cos l� 35�ð Þp=180�½ �=1000
y ¼ r* sin l� 35�ð Þp=180�½ �=1000

where R = 6370 km is the radius of the Earth. The (x, y)
coordinate system has its origin at the North Pole, and the
positive x axis runs along 35�E, as illustrated in Figure 2.
This transformation (Lambert azimuthal equivalent) maps
the Earth’s surface to a plane tangent at the North Pole;
r is the straight-line distance from the Pole through the
Earth to a point (x, y) on the surface. The mapping
conserves area. The units of x and y are nominally 1000 km,
but the transformation shrinks latitudinal distance and
expands longitudinal distance as one moves away from
the pole. At the pole, a degree of latitude is 111.17 km; at
the extreme southern corner of the DRA (f = 70�), a degree
of latitude is 109.48 km. The difference is negligible for our
purposes.
[9] The dataset used here has 2203 records, each containing

a mean draft with its time and position, and is available at the
web site of the Polar Science Center, Applied Physics Labo-
ratory, University of Washington under ‘‘Data Sets’’ [http://
psc.apl.washington.edu/pscweb2002/data/datasets.html].

3. Result of the Multiple Regression

[10] The 2203 50-km mean draft values D range from 0 to
6.09 m. Their variance is 0.98 m2. Multiple regression
allows us to determine how much of this variance in D
can be explained by the four variables: t, t, x, and y.
[11] We first consider how well the individual variables

can explain the data. A regression model using a linear term
in just the year t explains only 28% of the variance. Using
just the fundamental frequency of the season explains only
33% of the variance, and using just linear terms in x and y
explains 26% of the variance. Clearly using all of these
variables together in a multiple regression will do better, but
how much better?

Figure 2. Data points from U.S. Navy cruises used in our
analysis. The irregular polygon outlines the data release area
(DRA): the ‘‘SCICEX Box,’’ whose vertices are given in
Table 2. The (x, y) coordinates are as defined in (1).

Table 2. Coordinates of Vertices Defining the Data Release Area

(DRA), Known as the ‘‘SCICEX Box’’a

Latitude, deg Longitude (�E:+, �W:�) x, 103 km y, 103 km

87.00 �15.00 0.214 366 �0.255 471
86.58 �60.00 �0.033 104 �0.378 391
80.00 �130.00 �1.072 528 �0.287 386
80.00 �141.00 �1.107 658 �0.077 458
70.00 �141.00 �2.206 887 �0.154 326
72.00 �155.00 �1.962 697 0.346 071
75.50 175.00 �1.231 624 1.033 459
78.50 172.00 �0.933 494 0.870 501
80.50 163.00 �0.649 506 0.831 333
78.50 126.00 �0.022 275 1.276 201
84.33 110.00 0.163 001 0.608 326
84.42 80.00 0.438 730 0.438 730
85.17 57.00 0.498 047 0.201 224
83.83 33.00 0.684 883 �0.023 917
84.08 8.00 0.585 876 �0.298 519

aThe conversion between (lat, long) and (x, y) is given in (1).

ð1Þ
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[12] The simplest (linear) multiple regression equation
treats the independent variables as separable

D t; t; x; yð Þ ¼ C þ I t � 1988ð Þ þ A tð Þ þ S x; yð Þ þ e t; t; x; yð Þ;
ð2aÞ

where C is a constant, I(t � 1988) describes the interannual
change centered around 1988, A(t) describes the annual
cycle, and S(x, y) is the spatial field. The inability of the
those four terms to completely reproduce the data D is
measured by the errors (or residuals) e, which we assume to
obey a multivariate Gaussian distribution with a common
mean of zero and variance of se

