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ABSTRACT

The initial-value problem for Eady’s mode! is reexamined using a two-dimensional (x-z) primitive equation
model. It is generally accepted that a finite amplitude instability of Eady’s basic state will produce a frontal
discontinuity in a finite time. When diffusion prevents the frontal discontinuity from forming, the wave amplitude
eventually stops growing and begins to oscillate. We analyze this equilibration and suggest that it is a result of
enhanced potential vorticity in the frontal region that is mixed into the interior from the boundaries. The
dynamics of equilibration is crudely captured in a modified quasi-geostrophic mode! in which the zonal-mean
static stability is allowed to vary. The magnitude of the meridional wind speed of the equilibrated wave is
O(NoH), where N, is the initial buoyancy frequency and H is the depth of the fluid. This is of the same order
as the amplitude of the wave predicted by semigeostrophic theory at the point of frontal collapse. Scaling
arguments are presented to determine the three-dimensional flows for which this equilibration mechanism
should be important. It is argued that this mechanism is likely to be of some importance for shallow cyclones

forming in regions of weak low-level static stability.

1. Introduction

The nonlinear development of baroclinic instabilities
has been studied from a wide variety of perspectives
since the pioneering work on the linear theory by
Charney (1947) and Eady (1949). Most of this work
can be categorized as focusing either on frontogenesis
or on the equilibration of the large-scale disturbance.
Frontogenesis can be studied in the context of a de-
veloping disturbance, without regard to the processes
of equilibration, as in the numerical integration by
Williams (1967) of two-dimensional Eady wave insta-
bility, and in the elegant semigeostrophic theory of
Hoskins and Bretherton (1972). The theory of the lat-
ter paper shows that the unstable Eady wave grows
exponentially with no hint of equilibration, up to the
point of frontal collapse.

In studies of wave equilibration, on the other hand,
often little reference is made to frontogenesis. This is
certainly the case in weakly nonlinear theories in which
the change in shape of the linearly unstable modes is
small; but even in strongly nonlinear modeling studies
conducted with the quasi-geostrophic equations, no
true frontal discontinuities can be formed in finite
times, as the advection of relative vorticity by the cross
frontal circulation is ignored. Life cycle studies using
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the primitive equations on the sphere, as in Simmons
and Hoskins (1978), are capable of simultaneously
producing realistic frontogenesis and equilibration.
Comparisons of these primitive equation calculations
with simpler quasi-geostrophic models suggest that the
simpler models without well-defined fronts are indeed
adequate for simulating the equilibration of large-scale
disturbances.

In this study we analyze a two-dimensional model
(in x and z) that both equilibrates and produces a front,
so as to examine the interplay between these two pro-
cesses in a simpler context. A vertically sheared zonal
flow is perturbed with a disturbance that is independent
of y (latitude) and the finite amplitude evolution is
followed through the frontal formation stage. This two-
dimensional model is a very special case; if quasi-geo-
strophic theory were valid the disturbance would not
equilibrate at all; being independent of y, the distur-
bance cannot modify the meridional temperature gra-
dient or vertical wind shear. While this two-dimen-
sional evolution is not realistic for large-scale distur-
bances in the atmosphere, it is a case for which
frontogenesis seems most likely to play some role in
the equilibration.

Similar models have been studied by Arakawa
(1962) and Orlanski ( 1986 ). Arakawa uses a balanced
model and finds that the growth of the disturbance
does cease, due to non-quasi-geostrophic effects. Of
these effects, he argues that the increase in static stability
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of the zonally averaged flow is primarily responsible
for the equilibration. Orlanski uses a higher resolution
primitive equation model in which the disturbance de-
velops a sharp frontal structure prior to leveling off.
Orlanski suggests that the frontal dynamics itself plays
a role in preventing the disturbance from continuing
to grow.

