Space Weather Highlights 02 - 08 March 2009

SWO PRF 1749 10 March 2009

Solar activity was very low. No flares were observed. Old-cycle-polarity Region 1014 (S01, L=035, class/area Bxo/020 on 07 March) formed on the solar disk on 06 March. It gradually decayed to a spotless plage region on 08 March.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at mostly quiet levels during 02 - 07 March. A weak sudden impulse occurred at 0602 UTC on 03 March in response to a discontinuity in the solar wind observed at ACE at 0451 UTC. ACE solar wind velocities increased from 314 km/s at 03/0450 UTC to 413 km/s at 03/1559 UTC. During this period, interplanetary magnetic field Bz values varied from -5 nT at 03/0627 UTC to 9 nT at 03/1229 UTC. Solar wind velocities at ACE decreased to an average of 370 km/s at 03/1928 UTC and continued through 07/0358 UTC. On 08 March, geomagnetic field activity increased to quiet to unsettled levels, with minor to major storm periods at high latitudes, due to a recurrent enhancement in solar wind speed and the interplanetary magnetic field. During this period, solar wind velocities at ACE increased from 301 km/s at 07/2239 UTC to 457 km/s at 08/1855 UTC.

Space Weather Outlook 11 March - 06 April 2009

Solar activity is expected to be at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to increase to high levels during 14 - 18 March. Normal flux levels are expected during the rest of the period.

Geomagnetic field activity is expected to be at predominantly quiet levels through 12 March. Activity is expected to increase to quiet to active levels during 13 - 14 March with a chance for minor to major storm periods at high latitudes due to a recurrent coronal hole high speed stream. Mostly quiet activity is expected for the rest of the period.

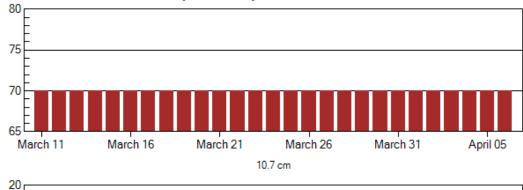
Daily Solar Data

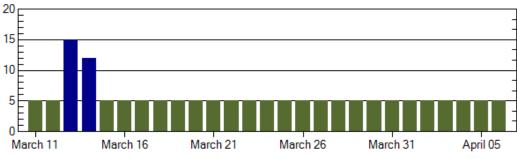
				2000	••••							
•	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		Oı	otical		
Date	10.7 cm	No.	<u>(10⁻⁶ hemi.</u>)	С	M	X	S	1	2	3	4
02 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
03 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
04 March	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
05 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
06 March	69	12	20	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
07 March	69	12	20	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
08 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

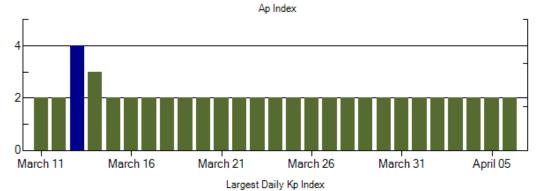
Daily Particle Data

	Pro	oton Fluence		Electron Fluence
	(proto	ons/cm ² -day-si	·)	(electrons/cm ² -day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
02 March	2.2E+6	1.9E + 4	4.1E+3	5.9E+5
03 March	1.7E+6	2.0E+4	4.3E+3	4.9E+5
04 March	9.6E+5	2.0E+4	4.2E+3	3.7E+5
05 March	7.0E + 5	2.0E+4	4.2E+3	9.2E+5
06 March	6.1E + 5	1.9E + 4	4.2E + 3	1.2E+6
07 March	7.4E + 5	1.9E+4	4.4E+3	1.4E+6
08 March	1.1E+6	2.0E+4	4.2E+3	5.8E+5