2. The ordinary least squares

(OLS) method determines C, I, A, and S in (2a) by
minimizing the sum of squares of the residuals (estimated
errors) and gives residuals that sum to zero. Under the
Gaussian assumption, the OLS estimators of C and of the
parameters specifying I, A, and S are unbiased and have a
smaller variance than any other unbiased estimators if we
make the additional assumption that the errors are
independent of one another. However, Percival et al.
[2008] show that there is weak long-range spatial correla-
tion between 50-km means; the correlation function
decreases slowly as a power law, 	d�0.46, for large
separations d, rather than exponentially in d as, for example,
for a common autoregressive process. This correlation must
be taken into account to properly assess whether increasing
the complexity of the functions I, A, and S in (2) is
statistically warranted. Accordingly we assume indepen-
dence of errors for different years and seasons, but a weak
spatial correlation for errors within a given year and season
that is dictated by long-range dependence. In the presence
of such correlation, the OLS estimators are still unbiased,
but the unbiased estimators with minimum variance are the
generalized least squares (GLS) estimators [Draper and
Smith, 1998]. We found that the standard deviations of the
OLS-estimated parameters in (2a) are only 5% greater on
average than those of the GLS method; that is, the spatial
correlation has only a small effect on the multiple regression
coefficients. In contrast to the GLS method, the OLS
method allows exact partitioning of the variance of D, as
done at the end of this section, so we report the OLS
estimates in the following.
[13] Here we discuss the specific form of (2a) and its

solution. The solution involves just the fundamental fre-
quency in the annual cycle A(t) and a cubic polynomial
for I(t-1988), while S(x,y) has terms of 5th order, e.g.,
x3y2. The solution for S(x,y) retains all terms of a given
order if any coefficients of that order are statistically
significant at a 95% confidence level. The solution has
26 coefficients: the constant, three coefficients for I, two
for A, and 20 for S. The data have a variance of 0.98 m2.
This solution to (2a) explains 79% of that variance leaving
the unexplained variance (or the variance of the residuals),
se
2 = 0.21 m2.
[14] The value of C is 3.63 m, but this is not the mean,

because neither I nor S is zero-mean. The mean of I over the
26 years 1975–2000 is I = �0.12 m, and the mean of S
over the DRA is S = �0.54 m. The annual cycle averages to
A = 0. For simplicity, we define the zero-mean quantities

I 0 ¼ I � I and S0 ¼ S � S;

and a more convenient form of (2a)

D t; t; x; yð Þ ¼ Dþ I 0 t � 1988ð Þ þ A tð Þ þ S0 x; yð Þ þ e t; t; x; yð Þ;
ð2bÞ

in which each of the four right-hand terms has zero mean,
and the mean draft from the regression model, averaged
over 26 years, over a year, and over the DRA, is D = C + I +
A + S = 2.97 m.
[15] The interannual change I0(t � 1988) is depicted in

Figure 3. It represents the interannual change in mean draft

Figure 3. (a) The interannual change in the mean draft
averaged over the DRA and the annual cycle, D + I0(t �
1988), in meters, along with the residuals [added to
D + I0(t � 1988)], black dots for summer/fall, grey dots
for winter/spring. Each vertical line of dots comes from one
cruise or, in a few cases, two nearly simultaneous cruises.
Dots for residuals within one standard deviation of the curve
are heavier. (b) The interannual change in the mean draft as
in (a) but without the residuals.
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averaged over the annual cycle and over the DRA. A linear
dependence on t does not fit the data particularly well. The
model draft rises for the first few years to a maximum of
3.42 m at year 1980.468 (21 June 1980), then falls by year
2000.816 (26 October 2000) to 2.29 m, a decrease of 1.13 m.
Its most rapid decline occurs at the end of 1990 and is
�0.08 m/a. By the end of the record the decline is much
slower (�0.007 m/a). There is no sign in the model curve or
in the data of a reversal or rebound by 2000. The multiple
regression solution for I(t � 1988) is

I t � 1988ð Þ ¼ I1 t � 1988ð Þ þ I2 t � 1988ð Þ2þI3 t � 1988ð Þ3

I1 ¼ �0:0748

I2 ¼ �0:00219

I3 ¼ 0:000246

I ¼ �0:12

I 0 ¼ I � I

The units of Ik are meters (year)�k.
[16] The annual cycle A(t) is shown in Figure 4. It

represents the annual cycle averaged over the DRA and
over the 26 years 1975–2000. The peak-to-trough ampli-
tude is 1.06 m. The maximum occurs on 30 April (t =
0.329, day 120) and the minimum on 30 October (t =
0.829, day 303). The annual cycle is much larger than might
be expected, given that this part of the ocean is mostly
multiyear ice, and that a mature ice slab has a much smaller
thermodynamic annual cycle of thickness [	0.43 m,Maykut
and Untersteiner, 1971]. Sea-ice models show an annual
cycle that is asymmetric, falling more steeply in the late
spring and growing more slowly in autumn, but as seen from
the residuals plotted around A(t), the data are not dense
enough throughout the year to resolve any harmonics and are
sparse in just the period when the melt would be fastest (June
and July, t 	 0.4 to 0.6). The multiple regression solution for

