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ABSTRACT

An algorithm is developed to construct global gridded fields of monthly precipitation by merging estimates
from five sources of information with different characteristics, including gauge-based monthly analyses from
the Global Precipitation Climatology Centre, three types of satellite estimates [ the infrared-based GOES Precip-
itation Index, the microwave (MW) scattering-based Grody, and the MW emission-based Chang estimates],
and predictions produced by the operational forecast model of the European Centre for Medium-Range Weather
Forecasts. A two-step strategy is used to: 1) reduce the random error found in the individual sources and 2)
reduce the bias of the combined analysis. First, the three satellite-based estimates and the model predictions are
combined linearly based on a maximum likelihood estimate, in which the weighting coefficients are inversely
proportional to the squares of the individual random errors determined by comparison with gauge observations
and subjective assumptions. This combined analysis is then blended with an analysis based on gauge observations
using a method that presumes that the bias of the gauge-based field is small where sufficient gauges are available
and that the gradient of the precipitation field is best represented by the combination of satellite estimates and
model predictions elsewhere. The algorithm is applied to produce monthly precipitation analyses for an 18-
month period from July 1987 to December 1988. Results showed substantial improvements of the merged
analysis relative to the individual sources in describing the global precipitation field. The large-scale spatial
patterns, both in the Tropics and the extratropics, are well represented with reasonable amplitudes. Both the
random error and the bias have been reduced compared to the individual data sources, and the merged analysis
appears to be of reasonable quality everywhere. However, the actual quality of the merged analysis depends
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strongly on our uncertain and incomplete knowledge of the error structures of the individual data sources.

1. Introduction

The spatial and temporal distribution of large-scale
precipitation is critical in determining the general ¢ir-
culation of the atmosphere and the global climate. Sci-
entists attempting to simulate the behavior of the global
climate system must compare the precipitation fields
produced by their simulations with observed fields.
Those wishing to understand the interannual variability
in the general circulation related to variations in trop-
ical sea surface temperature require accurate observa-
tions of the associated large-scale precipitation varia-
tions.

Despite these requirements, the distribution of global
precipitation is not well documented, both because of
its large spatial and temporal variability and the lack of
a comprehensive observing system. The principal ex-
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isting sources of information on climatic-scale precip-
itation are gauge observations and estimates inferred
from satellite data, each of which has advantages as
well as shortcomings (Barrett and Martin 1981; Arkin
and Ardanuy 1989). Generally speaking, raingauge ob-
servations yield relatively accurate point measurements
of precipitation but suffer from sampling error in rep-
resenting areal means and are not available over most
oceanic and unpopulated land areas. Infrared (IR ) and
passive microwave (MW ) satellite observations can be
used to derive estimates of large-scale precipitation
over much of the globe, but these estimates are char-
acterized by nonnegligible bias and random error as-
sociated with inadequate sampling, algorithm errors,
and the indirect nature of the physical relationship be-
tween precipitation and the observations.

In order to quantitatively understand the capabilities
of existing data sources and algorithms, Xie and Arkin
(1995) conducted a comprehensive examination of
several existing sources of climatic-scale precipitation.
By intercomparing three sets of gauge observations
(GPCC, CAMS, and Morrissey atoll data) and eight
different satellite estimates (one IR-based, three MW
scattering-based, and four MW emission-based) of
monthly precipitation for a 3-yr period (July 1987-
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June 1990), with two versions of long-term average
precipitation (Jaeger 1976; Legates and Willmott,
1990), they found the following:

1) Atleast five gauges are needed to produce areally
averaged monthly precipitation for grid areas of 2.5°
X 2.5° latitude—longitude with an accuracy of 10%. At
the present time, only 10% of the global land grid areas
satisfy this requirement.

2) Different satellite estimates based on a given sort
of observational data (IR, MW scattering, or MW emis-
sion) yield similar results relative to concurrent gauge
observations (i.e., differences among MW-scattering
estimates are small compared to their differences from
MW-emission estimates ). Estimates based on different
sources vary significantly in their capability to repre-
sent precipitation in different seasons, of different lat-
itudinal regions, and over different underlying surfaces.

3) Over tropical and subtropical areas, all satellite
estimates show high correlation and stable bias over
ocean when compared to atoll-based gauges, while
over land they exhibit high pattern correlation but with
large seasonally and regionally dependent bias. Over
mid and high latitudes over land, where the IR-based
and MW-emission-based estimates were not available,
the MW-scattering-based estimates performed poorly
in representing the spatial and temporal variability of
precipitation, especially during the winter and early
spring.

The intercomparison results have shown clearly that
at least three major deficiencies exist in the individual
sources of precipitation: 1) incomplete global cover-
age; 2) significant random error; and 3) nonnegligible
systematic error (bias). It is therefore necessary to im-
prove the quality of the individual data sources and to
combine the different sources so as to take advantage
of the strengths of each. While further improvements
of the individual sources are essential, particularly over
mid and high latitudes where no single source yields
satisfactory results in all seasons, an appropriate com-
bination of the estimates from the different sources
might provide us with complete gridded fields, which
we will call analyses, of global monthly precipitation
with quality everywhere equal to or better than that of
each of the individual components.

In this paper, we present a new algorithm to merge
various kinds of monthly precipitation datasets into
global gridded fields of areally averaged precipitation.
Gauge observations, satellite estimates from IR, MW-
scattering and MW-emission observations, and predic-
tions from numerical weather forecast models are used
to ensure complete global coverage. A two-step strat-
egy is used to reduce the random error found in the five
individual sources and to reduce the bias of the com-
bined analysis. First, the three satellite-based estimates
and the model predictions are combined linearly, based
on a maximum likelihood estimate in which the weight-
ing coefficients are inversely proportional to the
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squares of the individual random errors determined by
comparison with gauge observations and subjective as-
sumptions. This combined analysis is then blended
with an analysis based on gauge observations using a
method that presumes that the bias of the gauge-based
field is zero where sufficient gauges are available and
that the gradient of the precipitation field is best rep-
resented by the combination of satellite estimates and
model predictions elsewhere. Section 2 will describe
the methodology and the individual data sources used
in the merging procedure, and sections 3, 4, and 5 will
present the methods for combining and blending the
individual sources and for defining the error of the
merged analysis. Section 6 will show some applications
of the algorithm, and a summary and conclusions will
be given in section 7. These sections are arranged so
that potential users of the resulting global analyses can
understand the procedure conceptually from sections
1),2),6),and 7), while readers interested in the tech-
nical details of the algorithm can find them in sections
3),4),and 5).

2. Methodology and data
a. Merging methodology

Merging of precipitation observations from different
sources has been demonstrated to be a powerful means
for improving the overall measurement quality. Early
efforts have focused on combining point measurements
from gauges with digitized radar observations on re-
gional scales and have led to successful operational ap-
plications in Japan (Takemura et al. 1984) and in the
United Kingdom (Browning 1979; Conway 1987).
Similar work is underway to merge gauge data with
WSR-88D observations in the United States (Kra-
jewski 1987).

