ANSCE TO CONTROL SECTION OF THE PARTY OF THE

INSIDE

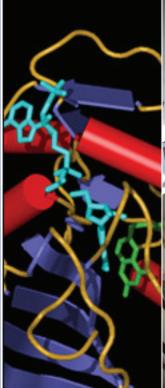
2

FROM ALAN'S DESK

3

LANSCE UCNA

EXPERIMENT PUBLISHES
FIRST ULTRA-COLD
NEUTRON RESULTS


3

HEADS UP!

Neutron scattering instruments in the Lujan Center beam room.

DOE Basic Energy Sciences three-year review of the Lujan Center

The three-year review of the Lujan Center occurred February 9-12 with a panel of eight eminent scientists from the U.S. and Europe. Pedro Montano of DOE BES lauded the scientific presentations by Lujan Center users, remarking that these talks were among the best he has seen. Mike Anastasio (DIR), Terry Wallace (PADSTE), and Susan Seestrom (ADEPS) gave video presentations and Rich Marquez (DIR), Alan Bishop (ADTSC), Kurt Schoenberg (ADEPS), and Kevin Jones (AOT-DO) gave introductory presentations. Highlighted talks include the following: "Magnetic Films" - Steve May (Argonne National Laboratory); "Spin Waves" - Rob McQueeney (Ames Laboratory and lowa State University); "Local Structure Investigation of Bulk and Nanophase Materials" - Katharine Page (Lujan Center, recently UCSB); "Wrinkling in Physics and Biology" - Ka Yee C. Lee (University of Chicago); "Bridge Cable Failures" - Cev Noyan (Columbia University); "Pyramid Cement and Concrete" - Michel Barsoum (LANL Wheatley Scholar, Drexel University)

From Alan's desk

Enhancement of the Lujan Neutron Scattering Center at LANSCE

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way...

—Charles Dickens, A Tale of Two Cities

I remind you of this famous moody quote by Charles Dickens to point out that hope springs from the chaos of good and bad circumstances. Many are losing jobs, scientists are anticipating a Sputnik-like resurgence, a recession threatens depression, scientists rejoice at the choice of policy-level leadership, the energy problem looms, even the public is suddenly paying attention to education, the NNSA labs face cuts, the science

the case for investment in science and education to regain innovation-created competitiveness. Regrettably, politically misalignments have delayed action on this agenda. Now, while much of the global economy teeters on collapse, I feel a tinge of "survivor guilt" as funding possibilities open up.

Sprouting from the enthusiasm for a refurbished accelerator at Los Alamos, we at the Lujan Center are in a steady climb toward a vision we call "full utilization." The Enhanced Lujan Program (ELP) objectives are to increase user support and instrument quality to world-competitive levels with all available flight paths utilized fully. ELP is an \$80M program designed to transform Lujan Center over five years under primary sponsorship of the Office of Science.

My main message is that you can be involved in exciting, new instrumentation concepts for your own research. The process for planning instrumentation enhancements began with community outreach workshops in 2005-2007 but also extending to cost studies, reviews, and workshops since 2001. From this planning and a call for letters of intent last year, instrument advisory teams (IATs) have been self-identifying and meeting in mini-workshops. Reports from IATs will lead to formal proposals to BES (or, in some cases, National Science Foundation). We want to know your needs in materials research.

You don't have to be an expert in neutron scattering to be a member of an IAT. We have the expertise to turn your ideas into instrumentation concepts. An exciting direction for neutron instrumentation is to incorporate a benchtop measurement into a scattering instrument, often in a "pump-probe" set up. Because neutron scattering information is in some sense orthogonal to that of other techniques, the combined experiment provides a "cross product" that fills a volume of phase space information in one sweep. An example of a pump-probe apparatus is the new shear cell we recently developed for small-angle scattering and reflectometry. The cell can be programmed to shear a complex fluid in sync with the 20-Hz neutron beam, which enables snapshots of mesoscale structure as a function of the phase of a periodic stress with simultaneous rheometry.