A(t) is

A tð Þ ¼ As0 sin 2ptð Þ þ Ac0 cos 2ptð Þ ¼ A0 cos 2p t � tmax½ �ð Þ
As0 ¼ 0:465

Ac0 ¼ �0:250

A0 ¼ 0:528

A ¼ 0

tmax ¼ 0:329

The units of As0, Ac0, and A0 are meters.
[17] The spatial field of draft is shown in Figure 5. This

represents the spatial dependence of the mean draft, aver-
aged over an annual cycle and the 26 years of the data
record 1975–2000. The draft varies from 2.2 m near Alaska
to just over 4 m near Ellesmere Island. The multiple
regression solution for S(x, y) is (using the notation Sijx

iyj

for each term)

S x; yð Þ ¼ S10xþ S01y

þ S20x
2 þ S11xyþ S02y

2

þ S30x
3 þ S21x

2yþ S12xy
2 þ S03y

3

þ S40x
4 þ S31x

3yþ S22x
2y2 þ S13xy

3 þ S04y
4

þ S50x
5 þ S41x

4yþ S32x
3y2 þ S23x

2y3 þ S14xy
4 þ S05y

5

S10 ¼ �0:7425; S01 ¼ �0:4548

S20 ¼ �0:5616; S11 ¼ 0:4384; S02 ¼ �0:9077

S30 ¼ 1:1791; S21 ¼ �0:3106; S12 ¼ 1:5293; S03 ¼ �1:6046

S40 ¼ 0:8308; S31 ¼ 0:5001; S22 ¼ 6:8515; S13 ¼ 0:3927;

S04 ¼ 4:1612

S50 ¼ 0:1389; S41 ¼ 0:4178; S32 ¼ 2:7062; S23 ¼ �0:7921;

S14 ¼ 0:5422; S05 ¼ �2:0240

�S ¼ �0:54

S0 ¼ S � �S ð5Þ

The units of Sij are m/(103 km)i+j. One can see that terms of
higher order than linear are warranted by examining the two
cases in Figure 6; in Figure 6a, S has been taken only to be
linear in x and y and the spline (solid curve) fit through the

Figure 5. The spatial field of draft, D + S0(x, y), in meters,
averaged over the 26 years 1975–2000 and over the annual
cycle.

Figure 4. The annual cycle of draft, D + A(t), in meters,
averaged over the DRA and over the 26 years 1975–2000.
The dots are the residuals [added to D + A(t)], black for
summer/fall, grey for winter/spring. Dots for residuals
smaller than one standard deviation are plotted heavier.

ð3Þ

ð4Þ
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residuals shows strong higher order structure in x (but less
in y, not shown). The final solution in (5) has 5th order
terms that have incorporated that structure, leaving no
apparent structure in the residuals (Figure 6b).
[18] By the nature of our choice of the form of (2a) and

(2b), the shape of the field never changes. The field in
Figure 5 also represents the 26-year mean field at the
midpoints of the annual cycle, on 29 January (t = 0.079,
day 29) and on 31 July (t = 0.579, day 212). Using (2), we
can construct the field at other times or for other temporal
integrals. To obtain the 26-year mean spatial field of draft
for any time of year, we just need to add A(t) to the map in
Figure 5. For example, we add A(0.329) = 0.53 m for
the spring maximum on 30 April or A(0.830) = �0.53 m for
the autumn minimum on 30 October. Similarly, the
mean annual field at any point between 1975 and 2000
can be computed by adding to the map in Figure 5 the quantity
I0(t � 1988). To average the field over a portion of the record
from t1 to t2 (e.g., a period before the positive Arctic Oscilla-