Recently, work has begun on combining different
satellite estimates. The pioneering work in this area is
reported by Adler et al. (1993, 1994). They assume
that their MW-scattering-based estimates give accurate
instantaneous rain rate but with poor sampling in space
and time and that the IR estimates [ GOES Precipitation
Index, GPI, of Arkin and Meisner (1987)] provide
good coverage in space and frequent sampling in time
but with significant systematic error. They then calcu-
late the ratio between the MW and IR estimates when
both are available and use the ratio to adjust the IR
estimates. An application of the technique has shown
some success in estimating warm season precipitation
over Japan (Negri and Adler 1993).

These combined satellite estimates have been used
with other data to construct complete global precipi-
tation analyses. Assuming that both the analyses based
on gauge observations produced by the Global Precip-
itation Climatology Centre (GPCC 1992, 1993 ) and the
adjusted satellite estimates of Adler et al. (1994) are
unbiased, Huffman et al. (1995) combined the two
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kinds of sources linearly using optimal coefficients that
are inversely proportional to the square of the errors of
the individual sources. Grid areas with no observa-
tions of either sort were filled with operational numer-
ical weather forecast model predictions from the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWEF) (Arpe 1991). These efforts have succeeded
in producing the first complete global depictions
of monthly precipitation distribution from multiple
sources of information, including gauge observations,
satellite-derived estimates, and model predictions, to-
gether with estimates of the spatial distribution of rel-
ative error. :

Some improvements upon the Huffman et al. (1995)
algorithm are possible. First, the use of only two kinds
of data sources (the gauge-based analysis and the MW-
adjusted IR estimates) limits the capability of the al-
gorithm to reduce the individual random errors that are
significant for satellite estimates, especially over extra-
tropical areas (Xie and Arkin 1995). Second, the linear
combination of the different sources used in the algo-
rithm is not able to remove biases present in the com-
ponent sources. As revealed by Morrissey and Greene
(1993) and Xie and Arkin (1995), all of the satellite
estimates examined show nonnegligible bias when
compared with concurrent in situ observations. Finally,
the manner in which they use model predictions to fill
the gaps of the combined analysis results in discontin-
uous borders within the analysis due to substantial bi-
ases between the model predictions and the other
SOurces.

We have designed and developed an algorithm to
produce global monthly precipitation analyses by
merging several kinds of different data sources, based
upon the knowledge obtained through the intercom-
parison of Xie and Arkin (1995). The merging algo-
rithm begins with the selection of the individual data
sources. As different precipitation products (analysis—
estimates) based upon the same observational data
sources provide basically similar performance in de-
picting spatial and temporal variations, and inclusion
of additional data sources with the same characteristics
is unlikely to improve the merged analysis significantly
(Xie and Arkin 1995), only one of each kind of indi-
vidual precipitation product is selected from each of
the four categories of different data sources: 1) gauge
observations; 2) satellite IR-based estimates; 3) satel-
lite MW-scattering-based estimates; and 4) satellite
MW-emission-based estimates. As none of these data
sources provides complete coverage of monthly pre-
cipitation over mid and high latitudes, numerical
weather forecast model predictions are included as the
fifth individual source to ensure complete global cov-
erage.

The two steps of the merging algorithm are designed
to first reduce the random error and then to reduce the
bias. First, the three categories of satellite estimates and
the model predictions are linearly combined to mini-
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mize the random error. The linear combination coeffi-
cients are determined by maximum likelihood estima-
tion and are inversely proportional to the square of the
local random errors of the individual sources. These
errors are defined for each land grid area by comparison
with the GPCC gauge analysis over the surrounding
area and for oceanic grid areas by comparison with the
atoll gauge observations (Morrissey and Greene 1991)
over the Tropics and subjective extension to the extra-
tropics.

The output of the first step contains significant bias
passed through from the individual sources, and so the
purpose of the second step is to reduce that bias. For
this purpose, we make the assumption that the gauge-
based analysis is unbiased in regions where sufficient
observations are available. It is well known that gauge
observations in general are biased (Sevruk 1982; Leg-
ates and Willmott 1990), as are analyses of areally av-
eraged precipitation based on gauge observations.
These biases have a variety of sources, including gauge
type, maintenance and siting, and spatial sampling. Es-
timation and correction of these biases in a global data-
set is exceedingly difficult (Schneider et al. 1993; Ru-
dolf et al. 1994). However, it is thought that they are
small compared to the biases in the satellite estimates
and model forecasts. Therefore, in this paper, we have
assumed that the bias of the gauge-based analysis is
zero where the sampling of gauges is adequate. This
provides a convenient method by which the merged
analysis can be improved in the likely event that im-
proved gauge-based analyses become available.

Over global land areas, the combined analysis and
the gauge analysis are blended using the method of
Reynolds (1988), in which the relative distribution, or
‘‘shape,’” of the blended analysis is determined by the
combined analysis, while the amplitude is defined by
the gauge analysis at grid areas with ‘‘enough’’ gauges.
The definition of enough, of course, requires investi-
gation and is discussed below. Over oceanic areas, the
bias remaining in the combined analysis is removed by
comparing with concurrent atoll gauge observations
over the Tropics, again presuming the spatial mean of
the gauge observations to be unbiased, and by simple
and somewhat subjective extrapolation of the bias
structure of the combined analysis into higher latitudes.

Our algorithm in its present form contains two sig-
nificant defects: it takes no account of the horizontal
correlation present in most of the components used, and
it linearly combines biased estimates before removing
the biases. While the horizontal spatial correlations
contained within individual datasets can be one of the
most useful sources of information for improving the
quality of analyzed fields (Daley 1991), they are not
used in our present algorithm in which the random er-
rors are reduced through linear combination for indi-
vidual grid areas. We will attempt to modify our al-
gorithm to take advantage of the information provided
by horizontal correlations in the future. In general, ob-
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jective analysis techniques (e.g., Krajewski 1992) are
applied to the optimal linear combination of unbiased
component estimates. We have chosen to combine bi-
ased estimates because the method we use to remove
bias over land [based on that of Reynolds (1988)] re-
quires a spatially complete field with reasonable pattern
agreement to the ‘‘true’’ precipitation field (i.e., mod-
est random error). However, that requirement cannot
be satisfied in general by any of the individual satellite
estimates and model predictions. We create the neces-
sary spatially complete field by defining the individual
random errors as the root-mean-square differences be-
tween the GPCC gauge analysis and the individual
sources after the bias is removed locally (see section 3
for details ). While this does not strictly satisfy the theo-
retical requirements of the maximum likelihood esti-
mation procedure, our verification against withheld
data (see sections 3 and 4) shows that the algorithm
succeeds in reducing both random error and bias.