QOur goal in this paper is to clarify the mechanisms
responsible for equilibration in two-dimensional mod-
els such as those of Arakawa and Orlanski. For this
purpose we return to the classic initial-value problem
for Eady’s model, using the primitive equations. The
only distinction between our model and that of Wil-
liams (1967) is the inclusion of diffusion to allow the
integration to pass through the time of frontal collapse.
The model is briefly described in section 2. The equil-
ibration is analyzed in section 3. In section 4 we attempt
to describe the conditions under which this kind of
equilibration might be important for three-dimensional
disturbances.

2. The initial-value Eady problem

The numerical model used in this study is a simpli-
fied version of the one described in Orlanski and Ross
(1977), and those readers interested in the details of
the model architecture may refer to that paper. The
hydrostatic and Boussinesq approximations are made
on an fplane, consistent with the Eady problem. A
basic state flow is assumed with uniform horizontal
and’ vertical temperature gradient; the perturbation
fields superposed on this mean flow are assumed in-
dependent of y. The set of equations we will be dealing
with are the following:

d¢ v g ab % %
S f=—2 = — 4+ Kym—5 (1
dt 4 0z Bpox < TMax2 " TVM g2 (1)
dv _ ? )
zt"l’f(u_ug):KHMy"’K-VMb'Z—i (2)
df 90 3% 3%
—+v—=Kyr— + — 3
a dy AT 9x? VT 9227 ()

where the circulation in the x-z plane is described in
terms of a steamfunction ¢

a® ] ou 9°®
=% "Ta TuTa @
£§@= —f %\E —fA (time independent), (5)
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and
d 4 029 99
dt ot dzox dxoz

Orlanski and Ross use a stability-dependent viscosity;
here we simply use constant coefficients. Rigid lid
boundary conditions are applied at z = 0 and H. All
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variables are periodic in x, with the domain length L
equal to the wavelength of the initial disturbance. To
minimize diffusive effects at the boundaries, we assume
that thermal wind balance holds at z = 0 and H, and
that the static stability at the boundary remains equal
to its initial value:

a0
w=0, fZ=22, f

b, 0x° oz

d 9 :
— =— =0, H. 6
py 0(x,t) Py #(x,0) at z=0, (6)

Unless otherwise stated, the resolution is Az = H/20
and Ax = L/100. We first describe the solution for the
following choice of the model parameters:

H=10km, f=10"*s"', A=1073s"",
N= No =5X 10—3 S_l, KVT =5 m2 S_l,
Kur = 10°m?s™",  (Kvm, Kum) = 0.7(Kvt, Kur)-

The corresponding Richardson number (Ri = N2/
A?)is 25. The length of the domain L is set equal to
2000 km, which is very close to the most unstable
wavelength in the quasi-geostrophic, large Ri limit. The
initial condition is a small amplitude disturbance with
the vertical structure of the (quasi-geostrophic) unsta-
ble mode. ’
The solid curve in Fig. 1 shows the time evolution
of the maximum meridional wind speed |v|n, which
always occurs on the boundaries. Departures from ex-

. ponential growth become evident near day 5. The am-

plitude peaks at nearly 90 m s~ after day 7, after which
it oscillates about a somewhat smaller value. The max-
imum rms velocity obtained is about 40 m s™'. Figure
2 shows the evolution of the x-z structure of the ve-
locity from day 4 to day 8. Up to day 5 one sees the
continuous reduction in scale of the region of cyclonic
vorticity along the boundaries, familiar from the work
of Williams (1967), and Hoskins and Bretherton
(1972). After day 5, diffusion becomes important in
the frontal zones. In the absence of diffusion, the nu-
merical model develops severe grid point noise shortly
after day 5. Our result is similar to that of Gall et al.
(1987) and Garner (1989) who study a front created
by a deformation field, in that no minimum frontal
scale appears in the absence of diffusion.