tion anomaly in the early 1990s), we add to the map
Rt2

t1

I0(t �
1988)dt.
[19] The 0.98 m2 of variance in the data is partitioned as

follows: 0.77 m2 is explained by the regression model, (2),
and 0.21 m2 is unexplained and remains in the residuals.
Figure 7 shows the probability density functions of the data
and of the residuals with the range of both horizontal scales
being 6 m. How should we view the 0.21 m2 of unexplained
variance? The error in the measurement system has a
standard deviation of 0.25 m [Rothrock and Wensnahan,
2007], or a variance of 0.063 m2. The error in sampling
due to long-range dependence in the sea-ice cover has a

standard deviation of about 0.29 m for 50-km samples
[Percival et al., 2008], or a variance of 0.084 m2. If we
regard these two error sources as independent, we can add
their variances (0.063 + 0.084) for an overall observational
error variance of 0.147 m2. So, the unexplained variance
0.21 m2 is partitioned (as in Table 3) into an observational
error variance of 0.147 m2 and a remaining variance of
0.063 m2 (standard deviation = 0.25 m) unable to be
captured by (2). This value, a standard deviation of
0.25 m, represents the variability of the ice cover over
and above both the observational error and what can be
described by the regression model.

4. Ice and Snow Mass

[20] One useful property of ice draft is that it directly
gives the combined ice and snow mass, the only assumption
being the water density, which is extremely well known. By
Archimedes’ Principle, the mass of sea ice with its snow
cover equals the mass of water displaced. With the water

Figure 6. The residuals of the data (a) when S(x, y) is a
linear polynomial, and (b) for our solution when S(x, y) is a
5th order polynomial, black for summer/fall, grey for winter/
spring. The solid curves are spline fits to the residuals.

Figure 7. (a) The probability density function of observa-
tions of 50-km-mean ice drafts, with a standard deviation of
0.99 m. (b) The probability density function of residuals e
from the OLS fit to (2), with a standard deviation of 0.46 m,
along with a Gaussian distribution (dashed) with the same
standard deviation for comparison. The functions were
generated using a kernel density estimator with bandwidths
of 0.1907 and 0.8756.
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density rw = 1,027 kg/m3 and draft D in meters, the ice and
snow cover mass is rwD in kg/m2.
[21] Ice-plus-snow mass has not been given wide atten-

tion, either as a fundamental observation or as a model
variable to be tested against data. Rather the tendency has
been to think of ice thickness and snow cover separately.
There could be merit in testing modeled ice-cover mass,
since the observation is available so directly, without
complicating assumptions.

5. Converting Draft to Thickness

[22] The conversion of draft D to thickness T is affected
by the snow load resting on the ice. We account only for the
seasonal variation in the snow load. Equating the weight of
the ice freeboard and snow to the buoyancy of the sub-
merged ice, we have the hydrostatic equation

riF þ rsSN ¼ rw � rið ÞD; ð6Þ

where F is the height of the freeboard, and we take ice
density ri = 928 kg/m3 and water density rw = 1,027 kg/m3.
To obtain seasonally changing values of snow density rs(t)
and snow thickness SN(t), we use the mean monthly data
over multiyear ice from the snow climatology of Warren et
al. [1999, their Figures 11 and 13]. Eliminating F from (6)
using F + D = T, we obtain

T ¼ rw
ri

D� rs
ri
SN ¼ 1:107D� f tð Þ; ð7Þ

where f (t) =rs tð Þ
ri

SN(t) is the snow ice equivalent (thickness)

that peaks at 0.12 m in May and rapidly decreases to zero by
August (see Table 4). The annual mean of f is f = 0.076 m.
Equation (7) says that the ice thickness would be 1.107
times the draft, except that some of it (f) is snow, not ice. If
the ice is just at the margin of being submerged by the snow
load, the ice freeboard vanishes, and (6) with F = 0 states
that the ice buoyancy just balances the snow load, or

Dsub ¼
rsSN
rw � rið Þ ; ð8Þ

whose value for each month is shown in the last column of
Table 4. In our solution to (2), the ice never becomes thin
enough to satisfy (8) and to be submerged.
[23] Setting aside the error term e, the best fit multiple

regression equation (2) can be converted to an equation for
thickness using (7)