The final product of the merging algorithm has com-
plete global coverage of monthly precipitation with bet-
ter quality than any of the five individual sources used.
The characteristics of the various components of the
algorithm are investigated in sections 3 and 4. For con-
venience, we will refer to the first step as combining,
the second step as blending, and the entire process as
merging in the following discussions.

b. Individual data sources

Our merging algorithm is intended to permit the
combination of a raingauge-based analysis of precipi-
tation with a weighted average of satellite-derived IR-,
MW-scattering-, and MW-emission-based estimates
and numerical weather forecast model predictions. It is
used in this study to produce analyses of global
monthly precipitation on a 2.5° X 2.5° latitude—longi-
tude grid for an 18-month period from July 1987 to
December 1988. The individual data sources used in
this study are the GPCC gauge analysis [ supplemented
by the atoll gauge observations compiled by Morrissey
and Greene (1991) over the ocean], the GOES Precip-
itation Index (GPI) (Arkin and Meisner 1987), the
Grody MW-scattering index (Ferraro et al. 1994 ), the
Chang MW-emission estimates (Wilheit et al. 1991),
and the ECMWF precipitation predictions. Table 1 pre-
sents a brief description of the five types of data source.

The GPCC dataset consists of a 2.5° X 2.5° gridded
analysis of monthly precipitation created by statisti-
cally interpolating quality-controlled gauge observa-
tions from about 6700 stations worldwide (GPCC
1992; 1993). In addition to the analyzed value, the
number of gauges in each grid area is also available
and is used in this study as an indicator of the data
quality. As the GPCC analysis does not cover the
global oceanic areas, the atoll gauge rainfall dataset
edited by Morrissey and Greene (1991) is used to de-
fine the error structure of the individual satellite esti-
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TABLE 1. Individual data sources.

Category Technique Coverage
Gauge GPCCl/atoll Land-atoll
R GPI 40°S—-40°N
MW scattering Grody Global land—ocean
MW emission Chang Global ocean
Model ECMWF Global land—-ocean

mates and model predictions over the tropical Pacific
Ocean. The atoll gauge dataset comprises station ob-
servations of monthly precipitation from about 100
gauges located on small islands without high terrain.
Monthly mean precipitation for 2.5° X 2.5° latitude—
longitude areas is calculated for all grid areas with at
least one gauge. As shown in Fig. 1 of Xie and Arkin
(1995), the atoll gauges are mainly located in the west-
ern Pacific along a northwest to southeast axis extend-
ing from 10°N and 140°E across the equator to 20°S
and 140°W. The number of gauges in each grid area
varies from 1 to §, with an average of 2-3.

The IR-based GPI estimates climatic-scale precipi-
tation from the fractional coverage of clouds colder
than 235 K in geostationary imagery using an empirical
linear equation obtained from observations during the
GATE (Arkin 1979; Richards and Arkin 1981). The
GPI estimates used in this study have been produced
by the Global Precipitation Climatology Project
(GPCP) (Arkin and Xie 1994) based on eight obser-
vations each day where geostationary satellite data
were available and four each day from polar-orbiting
satellites elsewhere. The estimates are available from
40°S to 40°N over both land and ocean. Verification
over Japan, the United States, China, and the tropical
Pacific has shown that the GPI is able to estimate the
pattern of convective rainfall in the Tropics and, during
the warm season, in some midlatitude regions, with
only a small bias over the tropical ocean but with a
large positive bias over land (Janowiak 1992; Arkin
and Xie 1994; Arkin et al. 1994; Xie and Arkin 1995).

The Grody MW scattering-based estimates (Grody
1991; Ferraro et al. 1994) are derived from the scat-
tering signal of ice particles observed from the Special
Sensor Microwave/Imager (SSM/I) on the Defense
Meteorological Satellite Program (DMSP) satellites in
two steps. First, nonraining and indeterminate pixels
are eliminated by a variety of tests based on the data
from various channels. A scattering Index (SI) is then
computed from the brightness temperatures at 19V,
22V and 85V GHz channels and is converted into a
rain rate using an empirical relation derived from radar
data over Japan. The Grody estimates are available over
all land and oceanic areas for all seasons, although sur-
face snow or ice prevents successful estimation in parts
of the high latitudes. While the Grody estimates are
based on observations related more directly to the pre-
cipitation than those on which the GPI is based, they
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are ot capable of detecting precipitation not associated
with ice and are therefore most accurate in estimating
deep convective precipitation. Comparisons with sur-
face observations have shown that the Grody estimates
have comparable skill to the IR-based GPI in repre-
senting precipitation over tropical and extratropical
areas (Dodge 1994; Xie and Arkin 1995). During the
pericd of this study, one SSM/I was available, yielding
between 1 and 2 observations at a given location in the
Tropics each day.

The Chang MW emission-based estimates (Wilheit
et al. 1991; Chiu et al. 1993) are constructed by retriev-
ing precipitation information from thermal emission of
liquid water as observed by the SSM/I. The histogram
of a linear combination of the 19V and 22V GHz chan-
nels is computed from observations and from a radia-
tive transfer model using various combinations of pa-
rameters for rain rates in the target area. The parameters
that result in the histogram that best matches the ob-
servations are then used to calculate the rainfall esti-
mates for the area. The Chang estimates used in this
study are available over oceanic areas between 65°S
and 65°N but are not available over land areas. These
estimates are especially useful in depicting precipita-
tion over oceanic areas with significant warm rain (not
associated with large ice particles), for example, in the
eastern Pacific intertropical convergence zone (ITCZ)
during northern winter (Janowiak et al. 1995).

The GPCC provided the numerical weather forecast
model predictions of global precipitation used in this
study. They were obtained by accumulating operational
24-h forecasts for the period from 12 to 36 hours from
initial time from the ECMWF T106 model for each
month during the period. The 12—36-h forecasts were
selected so as to minimize the so-called spinup effects,
which can result in unrealistically large amplitudes in
the early portion of the forecast period. The ECMWF
monthly precipitation predictions are available for the
entire globe, with better quality over mid and high lat-
itudes, particularly in the Northern Hemisphere, where
more reliable observations are available to define the
initial conditions for the forecasts (Arpe 1991).

3. Combining of the satellite estimates and model
predictions

a. Combining algorithm

Mathematically, we consider the combination of the
three kinds of satellite estimates and the model predic-
tions as a search for the most probable value C of
areally averaged precipitation (maximum likelihood
estimation; Daley 1991) given the four individual ob-
servations P;. Assuming that 1) the observation error
o; is random, unbiased, and normally distributed for
each kind of observation P;, and 2) the observation
errors for different kinds of observations are indepen-
dent, the maximum likelihood estimate of C is defined
as
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where
o’
W = 2
Yo 2)
and the expected error variance of C is given by
(2 =[Zo7?]7". (3)

Thus, the maximum likelihood estimate of the pre-
cipitation at a given grid area is a linear combination
of the individual data sources (estimates or predic-
tions), in which the combination coefficients are in-
versely proportional to the observation error variance
of each source. Furthermore, because the expected er-
ror of the maximum likelihood estimate is always less
than those for the individual sources, as shown in Eq.
(3), the combining process based on Eqgs. (1) and (2)
should reduce the error of C relative to the individual
sources.

In the present study, the basic assumptions of the
method are not satisfied because the individual obser-
vations (estimates and predictions) contain both ran-
dom and systematic (bias) errors whose distribution is
unknown. In order to permit the practical application
of this process, we define the observation errors in Egs.
(2) and (3) as the random errors of the individual
sources following empirical removal of the ‘‘local”’
bias. This bias removal applies only to the calculation
of the random errors; otherwise the bias of the individ-
ual sources is ignored at this stage and will therefore
remain in the combined analysis C as a linear combi-
nation of the individual biases. The combining algo-
rithm is thus composed of two major components: 1)
definition of the random errors; and 2) linear combi-
nation of the four kinds of individual sources.