Shortly after the fronts are formed, significant
changes in wave structure occur. The vertical tilt of
the wave diminishes noticeably by day 7 and reverses
by day 8. It is the change in sign of the associated baro-
clinic energy conversion that causes the wave amplitude
to cease growing and then decay. We have confirmed
this by comparing the baroclinic energy conversion
(proportional to mean poleward heat flux) with the’
direct destruction of eddy potential and kinetic energy
by diffusion. The latter is always an order of magnitude
smaller than the former. The conversion of the mean
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FI1G. 1. Evolution of the maximum meridional wind speed |v|, (solid) and rms velocity of the wave |v|, (domain
average of [(# — [u])? + v?]"/?, dashed). Thick solid curve: |v|, for the control run with initial wavelength A = 2000
km, Ri = 25, and geostrophic shear A = 1073 s™!, Thick dashed curve: Same as solid curve but for |v|,. Thin solid
curve: | v}, for the short-wave case: A = 1000 km with one-fourth static stability Ny? (Ri = 6.25). Thick dashed curve:

Same as solid curve but for |v],.

state kinetic energy into the kinetic energy of the dis-
turbance (proportional to the vertical flux of zonal
momentum ) is also negligible.

Figure 3 shows the changes in structure of the dis-
turbance potential temperature field. The warm sector
(the region warmer than the initial condition at that
latitude and height) is stippled. After day 5 the distur-
bance begins to “occlude™ as the warm sector ahead
of the front is lifted off the surface. The vertical heat
flux associated with this process increases the mean
stability of the atmosphere dramatically. Figure 4 shows
that the mean potential temperature difference between
the top and bottom boundaries increases by nearly a
factor of 6 as the wave reaches maximum amplitude
and then oscillates about a value 3-4 times its initial
value.

Although the diffusive terms appear negligible in the
global energetics, the detailed evolution of the system
does become sensitive to these terms as it passes
through the frontal formation stage and the warm sec-
tor pinches off the surface. Figure 5 provides some ex-
amples of this sensitivity, corresponding to the choice
of diffusion coefficient listed in Table 1. Figure 5a shows
the evolution of |v |, for cases in which the vertical or
horizontal momentum diffusion, or both, are increased
by a factor of 4. Figure 5b shows analogous results for
the thermal diffusion. The solutions begin to diverge
near day 5 as the front forms. However, the sensitivity
is sufficiently weak at first that the differences in dif-
fusivity result in only small changes in the maximum
amplitude obtained by the eddy. Increased horizontal
momentum diffusion decreases this amplitude slightly;
increased vertical momentum diffusion has little effect,

while the horizontal and vertical thermal diffusion have
small but compensating effects. The solutions in Fig.
5 do begin to differ dramatically after the decay of the
initial disturbance. The period and the amplitude of
the oscillations that develop in the control run in this
latter state are evidently strongly dependent on the
choice of diffusivity.

We have repeated the control run with twice the
horizontal and vertical resolution. The very small dif-
ferences produced would hardly be visible in Figs. 1-
4. The calculations with larger diffusivities in Fig. 5
should be even less sensitive to the resolution.

Calculations have also been performed holding all
parameters fixed as in the control run except for the
initial static stability Ny. The result from one such in-
tegration, with the value of N, reduced by a factor of
2, has been included in' Fig. 1. The wavelength of the
initial disturbance, and the length of the channel have
also been divided by 2 so that we are again dealing
with a mode that is close to being the most unstable.
The corresponding Richardson number is now 6.25.
The amplitude attained by the disturbance is approx-
imately half of that attained in the control, consistent
with the dependence of amplitude on the wavelength
of the disturbance found by Orlanski (1986). Calcu-
lations with other values of Ny confirm that |v|,, oc Ny,
as displayed in Fig. 6.