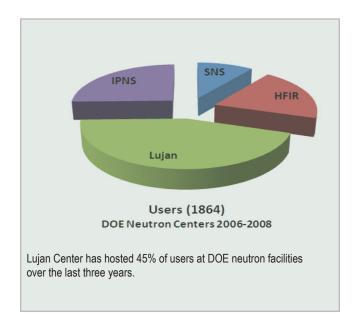
Three IAT meetings have occurred so far this year, for diffractometers SMARTS and HIPPO and for a proposed new inelastic neutron scattering spectrometer. Four more meetings will be held at Oak Ridge in May, and up to three meetings are planned on University of California campuses this summer. There is plenty of time to join an IAT by sending me an email

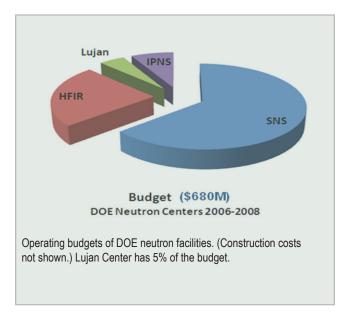
continued on page 3

From Alan's desk... continued from page 2

or calling. (We thank sponsors John Sarrao of the Los Alamos National Laboratory Office of Science and Nan Sauer of the Los Alamos institutes. Prof. Michel Barsoum, the Wheatley Scholar at the Lujan Center funded by PADSTE, has been invaluable and tireless in leading planning teams.)

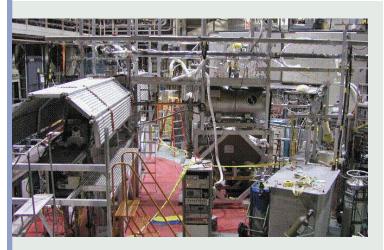
Among the new instruments being discussed, inelastic neutron scattering (INS) has perhaps the strongest and longest community push. A new spectrometer, powered by Lujan Center's world-leading intensity per pulse, promises to illuminate the mechanisms underlying correlated electron phenomena, hydrogen storage in materials, magnetism, and fundamental excitations in stockpile metals. Diffraction, already strong at Lujan Center, is a favorite for understanding new energy materials through the rapidly developing science of local structure analysis; we expect to see users apply neutron pair distribution functions to radiation-damaged materials created in the Fission Fusion Material Facility of MaRIE. We plan to build on a project recently funded by the University of California in high pressure materials behavior to enhance "dot-product" between energy research and weapons research. Using new polarized neutron techniques, an IAT for Asterix has been invited to submit a full proposal to BES. Finally, because sample environments are the staff of life for innovative experiments, we encourage teams to submit ideas for extreme conditions under which in-situ scattering would provide valuable information.


The timing for getting ELP funded is auspicious. There has never been a time in which the product of funding prospects and Lujan Center performance has been as high. The two figures below from our triennial review in February show that the Lujan Center—since 2004 the largest Department of Energy (DOE) neutron scattering program—has hosted 45% of all users at DOE neutron facilities with only 5% of the neutron facility budget! BES has blessed the ELP plan and now has the resources to fund it. Our job is to submit good proposals and we need your help.


This country is placing a huge, somewhat desperate bet on the future. In the physical sciences, massive new funding is being channeled into energy research owing to the urgency to reach global thermodynamic sustainability. We in the scientific enterprise should be sobered by the responsibility we have been assigned in this goal with its attendant risk of failure. I for one wish to accept that risk.

Accidents will occur in the best regulated families.

Charles Dickens


—Alan Hurd, Lujan Center Director

LANSCE UCNA experiment publishes first ultra-cold neutron results

Ultra-cold neutrons are neutrons that move so slowly, near human running speed, that they can be trapped in material bottles for hundreds of seconds. This property enables their use in precision measurements of nuclear physics properties, with smaller systematic uncertainties than standard methods using cold neutron beams. The Ultra-Cold Neutron Asymmetry (UCNA) experiment at LANSCE was designed to measure the correlation in neutron decay between the polarization of the neutron and the momentum of the emitted electron from the decay, known as A. The A coefficient helps determines the value of the weak coupling coefficients, which describe the behavior of the weak nuclear force. The UCNA experiment released its first results, a measurement of the A coefficient with 4% uncertainty. This, the first measurement in the world of the A coefficient based on ultra-cold neutrons, was the culmination of a 10-year research and development effort in P, LAN-SCE, and AOT divisions, and university collaborators. LANL researchers include J. Anaya, J. G. Boissevain, T. J. Bowles, D. J. Clark, S. Currie, R. Hill, G. E. Hogan, T. M. Ito, K. Kirch, S. K. Lamoreaux, M. Makela, C. L. Morris, R. Mortensen, A. Pichlmaier, J. C. Ramsey, R. Rios, A. Saunders, S. Seestrom, W. E. Sondheim, and W. Teasdale. Reference: "First Measurement of the Neutron β Asymmetry with Ultracold Neutrons", Physical Review Letters 102, 012301 (2009).

uCN experiment in operation at LANSCE

At least 300 people a year die in simple falls from ladders. Another 100,000 people are injured. Portable ladders should not be substituted for more appropriate equipment such as scaffolding or other types of portable work platforms that raise a worker off of the ground.