Daily Geomagnetic Data


		· ·	$\alpha \alpha \gamma \sim$	nomagneme Dam		
	N	Iiddle Latitude]	High Latitude		Estimated
	F	redericksburg		College]	Planetary
Date	Α	K-indices	Α	K-indices	A	K-indices
02 March	0	0-0-0-0-0-1-0-0	0	0-0-0-0-0-0-0	2	0-0-0-0-0-1-1
03 March	5	1-0-2-1-2-2-2	4	1-0-1-1-0-3-1-1	5	1-0-1-1-1-2-2-2
04 March	5	2-2-2-1-1-0-2-2	6	1-1-3-3-1-1-0-1	7	2-3-2-1-1-1-2-3
05 March	3	1-3-0-0-0-0-1	1	1-1-0-1-0-0-0-0	3	2-2-0-0-0-0-0-1
06 March	0	1-0-0-0-0-0-1	1	0-0-0-1-0-0-1	2	1-0-0-0-0-1-0-1
07 March	0	0-0-0-0-0-0-0	0	0-0-0-0-0-0-0	1	0-0-0-0-0-1-0-1
08 March	7	1-0-3-3-3-2-1-0	23	1-0-4-6-5-3-2-0	8	2-1-3-3-3-2-1-1


Alerts and Warnings Issued


Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
03 Mar 0613	SUMMARY: Geomagnetic Sudden Impulse	03 Mar 0602

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
11 Mar	70	5	2	25 Mar	70	5	2
12	70	5	2	26	70	5	2
13	70	15	4	27	70	5	2
14	70	10	3	28	70	5	2
15	70	5	2	29	70	5	2
16	70	5	2	30	70	5	2
17	70	5	2	31	70	5	2
18	70	5	2	01 Apr	70	5	2
19	70	5	2	02	70	5	2
20	70	5	2	03	70	5	2
21	70	5	2	04	70	5	2
22	70	5	2	05	70	5	2
23	70	5	2	06	70	5	2
24	70	5	2				

Energetic Events

	Time	Time		Optical Information			Peak	Sweep Freq
Date		1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV

No Events Observed

777	•	•
HIAVA	•	101
		d.NL

					Optical	
	Time		X-ray	Imp/	Location	Rgn
Begin	Max	End	Class.	Brtns	Lat CMD	
No	Observed					
No	Observed					
No	Observed					
No	Observed					
No	Observed					
No	Observed					
No	Observed					
	No No No No No No	BeginMaxNoObservedNoObservedNoObservedNoObservedNoObservedNoObservedNoObserved	Begin Max End No Observed No Observed	Time X-ray Begin Max End Class. No Observed No Observed	Time X-ray Imp/ Begin Max End Class. Brtns No Observed	Begin Max End Class. Brtns Lat CMD No Observed

Region Summary

						,								
		Locatio	n		Sunspot	Character	ristics				Fla	ires		_
			Helio	Area	Extent	Spot	Spot	Mag		X-ray		Optic	al	_
_	Date (° Lat	t ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M X	S 1	2	3 -	4
		Re	gion 10	13										
	24 Feb N2	6E20	146	0020	02	Cso	002	В						
	25 Feb N2	6E07	146	0010	04	Bxo	004	В						
	26 Feb N2	6W06	146	0010	02	Bxo	002	В						
	27 Feb N2	6W19	146											
	28 Feb N2	6W32	146											
	01 Mar N2	6W45	146											
	02 Mar N2	6W58	146											
	03 Mar N2	6W71	145											
	04 Mar N2	6W84	145											
	05 Mar N2	6W97	145											

Crossed West Limb.

Absolute heliographic longitude: 146

Region 1014

06 Mar S04E00	034	0020	02	Bxo	002	В
07 Mar S01W14	035	0020	02	Bxo	002	В
00 Mar C01W07	025					

08 Mar S01W27 035

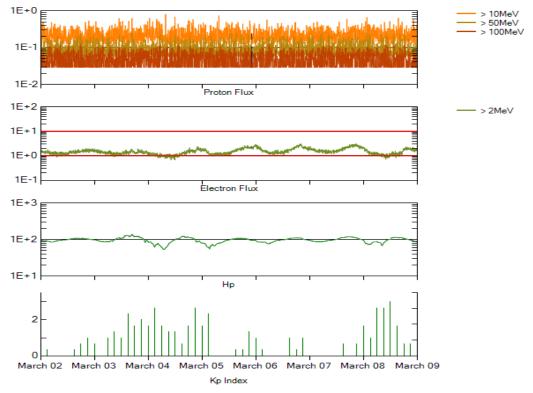
0 0 0 0 0 0 0 0

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

Still on Disk.

