Constantine Londos, D.D.S., Ph.D. : NIDDK

Constantine Londos, D.D.S., Ph.D.


LCDB
MEMBRANE REGLN SECTION
NIDDK, National Institutes of Health
Building 50, Room 3140
50 South Dr.
Bethesda, MD 20892-8028
Tel: 301-496-6991
Fax: 301-496-5239
Email: clondos@helix.nih.gov

Education / Previous Training and Experience:
D.D.S., The Ohio State University, 1963
Ph.D., University of Louisville School of Medicine, 1973


Research Statement:

All cells package neutral lipids in discrete storage droplets that are characterized by unique surface proteins. In adipose cells, the enormous droplets contain triacylglycerols, the primary bodily energy stores, whereas in steroidogenic cells, much smaller droplets contain cholesteryl esters, the precursors for steroid hormone synthesis. In the general cell population, available fatty acids are captured in even smaller droplets and are used eventually as energy sources or for membrane remodeling. The adipocyte remains our primary model system, and we focus on the processes whereby hormones regulate both the packaging and hydrolysis of stored neutral lipids. Obesity is characterized by a surfeit of stored adipose lipids, and the wasting syndrome, cachexia, is associated with a marked loss of these important energy stores. Moreover, type 2 diabetes (NIDDM, adult onset) is characterized by elevated plasma fatty acids, which are thought to result from dysregulated lipolysis in adipose cells. Current evidence indicates that suppression of this lipolytic response ameliorates many of the symptoms associated with type 2 diabetes. Our fundamental approach to the questions, outlined below, involves manipulation of cultured cell systems using molecular biological tools complemented with biochemical and cellular biological techniques. We also employ transgenesis and knock out technology.

techniques. We also employ transgenesis and knock out technology. One important goal has been to dissect the molecular events subsequent to stimulation of adipose cells by lipolytic and antilipolytic hormones, such as epinephrine and insulin, respectively. Stimulation by catecholamines involves activation of adenylyl cyclase, elevation of cAMP, and activation protein kinase A. Hormone-sensitive lipase, an important enzyme of lipolysis, is phosphorylated by protein kinase A. Although the structure and PKA phosphorylation sites of HSL are known, there is little information on the process whereby cytoplasmic HSL gains access to its substrate, the triacylglycerols housed within the lipid storage droplets. We have found that PKA-phosphorylated HSL rapidly translocates and adheres to the surface of lipid droplets, but nothing is known of its cytoplasmic location in unstimulated cells, the translocation process, or the target locus on the droplet surface. It is this translocation and not HSL activation that accounts for the strong lipolytic enhancement following PKA actigation. A number of approaches are aimed at dissecting this process, including (1) construction of a fusion library for identifying possible HSL binding proteins; (2) use of retroviral systems to introduce HSL constructs that encode a variety of mutagenized forms, especially those in which the various phosphorylation sites are mutated either singly or in combination; and (3) identification of lipolytic inhibitors that act downstream of PKA activation.

An important, but largely overlooked, component in the lipolytic equation is the lipid droplet. Previously thought to be merely an amorphous accumulation of neutral lipids, we have identified a family of proteins, termed initially as perilipins, that are found exclusively at lipid droplet surfaces of adipocytes and steroidogenic cells.. Perilipin is a single copy gene that gives rise, by alternative splicing, to three isoforms, A, B, and C. The perilipin gene is expressed most strongly in adipose cells where the A and B isoforms coat the triacylglycerol-containing droplets. The gene is expressed also in steroidogenic cells where perilipins A and C coat the cholesteryl ester-containing droplets. Like adipocytes, steroidogenic cells use a cAMP stimulated process and an HSL-like enzyme to release cholesterol, which serves as a substrate for steroid hormone synthesis. Perilipins are polyphosphorylated by PKA and, thus, their occurrence in only those cells in which lipolysis is mediated by increased cAMP points to a role for perilipin in the process of lipid breakdown. This hypothesis has been confirmed by the demonstration that the HSL translocation is dependent upon PKA-mediated phosphorylation of perilipin A. We have found that a related protein, adipose differentiation-related protein (ADRP), also termed adipophilin, coats the lipid droplet in most other types of cells. However, expression of perilipin in fibroblastic cells leads to the disappearance of ADRP, after which the lipid droplets acquire a coating of perilipin. The non-phosphorylated perilipin exerts a protective effect and suppresses lipolysis in such cells. Upon activation of PKA and subsequent phosphorylation of perilipin, a robust lipolysis ensues, which is due solely to perilipin phosphorylation, since the fibroblastic cells contain no PKA-mediated lipases. A further manifestation of the protective effect of non-phosphorylated perilipin is the normal deposition of fat reserves in adipose tissue. We found that the perilipin null mouse had a 70% decrease adipose tissue, but are of normal weight and have similar caloric intake as wild type mice. Oddly, despite their greatly diminished adipose tissue, these animals have elevated plasma leptin values.

The perilipin null animal also provided important clues on perilipin function. As expected, the adipocytes from these animals exhibit elevated basal lipolysis. Surprisingly, their adipocytes were also refractory to lipolytic stimulation, and we subsequently found that perilipin was required to elicit the PKA-mediated translocation of HSL from the cytosol to the surface of the lipid droplet. We have also shown that HSL translocation also requires phosphorylation of the enzyme at one of its C-terminal PKA sites. Thus, stimulated lipolysis is a concerted reaction requiring PKA phosphorylation of both perilipin and HSL. While the specialized functions of lipid depositions in adipocytes and steroidogenic cells are our primary focus, we have explored the function of ADRP in lung, where its expression level is second only to the expression in adipose tissue. In lung, ADRP is expressed in lipofibroblasts, cells that capture lipid from the serum and pass these lipids on to type 2 epithelial cells, where they are incorporated into surfactant phospholipids. ADRP is highly expressed in the lipofibroblasts and may have a role in the transfer of lipids from theses cell to the type 2 epithelial cells.