The differences in the availability of gauge obser-
vations make it necessary to use different methods to
define the individual random errors for land and ocean
areas. Over land areas, the GPCC precipitation analy-
sis, which is available for each grid area, is used as a
standard reference. First, the mean difference between
the source field and the GPCC analysis is calculated for
a7 X 7 array of grid areas centered on the target grid
area and subtracted from the source field over that ar-
ray. The random error for each grid area for each in-
dividual source for each month is then defined as the
root-mean difference between this modified source
field and the GPCC analysis calculated on the same 7
X 7 array. The GPCC analysis values at all land grid
areas are used in the computation, regardless of the
number of gauges available. When the 7 X 7 array is
not completely filled by the GPCC analysis (as happens
near coastlines), the subset for which values are avail-
able is used. This process results in a well-defined es-
timate for the random error for each source for each
land grid area. The accuracy of the estimated error is
determined by the (unknown ) errors in the GPCC anal-
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ysis. However, we believe that this estimate is superior
to one based entirely on sampling frequency or subjec-
tive judgements.

Over oceanic areas, where no complete spatial anal-
ysis exists because the available gauge observations are
inadequate for satisfactory spatial and temporal cov-
erage, the same process cannot be used. Instead, the
random errors for the four individual sources are de-
fined as the root-mean-square difference between the
modified (by subtraction of the spatial mean difference
between the original source field and the atoll gauges)
source field and the concurrent atoll gauge precipitation
observations of Morrissey and Greene (1991) over the
tropical Pacific. These error values, as a percentage of
the mean, are applied to all ocean grid areas in the deep
Tropics. For higher latitudes, the relative error varies
with latitude, season, and source. For the IR-based GPI
and the MW-scattering-based Grody estimates, errors
are known to be greater in regimes in which deep con-
vective precipitation is less frequent (Xie and Arkin
1995). Thus we expect the relative error to increase
smoothly poleward from the observationally deter-
mined values at the boundary of the Tropics to very
large values at the polar limits of the utility of each.
For this purpose, the boundary of the Tropics varies
from 15° in the winter hemisphere to 25° in the summer
hemisphere, and the poleward limits of utility are be-
tween 25° and 40° for the GPI and up to 90° for the
Grody estimates. For the MW emission-based Chang
estimates, the tropical error value is used for all lati-
tudes, since the quality of the algorithm is not thought
to depend much on the climatic regime. For the
ECMWF model predictions, we estimate that the error
decreases poleward, with values in high latitudes half
those in the Tropics, due to the greater skill of the
model in predicting precipitation from mid- and high-
latitude cyclonic systems than from tropical convective
systems.

The errors calculated from the source fields and the
atoll data over the tropical Pacific, together with ex-
trapolation based on the subjective assumptions de-
scribed above, permit us to define oceanic random er-
rors for each of the individual sources for each month.
Figure 1 shows an example of the latitudinal profiles
of the oceanic random errors obtained by this process
for August 1987. Note that the errors are defined only
where sufficient ocean area is found (thus the gap at
60°N) and where the individual source is available. Us-
ing these individual random errors for both the land
and oceanic areas, the global distribution of the com-
bined analysis C is constructed by calculating the max-
imum likelihood estimate from the four individual
sources using Egs. (1) and (2).

b. Tests on synthetic data

For any algorithm developed to extract meteorolog-
ical information from observations, verification of fea-
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Fic. 1. Latitudinal profiles of the relative rms errors of
the individual sources over oceans for August 1987.

sibility and performance must precede practical appli-
cation. This is generally done through comparison of
the algorithm output with independent observations not
included in the information used by the algorithm. In
the estimation of precipitation from satellite observa-
tions, these independent observations (sometimes in-
accurately called ‘‘ground truth’’) are often obtained
from raingauges and/or radars (Arkin and Meisner
1987; Arkin and Xie 1994). In the combining algo-
rithm described here, however, the spatial scale and the
inclusion of all available gauge observations make such
an examination for the whole target domain impossible.
Application of the algorithm to synthetic datasets and
analyses based on subsets of the available data and
evaluated against unused observations are therefore
used as validation.

Application of the algorithm to synthetic datasets
with well-defined characteristics enables us to examine
its performance under controlled circumstances. We
begin by defining a ‘‘true,”’ or target, precipitation
field. Generally speaking, there are two ways in which
this can be done. One is to generate the field by a nu-
merical model that can accurately reproduce the details
of the statistical and spatial structure of the precipita-
tion field (Waymire et al. 1984; Bell 1987). The other
is to use a high quality observed or analyzed field (Kra-
jewski 1987). In this study, we choose the latter and
use the final merged analysis based on observational
data for the August 1987 as our “‘truth’’ field. Synthetic
source fields with characteristics representative of the
various satellite estimates, the model predictions, and
the gauge-based analysis are then obtained by defining
their spatial coverage (the percentage of the 2.5° lati-
tude—longitude grid areas with values) and then adding
bias and/or random error to the ‘‘truth’’ field. The
omitted grid areas and the specific error values to add
to any given grid area are derived from a uniformly
distributed random variable, while the ranges for these
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parameters are taken from observational studies (Xie
and Arkin 1995). The algorithm is applied to the syn-
thetic source fields and the merged product is compared
to the “‘truth’’ field to determine the impact of varying
coverages and errors. One advantage of this process is
that it permits us to investigate the response of the al-
gorithm to a variety of simplified situations that might
exist in the real world but are difficult to isolate in
actual observations. The spatial distribution of cover-
age and random error of the synthetic fields differs from
the actual situation, in which both are regionally co-
herent (Xie and Arkin 1995). The assumption of glob-
ally uniform bias in the synthetic fields is also an over-
simplification. Despite these deficiencies, we expect
these simplified situations to provide us with insight
into the response of the algorithm to the incompleteness
and error of the actual gauge-based analysis and the
individual sources.

The success of the initial combination stage of the
algorithm depends largely on how accurately the error
structures of the individual sources are defined by com-
parison with the gauge-based analysis over the sur-
rounding area. We therefore begin by investigating the
impact of varying spatial coverage and random errors
in the gauge-based analysis on the product of the com-
bining algorithm. Since the density of the gauge net-
work varies greatly over global land areas and the ran-
dom error of the gauge observations is strongly influ-
enced by the network density, a total of 100
combinations of gauge fields are simulated, with both
the spatial coverage and the random error ranging from
5% to 50% in interval of 5%. This range is represen-
tative of the GPCC global monthly precipitation anal-
ysis, in which the percentage coverage and the relative

error of monthly precipitation are 45% and 30%~50%
for grid areas with at least one gauge and 10% and 5%—
10% for grid areas with at least five gauges, respec-
tively (Xie and Arkin 1995). For simplicity, the bias
of the gauge-based analysis is assumed to be zero here.
Our algorithm is applied to combine these synthetic
gauge-based analyses with synthetic ‘satellite/model’’
fields with random errors averaging 100% and uniform
bias of 5 mm/day, representative of certain satellite es-
timates over tropical land areas (Xie and Arkin 1995),
and the results are compared to the target field. The
bias of the combined analyses that result remains ap-
proximately 5.0 mm day~' for all combinations of
gauge coverage and errors (Fig. 2a), while the random
error decreases with increasing gauge coverage (Fig.
2b). These results show that sufficient coverage
(>10%) of gauge observations is vital to the correct
definition of the weighting coefficients and therefore to
the effective reduction of the random error in the com-
bined analysis, while random error in the gauge obser-
vations has no significant impact on the bias and ran-
dom error in the combined analysis.

