Solar activity was very low. No flares were observed. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 16 - 18 March. Normal levels were observed on 19 - 22 March.

Geomagnetic field activity was at predominantly quiet levels from 16 March to mid-day on 20 March. During this time, ACE solar wind velocities gradually decreased from 473 km/s to a minimum of 271 km/s at 19/1947 UTC. The interplanetary magnetic field (IMF) Bz ranged between -4 nT and + 5 nT. Activity increased at mid-day on 20 March, as a recurrent coronal hole rotated into a geoeffective position. Quiet to unsettled conditions were observed at mid-latitudes through early on 22 March. Major storm periods were observed at high latitudes on 21/09 - 15 UTC. During this period, ACE solar wind velocities increased to a maximum of 472 km/s at 22/0550 UTC. The IMF Bt increased to a maximum of +12 nT, and Bz reached a minimum of -9 nT at 21/0928 UTC.

Space Weather Outlook 25 March - 20 April 2009

Solar activity is expected to be at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to increase to high levels during 10-14 April. Normal flux levels are expected during the rest of the period.

Geomagnetic field activity is expected to be at predominantly quiet levels through 08 April. Activity is expected to increase to unsettled to active levels during 09 - 10 April, with a chance for minor storm periods at high latitudes due to a recurrent coronal hole high-speed stream. Mostly quiet activity is expected for the rest of the period.

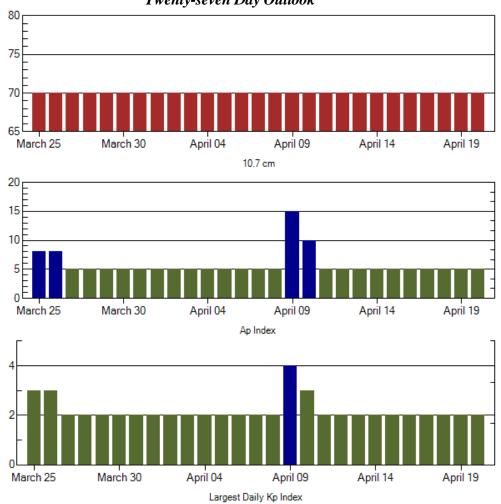
Daily Solar Data

	Bully Souli Bull											
	Radio	Sun	Sunspot	X-ray	Fl			Flares	lares			
	Flux	spot	Area	Area Background		X-ray Flux			Optical			
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
16 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
17 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
18 March	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
19 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
20 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
21 March	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
22 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-sr)	Electron Fluence (electrons/cm²-day-sr)				
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV				
16 March	9.3e + 05	1.9e + 04	4.4e+03	9.9e+07				
17 March	8.3e + 05	1.9e + 04	4.2e+03	8.0e+07				
18 March	1.0e + 06	1.9e + 04	4.4e+03	7.5e+07				
19 March	8.3e + 05	2.0e+04	4.4e+03	4.9e+07				
20 March	8.8e + 05	2.0e+04	4.4e+03	3.0e+07				
21 March	6.5e + 05	1.9e + 04	4.3e+03	1.4e + 06				
22 March	2.2e+05	2.0e+04	4.3e+03	1.7e+05				

Daily Geomagnetic Data


	Daily Geomagnetic Data									
	Middle Latitude			High Latitude		<u>Estimated</u>				
	F	Fredericksburg		College		Planetary				
Date	A	K-indices	A	K-indices	A	K-indices				
16 March	4	2-0-1-1-1-2-2-0	4	1-0-2-3-1-1-1-0	5	2-1-1-1-1-2-2-0				
17 March	3	1-1-1-0-1-1-1	1	0-0-1-0-1-1-0-0	3	1-0-1-0-1-1-1				
18 March	0	0-0-0-0-0-1-0	0	0-0-0-0-0-0-0	1	0-0-0-0-0-0-1				
19 March	3	2-1-1-0-2-0-1-1	3	0-0-1-1-3-0-0-0	3	1-0-1-0-1-0-0-1				
20 March	2	1-0-0-0-1-1-1-1	2	0-0-0-1-0-2-1-1	4	2-0-0-0-0-2-1-2				
21 March	5	0-1-2-2-1-2-2	23	0-1-1-6-6-2-2-2	8	0-1-1-3-3-1-2-3				
22 March	4	2-2-1-1-1-0-1-1	1	0-1-0-0-0-1-0-1	4	2-3-0-0-0-0-2				

Alerts and Warnings Issued

Date & Time of 1	ssue	Type of Alert or Warning	Dat	e & Time of Event UTC
17 Mar 1623	ALERT:	Electron 2MeV Integral Flux >=	= 1000pfu	17 Mar 1610
16 Mar 1726	ALERT:	Electron 2MeV Integral Flux >=	= 1000pfu	16 Mar 1615
18 Mar 1635	ALERT:	Electron 2MeV Integral Flux >=	= 1000pfu	18 Mar 1620