In addition to the perilipins and ADRP, we have identified a number of related genes in Drosophila melanogaster and Dictyostilium discoidium, plus additional mammalian genes. When fused to GFP all of the proteins encoded by these genes target to lipid droplets when expressed in mammalian CHO fibroblasts. In addition to their sequence homologies, similarities in gene structures indicate that the mammalian genes derive from an ancient gene family, and it is likely that all of these proteins will be found to have a role in lipid metabolism. Indeed, very recent publications from other groups show that these drosophila proteins play a role in lipid metabolism.

publications from other groups show that these drosophila proteins play a role in lipid metabolism. There are now three lipid droplet-associated proteins in mammalian cells, perilipin, ADRP, and TIP-47 which comprise the PAT protein family. Like ADRP, TIP-47 is widely expressed and is especially abundant in skeletal muscle cells. The general functions or ADRP and TIP-47 have not yet been resolved, although recent evidence suggest that these proteins dictate the amount of neutral lipids found in droplets, but not necessarily lipid droplet biogenesis.Most recently, we have found that both perilipin and ADRP are regulated posttranslationally by stabilization upon binding to lipid droplets. Absent such stabilization, these proteins are ubiquinated and degraded by proteosomal action.



Selected Publications:

Dalen KT, Dahl T, Holter E, Arntsen B, Londos C, Sztalryd C, Nebb HI LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim Biophys Acta (1771): 210-27, 2007. [Full Text/Abstract]

Xu G, Sztalryd C, Londos C Degradation of perilipin is mediated through ubiquitination-proteasome pathway. Biochim Biophys Acta (1761): 83-90, 2006. [Full Text/Abstract]

Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, Chan L, Kimmel AR, Londos C Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem (281): 34341-8, 2006. [Full Text/Abstract]

Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, Chan L, Kimmel AR, Londos C Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem (281): 34341-8, 2006. [Full Text/Abstract]

Viswanadha S, Londos C Optimized conditions for measuring lipolysis in murine primary adipocytes. J Lipid Res , 2006. [Full Text/Abstract]

Xu G, Sztalryd C, Lu X, Tansey JT, Gan J, Dorward H, Kimmel AR, Londos C Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J Biol Chem (280): 42841-7, 2005. [Full Text/Abstract]

Londos C, Sztalryd C, Tansey JT, Kimmel AR Role of PAT proteins in lipid metabolism. Biochimie (87): 45-9, 2005. [Full Text/Abstract]

Smith AJ, Sanders MA, Thompson BR, Londos C, Kraemer FB, Bernlohr DA Physical association between the adipocyte fatty acid-binding protein and hormone-sensitive lipase: a fluorescence resonance energy transfer analysis. J Biol Chem (279): 52399-405, 2004. [Full Text/Abstract]

Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH Structure of a lipid droplet protein; the PAT family member TIP47. Structure (12): 1199-207, 2004. [Full Text/Abstract]

Tansey JT, Sztalryd C, Hlavin EM, Kimmel AR, Londos C The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life (56): 379-85, 2004. [Full Text/Abstract]

Tansey JT Huml AM Vogt R Davis KE Jones JM Fraser KA Brasaemle DL Kimmel AR Londos C Functional studies on native and mutated forms of perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols. J Biol Chem (278): 8401-6, 2003. [Full Text/Abstract]

Su CL Sztalryd C Contreras JA Holm C Kimmel AR Londos C Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. J Biol Chem (278): 43615-9, 2003. [Full Text/Abstract]

Sztalryd C Xu G Dorward H Tansey JT Contreras JA Kimmel AR Londos C Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol (161): 1093-103, 2003. [Full Text/Abstract]

Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem (277): 32253-7, 2002. [Full Text/Abstract]

Schultz CJ, Torres E, Londos C, Torday JS Role of adipocyte differentiation-related protein in surfactant phospholipid synthesis by type II cells. Am J Physiol Lung Cell Mol Physiol (283): L288-96, 2002. [Full Text/Abstract]

Tansey JT Sztalryd C Gruia-Gray J Roush DL Zee JV Gavrilova O Reitman ML Deng CX Li C Kimmel AR Londos C Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A (98): 6494-9, 2001. [Full Text/Abstract]

Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome (12): 741-9, 2001. [Full Text/Abstract]

Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem (275): 38486-93, 2000. [Full Text/Abstract]

Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta (1483): 251-62, 2000. [Full Text/Abstract]

Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol (10): 51-8, 1999. [Full Text/Abstract]



Page last updated: December 17, 2008

General inquiries may be addressed to: Office of Communications & Public Liaison
NIDDK, NIH
Building 31. Rm 9A06
31 Center Drive, MSC 2560
Bethesda, MD 20892-2560
USA
For information about NIDDK programs: 301.496.3583

The National Institutes of Health   Department of Health and Human Services   USA.gov is the U.S. government's official web portal to all federal, state, and local government web resources and services.  HONcode Seal - Link to the Health on the Net Foundation