If one nondimensionalizes horizontal, vertical and
time scales by No H/ f, H, and fA / Ny respectively, the
only nondimensional parameters that emerge are Ri
and nondimensional measures of the diffusivities. Dis-
regarding the latter based on the results in Fig. 5, we
expect the functional dependence |v], o« AH
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FIG. 2. Evolution of x—z structure of v-field for the control run.
A = 2000 km, Ri = 25. Contour interval is 10 m s,

X func(Ny/A). Given the approximate proportionality
between |v|, and Ny, the implication is that |v], is,
to first approximation, independent of A.

3. Dynamics of the equilibration

The equilibration of the two-dimensional Eady wave
cannot be understood on the basis of a standard quasi-

FIG. 3. Evolution of x-z structure of perturbation potential tem-

perature field (deviation from the initial state) for the control run.
Contour interval is 2 X. :

geostrophic model. The exponentially growing normal
mode with no y-dependence is an exact solution of the
quasi-geostrophic equations, so the wave continues to
grow indefinitely without changing its horizontal and
vertical structure. The increase in static stability seen
in Fig. 4 and the frontal formation itself, neither of
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FIG. 4. Evolution of the domain-averaged lapse rate. Solid curve: Control (A = 2000 km, Ri = 25).
Dashed curve: Same initial condition but for quasi-geostrophic model with variable N? (see text).

which are present in the quasi-geostrophic (QG) so-
lution, are the obvious candidates for equilibrating the
wave.

Yet no hint of equilibration is seen in the semi-
geostrophic Eady solution, which allows both the front
to form and static stability to change. In the semi-
geostrophic (SG) space defined by

T=t, X=x+v/f, Z=z,

the geostrophic momentum approximation to the po-
tential vorticity is related to the geostrophic stream-
function y by

b oz w0 _w
%= P oayrex? T ax 89, oz
For the perturbations, denoted by a prime,
8? fo, 82 '
— + - ' = 1
aXZW g4, 622¢ 0 (12)

(Hoskins 1975). Since the potential vorticity is con-
served and initially uniform

6o 0N
%= % oz? = f(60/8)(No* — A?),
it remains uniform for all times. Therefore, (12) be-
comes identical to the QG potential vorticity equation
for the Eady problem in the limit of large Richardson
number. The potential vorticity in the SG problem
plays the role of the static stability in the QG problem.
With the boundary conditions being also of an identical
form, the two systems yield the same growth rate. In

the SG solution, frontal collapse occurs in physical
space when the coordinate transformation becomes
singular, i.e., when the vorticity predicted in SG space,
vg/ L, where L is the initial length scale of the distur-
bance, approaches f, or

v, =~ fL =~ NoH. (13)
This gives the amplitude of the baroclinic disturbance
at the point of frontal collapse.

The inviscid SG model fails to explain the equili-
bration that appears in the numerical solution. To
change the growth rate in the SG model for a fixed
wavelength and vertical shear, one must modify the
potential vorticity g,. This is impossible for adiabatic,
inviscid dynamics wherein g, is conserved and remains
uniform. However, we argue below that diffusive pro-
cesses included in (1)-(3) change the interior potential
vorticity in such a way as to cause the disturbance to
equilibrate.

Shown in Fig. 7 is Ertel potential vorticity (which
is very close to g, in this two-dimensional model) of
the control run in the equilibrating stage. The potential
vorticity (PV) is virtually uniform before the surface
fronts are formed. Once the front is formed, large pos-
itive PV develops near the surface discontinuity and
permeates into the interior of the flow, accompanied
by regions of very weak negative values ahead of the
front. By day 7, the entire frontal region is occupied
by enhanced PV.

