HMT modeling activities

Paul Schultz, GSD for John McGinley, Isidora Jankov, Huiling Yuan, Linda Wharton, Steve Albers, and Dan Birkenheuer

> ESRL theme presentation November 6, 2008

Ensemble Mean Precipitation Forecast 4-5 Jan 2008 00GMT (24 hr forecast ending 5/00GMT): Most intense period

Predicted Precip in ARB Area: Most Intense Period

Station	Forecast	Obs	Error
Alta	3.00	3.33	33
Big Bend	3.95	4.25	30
Blue Canyon	4.00	М	
Canada Hill	3.90	1.61	+2.29
Colfax	2.82	1.86	+.96
Forrest Hill	2.80	2.54	+.26
Greek Store	2.52	2.56	04
Huysink	3.20	3.42	22
Norden	3.40	3.63	23
Onion Creek	3.15	3.83	68
Slough House		Μ	
Talbot	3.00	3.00	0
Truckee	2.10	2.12	02

Bias + 0.15

RMS 0.80

WRF-NMM cross-section along ARB axis just prior to heaviest rain: solid colors, temperature (< 0C is darkest green); orange contours - cloud ice (g/m3); green contours cloud water (g/m3). Melting level clearly seen, with snow reaching the surface on the upper slopes.

(HPH) PRESSURE

3

Published results

Yuan, H., J.A. McGinley, P. Schultz, C.J. Anderson, and C. Lu, 2008: Short-Range Precipitation Forecasts from Time-lagged Multimodel Ensembles during the HMT-West-2006 Campaign. *J. Hydrometeor.* 7, 477-491.

Jankov, I., P. Schultz, C.J. Anderson, and S.E. Koch, 2007: The impact of different physical parameterizations and their interactions on cold season QPF in the American River Basin. J. Hydrometeor. 8, 1141-1151.

Jankov, I., Bao, J.-W., P.J. Neiman, P. Schultz, H. Yuan, and A.B. White, 2008: Evaluation and comparison of microphysical algorithms in WRF-ARW model simulations of atmospheric river events affecting the California coast. J. Hydrometeor. In press.

New for this winter

Migration to CA/DWR focus shifts emphasis to the RFC problem - Less useful for WFOs - Larger domain, out to 120 hrs Lower spatial, temporal resolution Δx = 9 km, was 4 km Output every 3 hrs, was 1 hr Four WRF v3 models run every 3 hrs • 3 microphysics variations of ARW, plus 1 NMM Time-lagging to enlarge ensemble LAPS initialization, GFS lateral boundaries

The new domain

Plus, a separate high-res run to compare to PSD's moisture flux forecasting tool

Similar domain size as the other runs
Higher horizontal grid spacing (5 km)
Hourly update
12-18 hrs forecast *LAPS initial conditions* radars, satellite, mesonets, profilers, GPS ...
GFS/RUC boundary conditions

Bulk Water Vapor Flux Observation and Model Intercomparison Prototype

mu i ronning nauai

GFE's Advanced Linux Prototype Workstation (ALPS)

Installed in CNRFC, 3 WFOs - Reno, Monterey, Sacramento, maybe Eureka • Working with NWS on key developments - Grid push/pull, compression Display of explicit precip, high-res "local" model data - Displays and manipulation of probabilistic QPF Ability to load GFE

Connections

- HMT provided to GSD the opportunity to implement/test PQPF methods (Yuan) and ensemble design methods (Jankov)
 - Earned an invitiation to work with NCEP on developing NAEFS*-based prob guidance
- HMT gave GSD credibility to NWS planners of probabilistic forecasting (NFUSE†)
 - New project in NWS, good planning momentum
 - Workstation capabilities exposed to forecaster workshop
 - HMT forecast offices can try them too

More connections

Service Delivery Proving Ground

- Well-funded (in plans) activities at select forecast offices to vet new products with producers (forecasters) and users
- HMT = SDPG for probabilistic forecasts
 - New products: probabilistic QPF, others coming
 - Select forecast offices: HMT cooperators
 - Users: Folsom Dam operators
- New collaboration with OHD (J Schaake)
 - Model QPF postprocessing
 - Hydrologists call it QPF preprocessing
 - Averaging and bias correction appropriate to a practical range of time/space scales
 - Inputs to runoff models
 - National implementation

EFREP Tiered Modeling Effort (0-5 days)

FBO Weather A Hydro-driven Operational System

Probabilistic Hydro Forecasts Data Assimilation of Offshore Observations Hydro-forecast linking to FBO Decisions

Distributed (NWS) Hi-Res Local Models/Hardware National (low res) and Experimental (hi-res) Probabilistic Forecasts/Hydro forecasts Advanced Data Assimilation of HMT observations

Observation-based Forecasting Techniques National Product Suite Experimental Hi-Res/Down Scaled Modeling Basic Model Verification Reforecasting Techniques