T ¼ 1:107 Dþ I 0 t � 1988ð Þ þ S0 x; yð Þ þ A tð Þ
� �

� f tð Þ: ð9Þ

To illustrate a few conversions, the mean thickness from the
regression model (9), averaged over 26 years, over an annual

cycle, and over the DRA, is T = 1.107[D] � f = 3.21 m. The
interannual change in ice thickness is shown in Figure 8,
along with the annual cycle superimposed. Whereas
annual- and area-mean draft declined by 1.13 m from its
peak in 1980 to its low point in 2000, the thickness
declined by 1.25 m. The annual cycle of thickness is only
slightly affected by the changing snow load: the dates of the
seasonal extremes in thickness differ negligibly (a day) from
those for draft, and the peak-to-trough amplitude of
thickness is 1.12 m (DT = 1.107DD � Df, where D is
the change between 30 April and 30 October). The contours
of the spatial field in Figure 5 are values of draft. To read
them as contours of thickness, multiply draft by 1.107 and
then subtract 0.08; so the greatest printed contour of 4.00-m
draft near Ellesmere Island becomes the 4.35-m contour of
thickness, and the lowest contour of 2.20-m draft in the
Beaufort Sea becomes the 2.36-m contour of thickness.
[24] The average ratio of draft to thickness is D/T = 2.97/

3.21 = 0.93.

6. Discussion and Summary

[25] We analyzed the publicly archived data from U.S.
submarines, separating out the interannual change, the annual
cycle, and the climatological spatial field. The data support
regression models with polynomials of 5th order. A prelim-
inary (unpublished) investigation using only eleven cruises
and ten years of data indicated that only the linear coefficients
were significant. With 26 years of data, we expected to find
significant 2nd order terms, but in fact the data support 3rd
order temporal and 5th order spatial terms that show inter-
esting and interpretable interannual and spatial structure. Of
the 0.98 m2 of variance in the data, the multiple regression
model explains all but 0.21 m2 (21%) with a standard
deviation = 0.46 m. We regard the multiple regression (2)
as giving the ice draft at any point in our spatial and temporal
domain to within a standard deviation of 0.46 m.
[26] A reasonable error budget (Table 3) is that the

observational error (the combined measurement and sam-
pling errors, as discussed at the end of section 3) has a
variance of 0.147 m2 and a standard deviation of 0.38 m,
and that the signal in the data explained neither by the
regression model nor the observational error has a variance
of 0.063 m2 and a standard deviation of 0.25 m, which is the

Table 3. Variances and Standard Deviations in Draft

Variance, m2 Standard Deviation, m

Observed 50-km drafts 0.98 0.99
Residuals from OLS model (2) 0.21 0.46
Observational error 0.147 0.38
OLS model residuals variance less
observational error variance

0.063 0.25

Table 4. Monthly Mean Values of Snow Density rs, and Snow

Depth SN [from Warren et al. [1999], Figures 11 and 13], Along

With the Correction Term f (t) in (7 and 9), and (in Column 5) the

Draft of Ice (8) That Could be Submerged With These Snow Loadsa

Month rs, kg m�3 SN, m f(t), m Dsub(t), m

January 308 0.263 0.087 0.815
February 318 0.286 0.098 0.918
March 327 0.313 0.110 1.031
April 328 0.333 0.118 1.106
May 329 0.343 0.122 1.144
June 348 0.300 0.113 1.059
July 383 0.062 0.026 0.244
August 219 0.018 0.004 0.037
September 246 0.096 0.025 0.234
October 271 0.185 0.054 0.506
November 291 0.223 0.070 0.656
December 301 0.250 0.081 0.759

aThe mean of f over 12 months, f , is 0.076 m.
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‘‘natural variability’’ not captured by the regression model.
Of course the measurement errors may be less than esti-
mated by Rothrock and Wensnahan [2007], and the ‘‘natural
variability’’ may be a greater portion of the unexplained
variance of the multiple regression model.
[27] The multiple regression solution sheds light on the

question of whether digitized data from (analog) paper
charts are comparable to digitally recorded (DIPS) data.
The residuals from each type of data are statistically
equivalent: the residuals from scanned paper charts have a
mean of -0.05 m and a standard deviation of 0.47 m, and the
residuals of the DIPS data have a mean of +0.03 m and a
standard deviation of 0.45 m. This seems a good match to
the finding [Wensnahan and Rothrock, 2005] that the two
data types should agree to ±6 cm.
[28] There is also a positive bias in submarine data

(caused primarily by the finite sonar beamwidth), which is
estimated to be 0.29 m [Rothrock and Wensnahan, 2007].