Next we wish to investigate the impact on the com-
bined analysis of varying random errors in the ‘‘satel-
lite/model”’ source fields. We again use a synthetic
gauge-based analysis with coverages ranging from 5%
to 50% and with a random error averaging 20%. Our
synthetic source fields are given a uniform bias of 5
mm/day and mean random errors ranging from 20% to
200%. This range of random error includes the typical
random errors of 50% and 100% for satellite estimates
over tropical oceanic and land areas, as well as the
200% random error that has been observed over extra-
tropical land areas in cold seasons for some satellite
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estimates (Xie and Arkin 1995). Comparison between
the target field and the resulting combined analyses
shows that the biases of the synthetic sources (Fig. 3a)
are essentially unchanged in the combined analyses.
However, the random error of the combined analyses
is reduced to about one-half of the error in the simu-
lated sources when the gauge coverage is larger than
10%, in agreement with theoretical calculations based
on Eq. (3), and increases rapidly with the decrease of
gauge coverage below the 10% threshold.

c. Validation

Tests using synthetic data have helped us to under-
stand the sensitivity of the combined analysis to the
coverages and errors of the various sources of infor-
mation used. Here we will try to evaluate the perfor-
mance of the algorithm in combining actual fields of
monthly satellite estimates, model predictions, and
gauge-based analyses, whose coverages and error
structures are not reflected perfectly in the simulations.
In general application, our algorithm is intended to use
all available information, and, therefore, no indepen-
dent observations of precipitation exist to validate
against. Clearly, comparisons of our analyzed field with
the gauge-based analysis used would be meaningless.
Therefore, we have used the algorithm to combine the
four satellite/model sources using only a randomly se-
lected 75% of land and atoll grid areas from the gauge-
based analysis to determine the weights. The resulting
combined analysis is then compared to the gauge-based
analysis over the unused 25% of the grid areas. While
this comparison is not against truly independent obser-
vations, since there is spatial autocorrelation in the

200
180

—

=]

o
.

140
120 {
100-

[> ]
o
1

60

source error (%)

40-

TSI 5"\/\5/‘

10

20

5 15 20 25 30 35 40 45 50

gauge cover (%)

XIE AND ARKIN

847

monthly global precipitation field and since the analysis
method used by the GPCC might have introduced spu-
rious smoothing, we believe that this is the only means
available to us to demonstrate that the combining and
merging algorithms improve upon the individual sources.
The time series of the pattern correlation, bias, and
relative root-mean-square (rms ) error for the individual
sources and the combined analysis for the tropical Pa-
cific Ocean, tropical land areas (40°S—40°N), and ex-
tratropical land areas (40°-90°S; 40°-90°N) are shown
in Figs. 4, 5, and 6, respectively. The same statistics
for the whole 18-month period are shown in Table 2.
The combined analysis in the tropical Pacific has sta-
tistics comparable to the individual sources (Fig. 4),
several of which have relatively high skill in describing
tropical precipitation (Xie and Arkin 1995). Large
fluctuations are observed in the time series in this re-
gion, possibly because only nine independent grid areas
were available for comparison. Over tropical (Fig. 5)
and extratropical (Fig. 6) land areas, the combined
analysis shows very stable statistics and reduced ran-
dom error compared to those of the four individual
sources. Overall, the random error has been reduced
substantially relative to each of the original sources,
while the correlation is generally higher. The bias re-
mains as a combination of the individual biases.

4. Blending of the combined analysis and the gauge
observations
a. Blending algorithm

Since the combined analysis contains bias passed
through from the individual satellite estimates and
model predictions, the second step of the merging al-
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FIG. 3. Biases in millimeters per day (a) and relative rms errors in percent (b) between the target field (the merged
analysis for August 1987) and the combined analyses obtained from simulated individual sources with bias of 5.0
mm day™" and various random errors when the error structures are determined from simulated gauge data with

various coverages and fixed random error of 20%.
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Fi1G. 4. Time series of correlation (top), bias (middle), and rms error
(bottom) between the atoll gauge observations and the individual
sources, the combined analysis, and the merged analysis over the
unused atoll observations averaged over 2.5° X 2.5° grid areas in the
tropical Pacific. GPI, SCT, EMS, MDL, COM, and MER denote the
IR-based GPI, MW-scattering-based Grody estimates, MW-emis-
sion-based Chang estimates, ECMWF model predictions, the com-
bined analysis, and the final merged analysis, respectively. The bias
and rms error are plotted as a percentage of the verifying data; pos-
itive bias indicates an overestimate. Note that in the correlation plot,
the combined and merged analyses are indistinguishable.

gorithm is used to blend the combined analysis with
the gauge-based analysis and atoll observations. While
the gauge-based analysis and atoll observations are
clearly not completely unbiased, as discussed above,
their biases are thought to be small, where sufficient
observations are available, compared to those in the
satellite estimates—model predictions and thus the
combined analysis. The limited availability of gauge
observations over ocean compared to land requires dif-
ferent bias removal methods for each.

Over land, where gauge observations are available
to the GPCC analysis for more than one-half of the grid
areas, the blending algorithm of Reynolds (1988) is
used. Reynolds’ algorithm blends the gauge-based
analysis G and the combined analysis C into a blended
analysis B by assuming that:

1) the relative distribution, or the ‘‘shape,’”’ of the
blended analysis B satisfies Poisson’s equation

V?B =f, “4)
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where 2) the forcing term fin Eq. (4) is determined
by the combined analysis C

f=Vvec, ()

3) and the boundary conditions are derived by as-
suming that the amplitude of the field B is determined
by the gauge-based analysis G at grid areas with ade-
quate measurement accuracy (anchor points):

(6)

All of the three elements are reasonably applicable
to the present situation. Poisson’s equation has been
applied frequently in the analysis of meteorological
fields (Harris et al. 1966; Oort and Rasmusson 1971;
Reynolds 1988). The similarity of the gradients of the
combined analysis to actual areally averaged precipi-
tation is strongly supported by the performance tests
conducted in the previous section. Finally, the require-
ment for anchor points is satisfied by selecting those
grid areas containing enough gauges. Schneider et al.
(1993) and Xie and Arkin (1995) have shown that
areal averages made from five or more gauges can pro-
vide monthly rainfall observation for most 2.5° lati-
tude-longitude grid areas with an accuracy of 10%.

This blending procedure is limited to land areas
where the GPCC gauge-based analysis is available.

