# Gravity-Lidar Study for 2006: Refined Gravity Field For the North-Central Gulf of Mexico

Dan Roman National Geodetic Survey

Jarir Saleh National Geodetic Survey/Earth Resources Technology



## Colleagues

- National Geodetic Survey
  - Yan Ming Wang and Jarir Saleh
- Naval Research Laboratory
  - John Brozena and Vicki Childers
- NASA GSFC Laser Remote Sensing
  - David Rabine, Scott Luthcke, and Bryan Blair
- University of Maryland, College Park Campus
  - Sandy Martinka and Michelle Hofton



## Gravity Lidar Study for 2006 (GLS06)

- AOI: Northern Gulf of Mexico (FL-AL-MS shoreline)
- Equipment: NRL's LaCoste-Romberg Air-Sea II, NASA's LVIS, and NOAA Citation II
- Flights at 10 km elevation and spacing
- To ensure seamless and consistent coverage across the sea-shore boundary
- To reduce geoid uncertainties and better tie in to MSL based on lidar observations
- VDatum model area: tidal and dynamic topography models currently available



# Extent of Gravity and Data Collection Flights

Airborne Tracks and NGS Database Gravity Anomalies Over the Gulf of Mexico





# Gravity Map Upward Continued to 10 km



**NORR** 

## **Filter Characteristics**

- All corrections (GPS, off level, Etvos, drift, etc) were applied to gravity data – otherwise: unfiltered
- Signal interpolated and provided by NRL
- Some problems with initial filters
- Settled on moving window filter modified by an elastic string filter
- Trade Off-Diagram:
- Best choices
  - 90s: first minima
  - 240s: lowest minima





### **Example Profile #1: Southernmost East-West Track**

#### NATIONAL GEODETIC SURVEY

ATMO

NOAA



National Oceanic and Atmospheric Administration

### Residual Gravity at 10.5 km with 91s Filter

2'x2' Residuals: Crossover Adjusted NGS 091s filtered - UWC Gravity Anomalies





### **Equivalent Pseudo-Geoid Signal for 91s Filter**





## **Future Work**

- Apply filter during application of corrections (not after!)
- Downward continue these data
- Check against other surface data
- Remove inconsistencies
- create a geoid model and compare to previous models
- Use new geoid model in conjunction with dynamic topography model to compare with lidar observations (LVIS)
- Establish absolute accuracy of gravimetric geoid in Vdatum study area and at tidal bench marks
- Compare GPS-leveling derived from gravimetric geoid to NAVD 88 heights at tidal bench marks
- Compare gravimetric geoid to forthcoming EGM's
- Expand AOI further westward through Louisiana and Texas





Intermap GPS/INS Coverage

NOAR

National Oceanic and Atmospheric Administration

Map courtesy of Intermap Technologies, Inc.

# **Dynamic Topography Coverage**

NGOM Grid with Gravitimetric Survey Boundaries 31.5 31 30.5 30 Latitude (North) 29.5 29 28.5 28 27.5 27



National Oceanic and Atmospheric Administration

From Richard Patchen, NOAA/NOS/Coast Survey Development Laboratory

# **QUESTIONS?**



### Extra Slide: Residual Gravity at 10.5 km with 240s Filter





### Extra Slide: Equivalent Pseudo-Geoid Signal for 240s filter