The data should be reduced by 0.29 m when compared with
any non-U.S.-submarine observation or with ice model
output. This correction can be applied to our multiple
regression solution by subtracting 0.29 from D.
[29] The unexplained variance of 0.21 m2 (standard devia-

tion = 0.46 m) seems to be a very strong upper bound on the
observational error in (25- to 55-km means of) the U.S.
submarine ice draft data. It seems quite unlikely that the random
observational error could be larger than this value. If it were, the
data could not be represented by the smooth functions in (2)
with an unexplained variance as low as 0.21 m2.
[30] From the multiple regression solution we find that

the mean ice draft over our temporal and spatial domain is
2.97 m (3.21 m for thickness). The interannual response
(Figures 3 and 8) shows a high rate of decline centered
around 1990, preceded by a maximum in 1980 and followed
by a minimum in 2000 at the end of the record. The decline
from the maximum to the minimum is 1.13 m in draft
(1.25 m in thickness). If we correct for the bias estimated by
Rothrock and Wensnahan [2007] by subtracting 0.29 m
from all drafts, this change represents a decline of 36% from
the maximum. It is less than the 43% decline reported by
Rothrock et al. [1999]. That analysis compared data from an
earlier period (1958–1976) with data in the 1990s, and, in
addition, the earlier data had been manually digitized from
paper charts and are likely of lower quality than the data
used here, which are from digitally processed paper charts
and digitally recorded data. The present analysis is based on
a data set that is much more voluminous and of higher
quality but spans a shorter period. The timing of the steepest
decline agrees with the findings of Tucker et al. [2001], who
also noted that the decline in draft was 1.5 m in the Canada
Basin and insignificant at the North Pole. None of the older
estimates of arctic ice thickness fromNansen’sFram expedition
(1893–6), from Koerner’s British Trans-Arctic Expedition
(1968–9), or from the earliest submarine cruises (from 1958)
is thinner than the 3mwe find here, and several are closer to 4m
[see McLaren et al., 1990]. Whether this change is part of a
cyclical or random variation or a stage in a continual, intermit-
tent decline, it is a very large fractional change inmean ice draft!
Through 2000 we see no sign that ice thickness is rebounding
in this large area of the Arctic Ocean. What has happened
since 2000 can only be answered by more recent data.
[31] The annual cycle A(t) is large, 1.06 m peak-to-

trough in draft (1.12 m in thickness), over twice that of a
thermodynamically mature slab of ice. We do not know of
previous observational estimates of the large-scale annual
cycle amplitude. There are several possible reasons for an
annual cycle of mean draft larger than that of a slab of 3-m
thick ice. First, thin ice has a larger cycle than a ‘‘mature’’
floe, forming most prolifically in autumn, growing very
rapidly in early winter, and melting more in summer.
Second, the annual cycle in ridged ice is likely larger than
a 3-m-thick floe: ridges are formed rapidly in early winter
from an abundance of thin ice, and they have been observed
to melt 60% more than undeformed ice [Perovich et al.,
2003, their Figure 7b]. So, both the thin and the thick ends
of the ice thickness distribution likely have a larger annual
cycle than that of mature, level ice. In numerical sea-ice
models that include a full thickness distribution, the range
of the annual cycle is over 1 m: Flato and Hibler [1995]
show a volume amplitude of 	1 � 104 km3, which trans-