This increase in PV can then be thought of as sta-
bilizing the flow just as an increase in static stability
stabilizes a QG flow; the larger static stability causes
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FIG. 5. (a) Evolution of maximum meridional wind speed |v|,, with different combination of momentum diffusion
(see Table 1). Solid curve: Control. Dashed curve: Both horizontal and vertical momentum diffusion are quadrupled
from the control (M1). Thin dashed curve: Only horizontal momentum diffusion is quadrupled (M2). Dotted curve:
Only vertical momentum diffusion is quadrupled (M3). (b) Same as (a) but with a different combination of heat
diffusion. Solid curve: Control. Dashed curve: Both horizontal and vertical heat diffusion are quadrupled from the
control (H1). Thin dashed curve: Only horizontal heat diffusion is quadrupled (H2). Dotted curve: Only vertical heat

diffusion is quadrupled (H3).

the disturbance to become more strongly trapped at
the boundaries, reducing the interaction between the
two boundaries, and allowing the upper-level distur-
bance to be sheared past the low-level disturbance by

the mean flow, therby reversing the baroclinic energy
conversion. Alternatively, one can think of the increase
in stability as shifting the short-wave cutoff for insta-
bility past the wavelength of the disturbance. Note also
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TABLE . Combination of diffusion coefficients
for the comparative runs in Fig. 5.
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Momentum diffusion

Heat diffusion

) Kvm Kum Kyr Kur
Cases (m?s7") (m?s™Y) (m?s™) (m?s™")
Control 3.5 7000 5 10 000
Ml 14 28 000 5 10 000
M2 3.5 28 000 5 10 000
M3 14 7000 5 10 000
HI1 3.5 7000 20 40 000
H2 3.5 7000 5 40 000
H3 35 7000 20 10 000

that in SG space, the enhanced PV would occupy a
larger fraction of the domain than in the x-z space of
Fig. 7.

To understand the increase in PV, it is useful to
think of the boundaries at z = 0 and H as being is-
entropic surfaces, introducing isentropic layers of in-
finitesimal thickness along the boundaries so that the
correct temperature gradients exist interior to these
layers. A sheet of PV is thereby created at each bound-
ary, as discussed by Bretherton (1966 ) for the QG case.
Since there can be no net creation or destruction of
the PV contained within any two isentropic surfaces
(Haynes and MclIntyre 1987}, one should think of the
source of the high PV air in Fig. 7 as these boundary
reservoirs which, as the result of the diffusive mixing
at the front, are lifted off the surface along with the
surface air. Figure 8 schematically illustrates this pro-
cess.
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FIG. 6. Plot of |v|, and |v|, (same definition as in Fig. 1) as a
function of Np. Dashed lines are determined by the least mean square
technique.
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DAY 6

FIG. 7. Evolution of Ertel potential vorticity. Contour interval is
10~7 K m~' s™'. Negative regions are stippled. The field is initially
uniform and 7.7 X 10 K m~' s~

The details of this generation of high interior PV are
complex, but using scaling arguments one can estimate
the order of magnitude of the increase, averaged over

a
()
a4 4
6,
z
3 I
Rty 7 X
—q
go
b

FIG. 8. Schematic view of escaping potential vorticity associated
with the pinching-off of isentropes. (a) Before the front is formed,
(b) after the front is formed. See text for explanation.
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the domain. The magnitude of the potential temper-
ature perturbation 0’ along the surface at the point of
frontal collapse can be obtained from the QG solution
when dv,/3X = f. Consistent with (4), one finds

’

o
g5 ~ f1L*/H ~ Ny*H. (14)
0

The corresponding PV anomaly, integrated over the
infinitesimal layer in which it is concentrated, is

[0y __ov/9Z

¢ 77— oK

Z =0+

_ g9’/
% NoZ + (2/00)(06'/3Z)

~ g H.
Z=0+

(15)

In the warm sector at the surface, and the cold sector
at Z = H, this PV anomaly is positive. Diluted over
the depth of the fluid, the PV should then increase by
~qg. Thus, the occluded air contains enough PV to
increase the average value in the interior by an amount
of order unity, sufficient to stabilize the flow and cause
the disturbance to disperse and decay.