Absolute heliographic longitude: 34

Recent Solar Indices (preliminary)


Of the observed monthly mean values

		C			monunty	mean values			· ·
	01 1	_	ot Numbe			Radio		Geoma	-
	Observed			Smooth		*Penticton			
<u>Month</u>	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
					2007				
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6
September	r 4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November	r 2.5	1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
					2008				
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6
August	0.0	0.5	**			66.4		5	
September	r 1.5	1.1	0.73			67.1		5	
-									
October	5.2	2.9	0.56			68.3		6	
November	r 6.8	4.1	0.60			68.6		3	
December	1.3	0.8	0.62			69.2		2	
					2009				
January	2.8	1.5	0.54			69.8		3	
J								-	

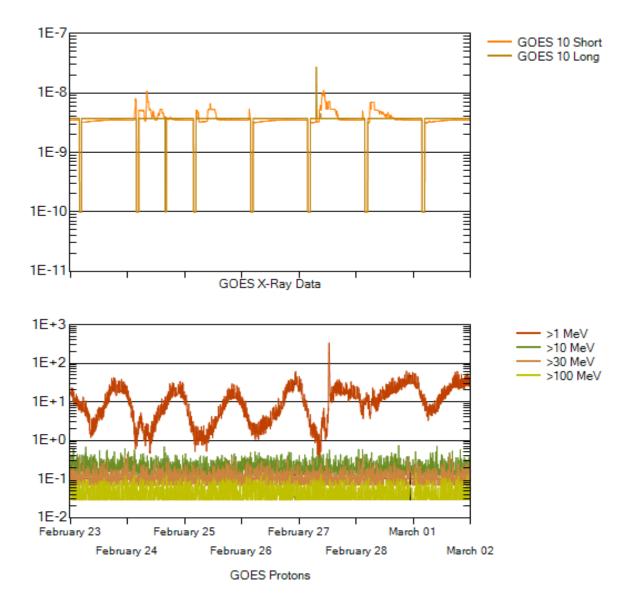
NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI = 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

^{**}SEC sunspot number was less than RI value, so a ratio could not be done.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 02 March 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

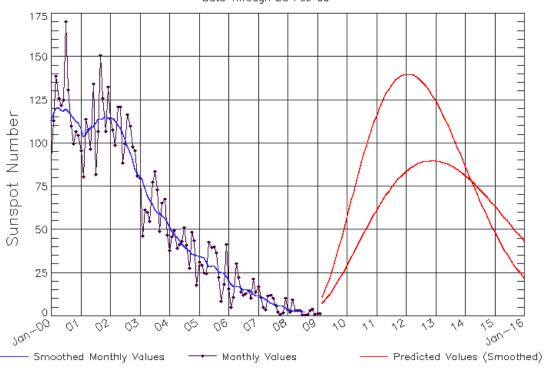
Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

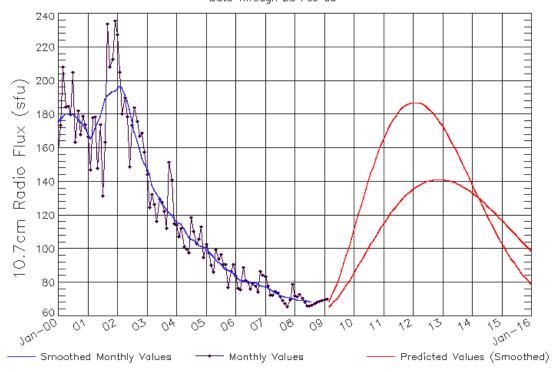
X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.