Figure 8. (a) The interannual change in areally and annually
averaged ice thickness, 1.107[D + I0(t � 1988)] � f . The
dashed line is the draft in Figure 3. (b) The same thickness
curve showing the annual cycle (dotted) superimposed,
1.107[D + I0(t � 1988) + A(t)] � f(t).
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lates to 	1.3 m in draft (taking an Arctic Ocean area of
	7 � 106 km2), and Rothrock et al. [1999, Figure 2] also
show a modeled annual cycle of draft of about 1.3 m. Third,
the annual cycle (30 April – 30 October) of draft is enhanced
by the annual cycle of the snow load (section 5) by about
0.06 m. The phase of the annual cycle is in line with other
observations and with sea-ice models.
[32] Several previous investigators have produced contour

maps of draft over sizable portions of the Arctic Ocean. The
spatial field in Figure 5 has structure that resembles some of
these. The LeSchack field [Bourke and McLaren, 1992,
Figure 1] using data from the 1960s and 1970s shows a
long-term mean field for the Pacific side of the North Pole.
Our field agrees with that estimate at the Pole, but differs by
up to 1 m elsewhere. (For example, compared with our field
the LeSchack field is +1 m at the location of maximum draft in
the DRA off Ellesmere Island, +0.5 m at the southern tip of the
DRA at Alaska, and -0.6 m at the tip of the DRA pointed at the
Laptev Sea.) The fields given by Bourke and Garrett [1987]
(using 17 submarine cruises during 1960–1982 and other
forms of data) are different from ours. Theirs is the "ice-only"
mean draft; open water is excluded from their mean, although
the threshold for exclusion is not given. The ice-onlymean has
the property that the annual cycle is inverted, although it is not
clear why the inversion is so strong. In their Table 2, the
minimum occurs in spring, the maximum in summer. The
shapes of their summer and autumn fields resemble the shape
in our Figure 5. The contour maps of Bourke and McLaren
[1992] (using data from 12 submarine cruises during 1958–
1987) show detail that seems to arise from attempting to
contour around sparse data from different cruises, where
temporal change has occurred. We find no suggestion in our
data of the 4-m ice they show in the southern Beaufort Sea and
Chukchi Sea, but ice model results during periods of strong
anticyclonic circulation show that thick ice is advected into
those seas and into the East Siberian Sea. Note that both the
papers by Bourke report results from outside the DRA; this
was accomplished byworkingwith classified data to obtain the
contour maps, which were then declassified. Those raw data
(along-track draft profiles) are not publicly archived.
[33] How ubiquitous and widespread is the interannual

change? By separating temporal from spatial variation, the
present formulation (2) does not quantify regional variations of
interannual change and the annual cycle; that study should be
done with the data at hand.Without more data from outside the
DRA, one cannot answer clearly the question of whether there
is a "sloshing" mode such that ice at one time resident in the
DRA moves out into Russian waters in eastern longitudes or
into the western longitudes between the DRA and Canada,
Ellesmere Island, and Greenland [Holloway and Sou, 2002;
Rothrock and Zhang, 2005]. In this regard, our understanding
of arctic sea-ice thickness would greatly benefit by an analysis
of all Arctic Ocean draft data dating back to 1958 and
extending outside the present DRA. As for the present and
future, it would be a tragedy for arctic science if the U.S. Navy
submarine fleet were unable to continue to collect and provide
sea-ice draft data on future cruises.

[34] Acknowledgments. We gratefully acknowledge the Office of
Polar Programs of the National Science Foundation for their generous
support of our work in processing and analyzing submarine draft data
(OPP-9910331 and ARC-0453825) and also NASA for support under

Grants NNG04GH52G and NNG04GB03G. We express our thanks to the
staff of the Arctic Submarine Laboratory for their support of efforts to place
in a public archive draft data that make studies such as this possible.
R. Kwok and H. Stern gave helpful reviews of the manuscript.

References
Bourke, R. H., and R. P. Garrett (1987), Sea ice thickness distribution in the
Arctic Ocean, Cold Reg. Sci. Technol., 13(3), 259–280.

Bourke, R. H., and A. S. McLaren (1992), Contour mapping of arctic basin
ice draft and roughness parameters, J. Geophys. Res., 97(C11), 17,715–
17,728.

Draper, N. R., and H. Smith (1998), Applied Regression Analysis, 3rd ed.,
706 pp., Wiley-Interscience, New York.

Flato, G. M., and W. D. Hibler III (1995), Ridging and strength in modeling
the thickness distribution of arctic sea ice, J. Geophys. Res., 100(C9),
18,611–18,626.

Holloway, G., and T. Sou (2002), Has arctic sea ice rapidly thinned?,
J. Clim., 15(13), 1691–1701.

