Survey of Requirements of Realtime/Near Realtime applications in terms of Current and Potential IGS Ultra Rapid Products

Peng Fang Scripps Orbit and Permanent Array Center University of California San Diego

> IGS Analysis Center Workshop 2008 2-6, June 2008, Miami, Florida, USA

Orbits/EOP 6 hours ~3cm/~0.1mas IGS Ultra Rapid ~5cm/~1mas Sat. Clocks 6 hours ~0.2ns ~5ns Tropo. Delays 3 hours ~6mm (no pred.) lonos. TEC 24 hours

a few TECU		
Implied	Ref. frame mm, submm/y	
	Seasonal terms mm-cm	

Orbits ~10cm	Ground GPS/Met	
EOP ~0.1mas	~1 mm PW	
Orbits ~10cm	Space GPS/Met	
Clocks~1ns	~2 mm PW	
Orbits ~10++cm	Space Weather	
Clocks~5ns	~2 TECU	
Orbits ~10cm Clocks~1ns	Early Warning mm (geodynamics)	
Orbits ~10+cm	Air/Land/Sea	
Clocks~5ns	Positioning dm	
Orbits/EOP/ Clocks/Ref-Fram	Time transfer	
Orbits ~10cm LEOs mission Clocks~1ns -dm		

Tropo. delays InSAR tropo. Correction cm

How to come up with the requirements

- A. Sort out the analytic/semi-analytic/empirical relationship between the cause and effect
 - No so simple: causes are CO-related usually and the one to one relationship can not be easily established or simplified. Assumptions may also in conflict.

B. Using reported cases to infer

Two problems:

- generalization may not be possible
- cases often report best scenario. So it is hard to put a lower bound.

So mostly just conceptual

Important

(focus on applications of relatively high accuracy or demanding absolute quantity)

- IGS Products have to be used in a consistent manner
 - Individual products are not so independent. They are always coupled.
 - There are "pieces or objects" implied in the products, such as reference frame, error modeling applied, and conventions used.
- Application software has to "understand" IGS products
 - Including the product's precision, accuracy, and certain limitations (Best Ref. Kouba, 2003, Guide to using IGS Products)

Helpful Relationship and Conversions

Orbit error propagation into baseline/network
|db|/b = |dr|/(k*r) 4<k<10 Ziekinsk 1988</p>
b := baseline length
r := mean distance between satellite and station

k := scale accounting for over conservative
1 cm orbital error => sub mm position error over
1000km

> EOP

Pole X/Y: 1 mas => 2cm UT: 1mas => 3cm (on the ground, there is a latitude dependence>

> Clocks

 $1ns = 30cm \ or \ 1cm = 0.033ns$

Ground based GPS/Met

- Orbits (currently 5 cm, not a problem)
- Clocks (only for PPP)
 Currently at 5ns level. Need to be improved to 1ns or better

Space based GPS/Met (RO)

- Double/triple differencing scheme Orbits (OK), Clocks not involved High quality tropo. and high spatial resolution TEC will help (used for controlling ground station related errors)
- PPP schemeOrbits (OK)Clocks need to be improved to 1ns or better

Early Warning/High Precision Monitoring

- Orbits (Not a problem)
- EOP (currently at 1 mas level.)
 - Desirable to have sub-daily estimates available for high temporal resolution applications.
- Clocks (only for PPP applications)
 Currently at 5ns. Need to get down to 0.2ns.
- Reference frameMay need periodical term be included
- Tropo.
 High spatial resolution may help
- > TEC mapping
 - Timely available high temporal and spatial resolution TEC will be extremely useful over iono. active region.
- Per site multipath corrections (t)

Realtime/Near Realtime Positioning

(for local or regional applications in baseline or network mode)

- Orbits (Not a problem)
- EOP (Not a problem)
- Clocks (no need)
- lonospheric mapping highly desirable
- > Troposheric mapping

high temporal and spatial resolution highly desirable but may not be IGS' business

Time Transfer (for PPP type of application)

- Orbits
 - Currently IGS ultra rapid prediction at ~5 cm level (=~ 0.2ns)
- NRT TEC with short term prediction (for single frequency receiver time transfer)
 - Should significantly improve the performance even at lesser accuracy. In the single frequency case, ionospheric error is dominant in comparison to orbit (and clock).

Space weather

- Orbits (not an issue)
 - for NRT space weather applications, the dynamics of ionosphere activates is of major interest while orbit errors mostly translate into spatial dislocation of the estimate.
- Clocks (for using PPP scheme)
 - Again clock errors are actually range errors which will proportionally degrade TEC estimates.

LEOs Mission

High profile projects do orbits/clocks on their own. So the IGS infrastructure is important, e.g. high quality data, data availability with good geographical coverage. But doing one's own orbit/clock is expensive. So IGS NRT products may still be useful. In such cases:

- Orbits (the accuracy is OK)
 Hi rate precise orbit velocity is critical
- Clocks (really dependent on the application)
 High temporal resolution is required

InSAR Tropospheric Correction (candidate for NRT products)

- NRT Tropo. Product is now available with a precision at cm level, which is good enough for removing major tropo. effects.
 - In this application, only the precision and spatial distribution matter. Tropo product biases will be removed through image differencing.
- Current spatial distribution is highly uneven. This product will only be useful in those regions having relatively dense station coverage.

Desirable Product Addition/Upgrade

- NRT TEC mapping with short term prediction in form of grid or spherical harmonic coefficients with a good user algorithm recovering correction values at arbitrary points
- Subdaily EOP will improve single epoch or short session (seconds to hours) applications
- Reference frame with well known periodical term included

Possible Improvements

- Clocks without discontinuities (done already?)
- Supply satellite DCB in SP3
- > Timely receiver DCB update and make it more visible