Since the potential vorticity in the SG model plays
the same role as static stability in a QG model, a similar
equilibration can be expected from a modified QG

-model in which the global static stability is allowed to
vary. One can construct such a model in the spirit of
. Lorenz (1960), by allowing N?(z) in the QG equations
to be time dependent. The crucial difference from the
primitive equation model is that no front forms so that
diffusive effects cannot play any role. The only mean-
- ingful way to change the global static stability is to
relate the change with upward heat transport by the
large-scale wave. The rate of change of stability is then
determined by the equation
62
at Py [ 0] = [W0]

where brackets denote a zonal average. The quasi-geo-
strophic set is otherwise unmodified, and the pertur-
bation streamfunction is again assumed to be inde-
pendent of latitude, so that the thermodynamic equa-
tion, for example, takes the form

Ti)

ol 0])

g
+ W(BO
(17)

where ¢ is a QG perturbation streamfunction. No at-
tempt is made to provide a formal justification for this
approximation. In fact, the detailed evolution predicted
by this system is very different from that predicted by
the primitive equations. Most importantly, there is still
no wave-wave interaction; an initial disturbance con-
sisting of one zonal harmonic never excites other har-
monics, and no frontal formation is possible. The only

(16)

209 900 0

o1 oz« “%3x 9z ax
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nonlinearity is the static stability change (16) which
then feeds back on the dynamics through the ther-
modynamic equation (17). \

With the same initial condition as in the nongeos-
trophic control experiment, the wave enters a very
similar life cycle. The evolution of the domain-averaged
static stability of this system is compared with the con-
trol in Fig. 4. The maximum stability attained is close
to, but slightly smaller, than in the control, and a qual-
itatively similar oscillation follows. The evolution of
eddy kinetic energy is compared with the control in
Fig. 9. This QG model with variable static stability
appears to qualitatively capture the equilibration char-
acteristics of the wave. Because horizontal scales do
not change with time in this simplified system, we can
apply scaling arguments to predict the equilibrated
amplitude with greater confidence than for the full
primitive equation solution. As before, we assume that
there has to be an O(1) increase in N for the shift in
the short-wave cutoff to stabilize the wave. The increase
in global stability is a result of the upward heat flux,
SO we require

(18)

Using standard quasi-geostrophic scaling,
a 1 a 1

1 61 2, L
z"H & L’ 0(000)“’110(”)’

~ Ro g O(v),

where Ro = AH/(fL), assuming a growing wave |v|

O(w)

~ |vo|e’”, with 77! ~ fA/N,, and ignoring factors
of order unity, (18) reduces to
Ro .
N ~ |02 L 20/7 . 1), 19
o |vo| I (e ) (19)

Further assuming that the final amplitude is much
larger than the initial amplitude, and that Ro? Ri
~ O(1), or equivalently L ~ NyH/f, (19) becomes

1
N02 ~ ;I—i Il)flz.

The predicted equilibrated amplitude is
lvf I =~ N OH s

identical with (13).

That the QG model without a front predicts the cor-
rect order of magnitude for the equilibrated amplitude.
implies that the characteristics of the front itself have
little to do with the final amplitude of the wave, al-
though mixing in the frontal region is necessary to trig-
ger the equilibration in the full model.

Just as one can remove the frontal formation but
retain the effects of the stability change, as in the QG
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FIG. 9. Evolution of domain-averaged eddy kinetics energy. Dashed curve: Control. Solid curve: With a fixed
zonal mean static stability. Dotted curve: QG with a variable zonal-mean static stability.

model with time-dependent N, one can try to retain
the frontal formation but remove the effects of the sta-
bility change by simply fixing the horizontal mean of
the potential temperature as a function of height. (One
could also try to fix the mean interior potential vortic-
ity, but this would be much more difficult to imple-
ment.) The result of such a calculation with the same
initial condition as in the control, as well as the same
resolution and diffusivities, is shown in Fig. 10. By day

DAY 5

Fi1G. 10. Same as Fig. 2, but for the case with a fixed static stability.