Navigation	Class 3B & 4 Laser Database Click on a column label to sort by that column.											
Help												
FAQs												
View My Records	REF	Status		PIC	Owner	Type	Class	Manufacturer	Property#	TA	BLDG	RM
	3		C-PCS	Michael Di Rosa	Michael Di Rosa	Argon Ion	4	Coherent	972070	46	154	112A
View All Records	13	Inactive			Xinxin Zhao	C02	4	Coherent	1104316	03	215	E6
	14	Active	C-NR	Xinxin Zhao	Xinxin Zhao	Nd:YAG	4	Coherent	NA	48	0001	313
Add New Record	15	Active	C-NR	Xinxin Zhao	Xinxin Zhao		3B	SLI	NA		RC1	313
	16	Active	C-NR	Xinxin Zhao	Xinxin Zhao		3B	SLI	NA	48	RC1	313
Search	17	Active	C-NR	Xinxin Zhao	Xinxin Zhao		3B	JDS Uniphase	NA	48	RC1	313
	18	Active	C-NR	Xinxin Zhao	Xinxin Zhao		3B	JDS Uniphase	NA	48	RC1	313
Report	20	Inactive	C-CDE		Peter Stark	Nd:YAG	4	Continuum	915096	46	24	B1
	21	Inactive			Aaron Koskelo	Dye	4	Spectra Physics	841601	46	24	B1
	22	Inactive	C-CDE		Peter Stark	Argon Ion	3B	Laser Physics	221201	46	24	B1
Quick Search	23	Active	C-CDE	Blossom Cordova	Peter Stark	Argon Ion	3B	Uniphase	15816R	46	24	B4
	24	Inactive	C-PCS		Joe Tiee		4	N/A	3053	46	0294	transportable
	25	Inactive	C-PCS		Joe Tiee	Dve	4	N/A	D1119	46	0303	Transportable
(Find)	26	Inactive			Joe Tiee	Nd:YAG	4	N/A	79077		0322	Tranportable
	27	Inactive	C-PCS		Joe Tiee	Excimer	4	N/A	8311E11	46	0322	Transportable
	28	Inactive	C-PCS		Joe Tiee	Dve	4	N/A	506F796	46	0556	Transportable
	29	Inactive	C-PCS		Joe Tiee	Dye	4	N/A	193	46	0303	Transportable
	30	Inactive	C-PCS		Joe Tiee	CO2	4	Synrad	907865	35	2	C107
	31	Inactive			Joe Tiee	C05	4	N/A	None	35	46	101
	32	Inactive	C-PCS		Joe Tiee	CO2	4	N/A	None	35	46	101
	33	Inactive	C-PCS		Joe Tiee	Other	4	N/A	943007	35	87	140
	34	Active	C-PCS	Victor Klimov	Victor Klimov	Nd:YAG	4	Quanta Ray	837232	46	154	111
	35	Active	C-PCS	Victor Klimov	Victor Klimov		4	Casix	942383	46	154	111
	36	Active	C-PCS	Victor Klimov	Victor Klimov	Nd:YAG	4	Clark-MXR	911375	46	154	111
	37	Active	C-PCS	Victor Klimov	Victor Klimov	Ti:Sapphire	4	Clark-MXR	911376	46	154	111
					2-3-4-5-6-7-8-9-10-							

The ladder database has been upgraded: http://laserdb.lanl.gov/viewAll.aspx

Celebrating Felix Olivas, AOT-MDE

Service Stephen Morgan, AOT-OPS 20 years

35 years

AOT&THEPUSE

Published monthly by the Experimental Physical Sciences Directorate. To submit news items or for more information, contact Karen Kippen, EPS Communications, at 606-1822, or kkippen@lanl.gov LALP-09-016 To read past issues see http://int.lanl.gov/orgs/lansce/The_Pulse/index.shtml

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under contract DE-AC52-06NA25396.

A U.S. Department of Energy Laboratory.