B = G at anchor points.
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FIG. 5. As in Fig. 4 except that the statistics are computed using
the withheld portion of the GPCC gauge-based analysis in the tropical
land areas (40°S—40°N).
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FiG. 6. As in Fig. 4 except that the statistics are computed using
the withheld portion of the GPCC gauge-based analysis in the extra-
tropical land areas (40°-90°S; 40°~90°N).

Thus, we define the blended analysis B at the coastal
boundary as identical to the gauge analysis G regard-
less of the number of gauges used there:

B = G at external boundary. 1)

The blended analysis B over land is constructed by
solving Eq. (4) numerically by relaxation with con-
straints imposed at internal (anchor points) and exter-
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nal (coastal) boundary grid areas (Richtmeyer and
Morton 1967). The calculation procedure is repeated
until the difference (residual) between two successive
analyses is less than 0.01 mm day ~' for all of the grid
areas over the target domain.

The advantage of this algorithm in the present ap-
plication is its ability to retain the distribution infor-
mation of the combined analysis while utilizing the am-
plitude information present in the gauge-based analy-
sis. While the algorithm will generate a final product
over land with bias smaller than that in the combined
analysis, it will not necessarily remove all bias. Cer-
tainly any bias in the gauge-based analysis will remain
in the merged analysis. Further, the process implicitly
interpolates the bias between the gauge-based analysis
and the combined analysis into regions between anchor
points. In regions where the bias varies nonlinearly in
space, the blending process cannot remove all the bias.

The blending procedure can be used only over land
areas where a reasonable distribution of anchor points
is available. Over oceanic areas, the only gauge obser-
vations widely available are the atoll gauge precipita-
tion observations compiled by Morrissey and Greene
(1991) over the tropical Pacific for each month. We
use these observations to define the relative bias over
the entire tropical ocean, defined as in section 3a. Since
we have no useful observations for higher-latitude
ocean regions, we assume that the relative bias de-
creases poleward from the tropical values at the sea-
sonally moving tropical boundaries to zero at 60°S and
60°N and remains constant at zero poleward of 60°.

b. Tests with synthetic data

While the oceanic bias removal method is based on
subjective assumptions and is therefore impossible to
test without additional data, we can test the perfor-
mance of the algorithm in blending the gauge-based
and combined analyses over land areas, given varying
coverages, biases, and random errors. As in the tests of
the combining algorithm discussed in section 3b, these

TABLE 2. Bias (as a percentage of the validating data, with positive bias indicating an overestimate), rms error (again, as a percentage of
the validating data values), and correlation of the several satellite estimates—~model forecasts, as well as the combined (see section 3) and
merged (see section 4) analyses, with the unused gauge-based analysis and atoll values. Validating data for the tropical ocean area are the
unused (see text) atoll observations of Morrissey and Greene (1991), while over land areas they are the unused values from the GPCC gauge-

based analysis.

Area

STAT GP1 Grody Chang ECMWF Combined Merged

Tropical ocean Bias (%) 19.7 —153 —4.4 9.9 -16.8 —6.4
RMSE (%) 49.7 65.4 67.0 61.4 51.5 51.9

Correlation 0.756 0.599 0.603 0.599 0.732 0.738

Tropical land Bias (%) 7.1 20.7 — 18.3 20.5 2.1
(40°N-40°S) RMSE (%) 147.1 122.5 —_ 123.7 77.0 543
Correlation 0.666 0.727 — 0.714 0.862 0.920

Extratropical land Bias (%) — -20.1 — 10.5 -9.5 0.8
RMSE (%) — 149.2 — 73.6 60.5 40.6

Correlation — 0.338 — 0.717 0.751 0.891
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tests allow us to examine the behavior of the algorithm '

in controlled circumstances and to verify that it per-
forms as we need it to.

Again, the target field is defined as the merged anal-
ysis for August 1987. Synthetic gauge-based and com-
bined analyses are formed by defining their spatial cov-
erages and then adding simplified but realistic bias and
random error to the target field. The synthetic gauge
field is assumed to be unbiased, while the coverage,
which here represents the number of anchor points, and
the random error vary from 5% to 50%. In the actual
gauge-based analysis, the coverage depends upon the
definition of anchor points; if five gauges are necessary,
the coverage is typically 5%—10%, while if only a sin-
gle gauge is required, the coverage is close to 50%.
The random error of the gauge-based analysis is not
well known because of the difficulty in finding vali-
dating datasets, but values of 10%—20% are considered
reasonable. In the synthetic combined analyses, the
coverage and the bias are assumed to be 100% and 5.0
mm/day, representative of the various satellite esti-
mates, while the random error varies from 20% to
200% (Xie and Arkin 1995).

We apply the blending algorithm to a range of com-
binations of the synthetic gauge-based and combined
analyses with varying coverages, biases, and random
errors and compare the resulting blended analyses with
the target field. The first series of tests uses a combined
analysis with 80% random error, representing a field
more accurate than any of the individual satellite esti-
mates—model predictions but with significant residual
bias, and synthetic gauge-based analyses with varying
coverages and random errors. Results show that the
bias (Fig. 7a) is reduced from 5 mm/day to less than
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0.1 mm/day for coverage of anchor points greater than
10%—15% and random errors from 5%—50%. The rel-
ative random error (Fig. 7b) is nearly the same as that
of the combined analysis for most combinations of
gauge coverage and error, showing that the error in the
merged analysis is not strongly affected by error in the
gauge-based analysis. We next examine a series of
blended analyses using synthetic gauge-based analyses
with 30% coverage and varying random errors and syn-
thetic combined analysis fields with varying random
errors. Again, the bias of the merged analysis is effec-
tively eliminated (from 5 mm/day to less than 0.05
mm/day) relative to that of the combined analysis,
when the combined analysis has error less than 100%
and the coverage of anchor points is 20% or greater
(Fig. 8). Thus, in tests with synthetic data, the blending
procedure is successful in removing the bias in the
combined analysis without exaggerating its random
error.

c. Validation

The blending algorithm requires anchor points where
the gauge-based analysis is nearly free of bias. We use
a threshold on the number of the gauges available in
each 2.5° latitude—longitude grid area as the criterion
to define the anchor points, because both the gauge-
based analysis error for a grid area and the coverage of
anchor points in the target domain are functions of the
gauge number (Xie and Arkin 1995). The threshold
chosen will clearly have a large impact on the coverage
of anchor points, and so we constructed a series of
merged analyses using thresholds ranging from one to
five gauges per grid area to define anchor points. As in
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FiG. 7. Biases in millimeters per day (a) and relative rms errors in percent (b) between the target field (the
merged analysis for August 1987) and the blended analyses obtained from synthetic combined analyses with bias
of 5.0 mm/day and random error of 80% and synthetic gauge-based analyses with various coverages of anchor

points and varying random errors.
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mm day~' and a range of random errors and synthetic gauge-based analyses with varying coverages of anchor

points and a fixed random error of 30%.

section 3c, we first excluded a randomly chosen 25%
of the grid areas in the gauge-based analysis so as to
have unused, potentially independent, observations
against which to compare our results.