6 the more violent frontal dynamics that arise are not
well resolved. The evolution of the eddy kinetic energy
is compared with that in the control and in the QG
variable stability run in Fig. 9. The energy increases to
considerably greater values than in the other two mod-
els. Inspection of the energetics shows that the baro-
clinic generation of kinetic energy does not halt; there
is no change in sign of the vertical tilt. Rather, the
direct destruction of eddy energy by diffusion, and by
transfer to mean kinetic energy through the vertical
momentum flux, increase in a complex way to balance
the continuous baroclinic generation. While higher
resolution seems to be needed to pass through the fron-
tal collapse in a meaningful way when N(z) is specified,
given the small scale shear instabilities and gravity
waves that seem to be generated, and while it is difficult
to interpret the model in terms of PV dynamics, it is
clear that the equilibration mechanism in this solution
is very different from that in the calculations in which
the static stability is free to vary.

4. Summary and discussion

We describe the evolution of an unstable Eady wave
as it passes through the point of frontal collapse, reaches
a maximum amplitude, and then decays. This equili-
bration is found to be caused by the increase in the
potential vorticity in the frontal region. We think of
this potential vorticity as being generated by transport
from the boundary reservoir in the process of occlusion,
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this process being made possible by diffusive mixing.
(Without diffusion the front does collapse to the grid
scale of the model.) Nevertheless, the maximum am-
plitude of the wave seems to be insensitive to the dif-
fusivity and is solely determined by the parameters of
the basic flow. A simple scaling argument yields the
estimate v ~ NyH for the amplitude that the wave
attains. This cannot be the dominant mode of equili-
bration for large-scale disturbances in the atmosphere.
The estimated amplitude, Ny H, is much too large, and
the large increases in potential vorticity (or static sta-
bility) that are responsible for the equilibration are un-
realistic. It is much more reasonable to assume that
large-scale disturbances equilibrate by modifying the
horizontal temperature gradient, a mechanism elimi-
nated by our unrealistic assumption of two-dimen-
sional flow. If an unstable wave on an f~plane is instead
assumed to generate a poleward eddy heat flux with
the meridional scale L,, then a scaling argument anal-
ogous to that in section 3 shows that the horizontal
temperature gradient will be reduced by O(1) when
the wave grows to the point that
fA

~ L,—

e (20)

ol

_If the mode is isotropic, with L, ~ L =~ NoH/f, this
simply becomes

lvf| ~ AH, (21)
which is identical to the closure proposed by Stone
(1972). The ratio of the amplitude predicted by the
muodification of potential vorticity to that predicted by
modifying the horizontal temperature gradient is

__lﬂ :1/2
I, Ri'/“, (22)
As long as Ri is large and the eddy is isotropic, the
wave will equilibrate before it has a chance to increase
the potential vorticity appreciably. Mesolows that form
over the warm oceans in winter appear to be prime
candidates for the equilibration mechanism discussed
in this paper. To the extent that they are anisotropic,
with L, > L,, this mechanism would be favored further
over the alternative of stabilization by the horizontal
heat flux. In reality, the horizontal inhomogeneity of
the environment, and the possibility that normal modes
do not have time to develop, complicates any attempt
to relate these results to observed developing distur-
bances.

An interésting point arises concerning the relative
timing of frontal formation and the equilibration of
the large-scale disturbance. The two-dimensional Eady
wave forms a front just prior to the leveling off of the
amplitude. If waves in the atmosphere generally equil-

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No. 19

ibrate by other mechanisms, by decreasing the hori-
zontal gradient, or by spinning up to a large barotropic
zonal flow as described by James (1987), then it seems
that one should expect to see fronts forming only well
after the equilibration of the large-scale disturbance.
Since this is counter to observations, it is evidently
dangerous to take the relative timing of frontal for-
mation and equilibration from the two-dimensional
model as indicative of this relationship in more realistic
three-dimensional disturbances.
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