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
25 Mar	70	8	3	08 Apr	70	5	2
26	70	8	3	09	70	15	4
27	70	5	2	10	70	10	3
28	70	5	2	11	70	5	2
29	70	5	2	12	70	5	2
30	70	5	2	13	70	5	2
31	70	5	2	14	70	5	2
01 Apr	70	5	2	15	70	5	2
02	70	5	2	16	70	5	2
03	70	5	2	17	70	5	2
04	70	5	2	18	70	5	2
05	70	5	2	19	70	5	2
06	70	5	2	20	70	5	2
07	70	5	2				

Energetic Events

		_						
	Time	X-ray	Optical Information			Peak	Sweep Freq	
Date	1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity	
	Begin Max Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV	

No Events Observed

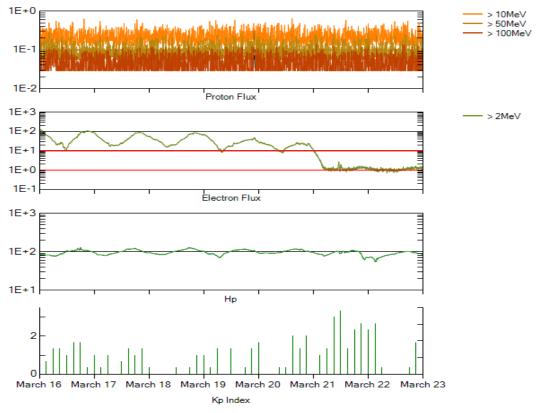
Flare List

			ruie Lisi							
·		·	Optical							
	Time		X-ray	Imp/	Location	Rgn				
Date	Begin Max	End	Class.	Brtns	Lat CMD					
16 Mar	No Flares Observ	ed								
17 Mar	No Flares Observed									
18 Mar	No Flares Observ	ed								
19 Mar	No Flares Observ	ed								
20 Mar	No Flares Observ	ed								
21 Mar	No Flares Observ	ed								
22 Mar	No Flares Observ	ed								

Region Summary

	Location	Sunspot Characteristics				Flares		
	Helio	Area Ex	ktent Spot	Spot	Mag	X-ray	Optical	
Date	(°Lat°CMD) Lon	(10 ⁻⁶ hemi) (hel	lio) Class	Count	Class	$\overline{C M X}$	S 1 2 3 4	

No active regions.


Recent Solar Indices (preliminary) Of the observed monthly mean values

	Of the observed monthly mean values											
			ot Numbe					9				
	Observed			Smooth		*Penticton		Planetary				
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value			
2007												
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4			
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4			
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5			
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4			
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8			
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4			
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6			
September	4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8			
0 1	1.0	0.0	0.70	10.0	- 1		51.	•	= 0			
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9			
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8			
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8			
					2008							
Townson,	5 1	2.4	0.67			72.1	70.0	6	77			
January	5.1 3.8	3.4 2.1	0.67 0.55	6.9	4.2	72.1 71.2	70.0 69.6	6 9	7.7 7.6			
February March	3.8 15.9	9.3	0.53	5.9 5.3	3.6 3.3	72.9	69.5	10	7.6 7.4			
March	13.9	9.3	0.56	3.3	3.3	12.9	09.3	10	/ . 4			
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1			
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9			
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8			
0 0/110		0.1	0., .	0.2	5. <u>-</u>	32.13	07.2	•				
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6			
August	0.0	0.5	**			66.4		5				
September	1.5	1.1	0.73			67.1		5				
-												
October	5.2	2.9	0.56			68.3		6				
November		4.1	0.60			68.6		3				
December	1.3	0.8	0.62			69.2		2				
					2000							
				•	2009							
January	2.8	1.5	0.54			69.8		3				

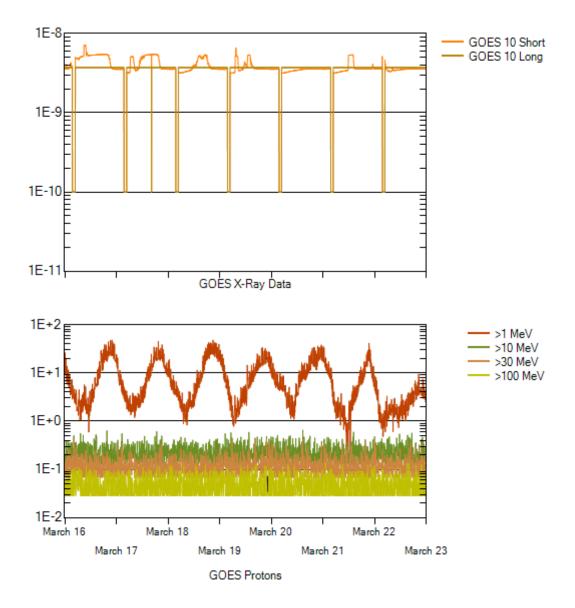
NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

^{**}SEC sunspot number was less than RI value, so a ratio could not be done.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 16 March 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.