Figure 9 shows the differences between the 18-
month averages of the blended analyses obtained by
defining anchor points as those with at least one and
five gauges. The largest differences are found, as ex-
pected, in regions where gauge networks are relatively
sparse, including portions of Africa and South Amer-

ica. Western North America and south-central Asia also
exhibit substantial differences, while differences are
less than 0.2 mm day ~* over land areas with relatively
dense gauge networks, such as Europe and China.
The comparison between the blended analysis and
the withheld grid areas of the gauge-based analysis for
the 18-month period for tropical and extratropical areas
shows that the blended analysis tends to exhibit higher
correlations and smaller random errors as the number
of gauges required to define anchor points decreases
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Fi1G. 9. Absolute differences (mm/day) between the 18-month means of the blended analyses constructed
by defining the anchor grid areas as those with at least one and five gauges.
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TaBLE 3. Comparison of results between the GPCC and the blended analysis with different definitions of ‘“‘anchor points.”’

Area STAT 1 2 3 4 5
Tropical land Bias (%) 2.1 6.3 8.9 139 14.8
RMSE (%) 54.3 62.9 67.3 70.3 71.6
Correlation 0.920 0.895 0.883 0.877 0.873
Extratropical land Bias (%) 0.8 1.5 3.0 2.7 0.2
RMSE (%) 0.6 439 45.8 48.2 50.0
Correlation 0.891 0.872 0.859 0.847 0.837

for all land areas. In extratropical regions, the bias of
the analysis is quite small for all definitions of anchor
points. Nonnegligible biases, however, remain in the
blended analyses when anchor points are defined as
those with two or more gauges for tropical land areas
where gauge networks are extremely sparse. This
agrees with the results of the tests using synthetic data,
which showed that the blending algorithm is unable to
remove the bias effectively when the coverage of an-
chor points is less than 20%. Over tropical Africa and
South America, most grid areas have zero to one gauge,
and virtually none satisfies the five-gauge criterion. To
ensure reasonable quality of the precipitation analyses
aver tropical land areas, and because differences in the
quality resulting from different anchor point definitions
are not so large for extratropical land areas, we have
chosen here to define anchor grid areas as those with
at least one gauge. As the GPCC processing progresses,
more gauges will be available in such regions and the
threshold for definition of anchor points may rise. As
the role of the blending process is to reduce the bias,
and since the bias of anchor points defined using a sin-
gle gauge in each 2.5° X 2.5° area is probably larger
than that obtained from using five gauges in the same
area, we expect the availability of more gauges to sig-
nificantly improve the quality of the blended analysis.

We compared the blended analysis generated using
75% of the gauge-based analysis grid areas and a one-
gauge threshold to define anchor points to the monthly
precipitation over the withheld grid areas for each
month and for tropical and extratropical land areas. For
both the tropical (Fig. 5) and extratropical (Fig. 6)
areas, the correlation is higher for the entire period
when compared to the combined analysis and to the
individual satellite estimates—model predictions. The
biases are.reduced to approximately zero for both areas,
while the random errors have been reduced slightly
compared to the combined analysis.

5. Estimation of the error in the merged analysis

The algorithm described in this study produces an
estimate of monthly mean areally averaged precipita-

tion for areas of 2.5° X 2.5° latitude—~longitude over the
globe. In order to ensure appropriate and successful
application of the merged analysis, an estimate of the
error or uncertainty of the analysis is required (WCRP
1993). The definition of this error, however, requires
caution. Because of the random nature of the error, it
is not possible to specify the exact error in the merged
analysis for a given grid area and month. Instead, the
error is defined as the expectation (or the average) of
the error that might be found in the merged analysis
over specified grid areas under certain conditions.

As described in section 4, all grid areas can be di-
vided into two types, anchor points and others, accord-
ing to the methods used to define the merged analysis.
Different methods are used to estimate the error for
each. At the anchor points, the merged analysis is de-
fined as equal to the value of the GPCC gauge-based
analysis at that point. The GPCC analysis is constructed
for each grid area by interpolating the station obser-
vations available within and near the target area. The
error found in such an analysis is a complicated func-
tion of precipitation variability, local gauge distribu-
tion, topography, and many other parameters ( Schnei-
der et al. 1993; Rudolf et al. 1994). However, Xie and
Arkin (1995) showed that, for a well-sampled, rela-
tively uncomplicated region of China, a simple empir-
ical function of the number of available gauges in a
2.5° X 2.5° grid area provides a satisfactory estimate of
the relative error (Table 4). While this estimate is
clearly oversimplified and much more research is re-
quired, we use this function here to provide an estimate
of the error of the blended analysis at anchor points.

Over the nonanchor grid areas, including all ocean
regions, the merged analysis value is a weighted av-
erage of the individual satellite estimates and model
predictions, with an adjustment based on blending with
the gauge-based analysis. Since the blending procedure
has been demonstrated to be able to substantially re-
duce the bias but is unable to reduce the random error
significantly, the estimated error of the merged analysis
at these points is defined as the expectation of the ran-

TABLE 4. Estimated error of the GPCC gauge-based analysis based on varying numbers of gauges.

Gauge number 1 2 3 4
Error (%) 30 25 20 15
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dom error of the combined analysis, calculated from
Eq. (3) from the random errors for the individual
sources.

This method of estimating the error of the merged
analysis can be checked by comparing it to direct cal-
culation of root-mean-square error in a region with a
relatively dense network of gauge observations. We
have made this comparison for the land area of China
(20°-40°N, 100°-125°E) using grid areas with at least
five gauges (rather than one) as anchor points in the
blending procedure so as to have enough nonanchor
grid areas to define the error estimate and to compare
with the gauge observations. Since the error estimated
for a grid area is an estimate of the average error ex-
pected for grid areas under similar conditions, the es-
timated error value for each grid area is compared to
the root-mean-square difference between the merged
analysis and the GPCC gauge-based analysis over the
nonanchor grid areas in a 7 X 7 array of grid areas
centered at the target point. Figure 10 shows the scatter
plot comparing the estimated and calculated errors. Al-
though substantial scatter is seen, especially for larger
errors, the results are encouraging considering the large
number of assumptions that went into the process. The
error estimated from the errors of the satellite esti-
mates—model predictions agrees quite well with that
calculated from the direct comparison of the merged
analysis with the GPCC analysis. The correlation be-
tween the theoretical and the calculated errors is 0.878.
While this is encouraging, one must remember that this
region is one of those that Xie and Arkin (1995) used
to estimate the errors of some of the satellite estimates
and that the gauge-based analysis is of particularly high
quality here because of the density of gauges available.
Thus, the results here are probably an upper bound on
the accuracy of the estimated error of the merged anal-
ysis.

At this stage, we are unable to examine the accuracy
of the error estimation over oceanic areas, where error
structures for the individual sources are based princi-
pally on empirical comparisons with small sets of ob-
servations and on somewhat arbitrary extrapolation of
those results. Additional observational data are needed
to improve the error definitions for each individual
source and thereby to refine the merged analysis.

6. Application of the merging algorithm

The results of the performance tests conducted for
both the combining and blending procedures show the
merging algorithm to be successful in reducing random
errors and biases compared to the contributing com-
ponents. The algorithm was therefore used to construct
monthly analyses of global precipitation for the 18-
month period from July 1987 to December 1988 by
merging the GPCC gauge-based analysis, the GPI,
Grody, and Chang estimates, and the ECMWF numer-
ical model predictions.
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FiG. 10. Scatterplot of the relative random errors over China (20°—
40°N, 100°-125°E) as calculated through theoretical error definition
of the maximum likelihood estimation and by comparison with the
GPCC gauge data.