ISES Solar Cycle Sunspot Number Progression Data Through 28 Feb 09

Updated 2009 Mar 1

NOAA/SWPC Boulder,CO USA

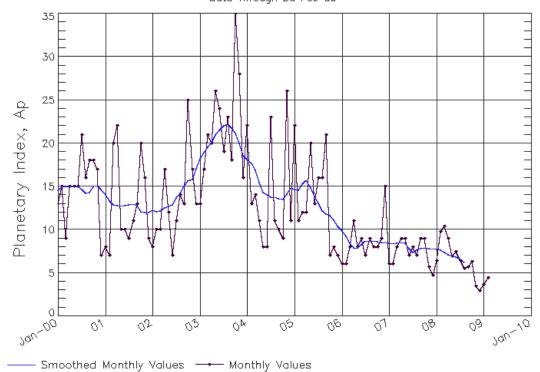

SEC Prediction of Smoothed Sunspot Number

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	21	19	17	17	17	16	15	16	16	14	13	12
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	12	12	11	10	9	8	7	6	6	6	6	5
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	4	4	3	3	4	3	3	3	3/2	3/3	4/3	6/4
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(3)	(5)	(7)	(8)
2009	8/5	10/6	13/8	16/9	19/11	23/13	27/15	32/17	36/19	41/21	46/24	51/26
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15)	(15)	(15)	(15)	(15)
2010	57/29	62/32	68/34	73/37	78/40	84/43	89/45	94/48	99/51	103/53	108/56	112/59
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2011	116/70	119/72	123/74	126/76	129/78	131/79	133/81	135/82	140/84	140/85	140/86	139/87
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2012	139/88	138/88	136/89	135/89	133/90	131/90	129/90	127/90	125/90	122/90	119/89	116/89
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2013	114/89	110/88	107/87	104/86	101/86	97/85	94/84	91/83	87/81	84/80	80/79	77/78
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2014	74/76	70/75	67/73	64/72	61/70	58/69	55/67	52/65	49/64	46/62	44/60	41/59
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2015	38/57	36/55	34/54	32/52	30/50	28/49	26/47	24/45	22/44	21/42	19/40	18/39
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)

Note: Hi is for the larger solar cycle prediction, Lo is for the smaller solar cycle prediction

ISES Solar Cycle F10.7cm Radio Flux Progression Data Through 28 Feb 09

Updated 2009 Mar 1


NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	84	83	82	81	81	81	80	80	80	79	79	78
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	78	77	76	75	74	73	73	72	72	72	71	71
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	70	70	70	70	70	69	69	69	68/62	68/62	69/62	69/62
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(3)	(5)	(7)	(9)
2009	71/63	72/63	74/64	76/65	79/65	82/67	85/68	88/72	91/76	96/78	101/81	106/83
	(11)	(13)	(15)	(17)	(19)	(21)	(22)	(23)	(23)	(23)	(23)	(23)
2010	111/95	116/98	121/100	126/103	131/105	136/108	158/110	161/112	165/115	168/117	171/119	174/121
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2011	177/123	179/125	181/127	183/128	184/130	185/132	186/133	187/134	187/135	187/136	187/137	187/138
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2012	186/139	185/140	184/140	183/141	181/141	179/141	177/141	175/141	173/141	171/141	168/141	166/140
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2013	163/140	160/139	157/139	154/138	151/137	148/136	145/136	142/135	139/134	136/132	133/131	129/130
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2014	126/129	123/127	120/126	117/125	115/123	112/122	109/120	106/119	104/117	101/116	99/114	96/113
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2015	94/111	92/110	90/108	88/106	86/105	84/103	82/102	81/100	79/99	78/97	76/96	75/94
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)

ISES Solar Cycle Ap Progression Data Through 28 Feb 09

NOAA/SWPC Boulder,CO USA

Updated 2009 Mar 1