Maykut, G. A., and N. Untersteiner (1971), Some results from a time-
dependent thermodynamic model of sea ice, J. Geophys. Res., 76(6),
1550–1575.

McLaren, A. S. (1989), The under-ice thickness distribution of the Arctic
Basin as recorded in 1958 and 1970, J. Geophys. Res., 94(C4), 4971–4983.

McLaren, A. S., R. G. Barry, and R. H. Bourke (1990), Could arctic ice be
thinning?, Nature, 345(6278), 762.

McLaren, A. S., J. E. Walsh, R. H. Bourke, R. L. Weaver, and W. Wittmann
(1992), Variability in sea-ice thickness over the North Pole from 1977 to
1990, Nature, 358(6383), 224–226.

McLaren, A. S., R. H. Bourke, J. E. Walsh, and R. L. Weaver (1994),
Variability in sea-ice thickness over the North Pole from 1958 to
1992, Polar Oceans and Their Role in Shaping the Global Environment,
edited by O. Johannessen et al., Amer. Geophys. Union.

National Snow and Ice Data Center (2006), Submarine upward looking
sonar ice draft profile data and statistics, Boulder, Colorado USA: Na-
tional Snow and Ice Data Center/World Data Center for Glaciology.
Digital media.

Percival, D. B., D. A. Rothrock, A. S. Thorndike, and T. Gneiting (2008),
The variance of mean sea-ice thickness: Effect of long-range dependence,
J. Geophys. Res., 113, C01004, doi:10.1029/2007JC004391.

Perovich, D. K., T. C. Grenfell, J. A. Richter-Menge, B. Light, W. B.
Tucker, and H. Eicken (2003), Thin and thinner: Sea ice mass balance
measurements during SHEBA, J. Geophys. Res., 108(C3), 8050,
doi:10.1029/2001JC001079.

Rothrock, D. A., and M. Wensnahan (2007), The accuracy of sea-ice drafts
measured from U.S. Navy submarines, J. Atmos. Oceanic Technol.,
doi:10.1175/JTECH2097.1.

Rothrock, D. A., and J. Zhang (2005), Arctic Ocean sea ice volume: What
explains its recent depletion?, J. Geophys. Res., 110, C01002,
doi:10.1029/2004JC002282.

Rothrock, D. A., Y. Yu, and G. A. Maykut (1999), Thinning of the Arctic
sea-ice cover, Geophys. Res. Lett., 26(23), 3469–3472.

Shy, T. L., and J. E. Walsh (1996), North Pole ice thickness and association
with ice motion history 1977–1992, Geophys. Res. Lett., 23(21), 2975–
2978.

Tucker, W. B., J. W.Weatherly, D. T. Eppler, L. D. Farmer, and D. L. Bentley
(2001), Evidence for rapid thinning of sea ice in thewesternArctic Ocean at
the end of the 1980s, Geophys. Res. Lett., 28(14), 2851–2854.

Wadhams, P. (1990), Evidence for thinning of the arctic ice cover north of
Greenland, Nature, 345(6278), 795–797.

Wadhams, P., and N. R. Davis (2000), Further evidence of ice thinning in
the Arctic Ocean, Geophys. Res. Lett., 27(24), 3973–3975.

Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin,
Y. I. Aleksandrov, and R. Colony (1999), Snow depth on arctic sea ice,
J. Clim., 12(6), 1814–1829.

Wensnahan, M., and D. A. Rothrock (2005), Sea-ice draft from submarine-
based sonar: Establishing a consistent record from analog and digitally
recorded data, Geophys. Res. Lett., 32(11), L11502, doi:10.1029/
2005GL022507.

Wensnahan, M., D. A. Rothrock, and P. Hezel (2007), New arctic sea ice
draft data from submarines, EOS, 88(5), 55–56.

Winsor, P. (2001), Arctic sea ice thickness remained constant during the
1990s, Geophys. Res. Lett., 28(6), 1039–1041.

�����������������������
D. B. Percival, D. A. Rothrock, and M. Wensnahan, Applied Physics

Laboratory, University of Washington, Box 355640, Seattle, WA 98195,
USA. (rothrock@apl.washington.edu)

C05003 ROTHROCK ET AL.: SEPARATING VARIABILITY IN ICE THICKNESS

9 of 9

C05003