Shown in Fig. 11 are the distributions of estimated
precipitation for August 1987 using the GPI, Grody,
and Chang estimates, and the ECMWF model predic-
tions. None of the four individual sources provides full
global coverage with acceptable quality. As has been
noted previously (Arkin and Meisner 1987), the GPI
exhibits unrealistically high estimates over tropical
continental regions and extratropical ocean areas in the
Southern Hemisphere, as well as latitudinally limited
coverage. The Grody algorithm appears to underesti-
mate precipitation over the Southern Ocean and con-
tains some erroneous values resulting from underlying
ice over the Arctic, and the Chang estimates are avail-
able only over oceans and contain relatively large noise
caused by the low resolution and infrequent sampling
of the instrument. The ECMWF predictions depict the
ITCZ and South Pacific convergence zone (SPCZ) as
somewhat broader than any of the observation-based
sources.

Figure 12 presents the combined analysis, the GPCC
gauge-based analysis, the merged analysis, and the rel-
ative error for August 1987. The merged analysis ap-
pears to take appropriate advantage of the strengths of
the individual sources. It has a generally smoother dis-
tribution than the sources based on SSM/I observa-
tions. It is identical to the GPCC analysis at most grid
areas over the United States, China, and Europe, where
dense gauge networks are available. Over other conti-
nental regions, including in particular Africa and South
America, where gauge observations are more sparse,
the merged analysis derives its spatial distribution from
the satellite estimates and model predictions, while its
amplitude is controlled by the GPCC analysis. Also
shown in Fig. 12 is the distribution of the estimated
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F1G. 11. Global precipitation distributions (mm/day) for August 1987 from the GPI, Grody,
and Chang satellite-derived estimates and the ECMWF model predictions.

random error of the merged analysis. Relatively small
errors are observed over tropical oceanic areas and pop-
ulated land areas, while relatively large errors are found
over coastal grid areas, where the Chang estimates are
excluded from the combining procedure and the
merged analysis is identical to the GPCC analysis re-
gardless of the number of observations available to it.
Note that this estimate of the random error of the
merged analysis excludes any residual bias errors in the
analysis.

The 18-month mean of the merged analysis (Fig. 13)
is compared with the long-term mean precipitation cli-
matologies as published by Legates-Willmott (1990,
hereafter referred to as L-W and Jaeger (1976, here-
after referred to as J). In the computation of the L-W
and Jaeger fields shown in Fig. 13, the months from
July through December receive twice the weight of the
other months to enable an appropriate comparison.
Generally speaking, similar large-scale spatial distri-
butions are found in the climatologies and in the

merged analysis, with rainbands associated with the
ITCZ and SPCZ over the Tropics and with the storm
tracks over northwest Pacific and Atlantic Oceans as
well as over the Southern Ocean. Significant differ-
ences are seen in the central and eastern Pacific ITCZ,
with particularly large values extending quite far to the
south in L-W near 140°W. Jaeger shows wider and
smoother distributions for the ITCZ and SPCZ, while
the merged analysis is intermediate. A detailed analysis
of these features, particularly the large values in the
eastern Pacific in L-W, can be found in Janowiak et al.
(1995).

Since analyses of global precipitation are often used
as a tool to verify atmospheric general circulation mod-
els (WCRP 1993), a model-independent version of the
merged analysis is created by omitting the ECMWF
predictions and using only the observation-based data
sources. Also shown in Fig. 13 is the distribution of the
18-month mean precipitation for this model-indepen-
dent version of the merged analyses. Major differences
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between the original and the model-independent ver-
sions of the merged analyses are observed over high
latitudes, especially over the Southern Ocean, where
the only observational data available are the MW scat-
tering-based Grody estimates. Over tropical and sub-
tropical regions, where the observation-based sources
exhibit relatively high quality, the model-independent
version is nearly identical to the version using the
modcl predictions.

Time series of global mean precipitation computed
from the two versions of the merged analysis, the
ECMWF model predictions, L-W, and J for the 18-
month period are shown in Fig. 14. The two versions
of the merged analysis exhibit similar patterns of tem-
poral variation with only minor differences in ampli-
tudes resulting from the inclusion of the model data.
Both versions agree closely in amplitude with the Jae-
ger climatology. The global averages of the ECMWF
model predictions exhibit consistently larger values of
mean precipitation than the merged analyses, while the

amplitude of the L-W climatology agrees with Jaeger
and the merged analyses from March through August
but is much higher during the remainder of the year.

7. Summary and conclusions

An algorithm has been developed to construct
monthly analyses of global precipitation by merging
five separate data sources, including gauge observa-
tions, three kinds of satellite estimates, and numerical
weather forecast model predictions. The algorithm uses
successive steps to reduce the random errors of the con-
tributing components and then to reduce their biases.
This algorithm is used to produce monthly analyses of
global precipitation for the 18-month period from July
1987 to December 1988. The distribution and ampli-
tude of large-scale spatial patterns of precipitation in
the merged analysis are generally consistent with ear-
lier observational studies. While the quality of the
merged analysis is uncertain over oceanic regions,
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where both the combining and blending steps rely
strongly on empirical findings and subjective extrapo-
lation and where little or no additional observational
data are available for verification, the merging algo-
rithm has demonstrated the capacity to provide com-
plete global coverage of monthly precipitation with
substantially improved quality compared to the indi-
vidual sources.

A similar algorithm has been developed by Huffman
et al. (1995). Both the algorithm described here and
that of Huffman et al. compute global gridded fields of
raonthly precipitation from a weighted average of a mix
of satellite-derived estimates, model forecasts, and a
gauge-based analysis. There are significant differences
between the two algorithms, involving the reduction of
bias in the final product, the use of model predictions,
and the definition of the error structures of the com-
ponents used in the analysis. However, we believe that
both algorithms produce useful depictions of global
precipitation on monthly timescales. Development of

both our algorithm and that of Huffman et al. is con-
tinuing.

In particular, more work is needed to improve the
quality of the individual data sources and to obtain bet-
ter knowledge of the error structures, especially over
the oceans. Since the final quality of the merged anal-
ysis is dominated by the quality of the individual
sources, improvements in the individual sources are es-
sential, particularly over middle and high latitudes. Im-
proved knowledge of the random and systematic error
structures of the various components is crucial to en-
sure successful execution of the combining and blend-
ing procedures, especially over oceanic areas where
empirical results and subjective assumptions are most
strongly relied upon. Implementation of the Tropical
Rainfall Measuring Mission (TRMM; Simpson et al.
1988) and additional gauge observations from the
Tropical Atmosphere—Ocean (TAQ) array of moored
buoys (McPhaden and Milburn 1992) are expected to
provide precipitation observations from which error
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comparison.

structures of the individual sources can be estimated
more accurately over oceans. Finally, enhancements to
the algorithm to make use of the horizontal correlations
present in the various estimates used are required.
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