Space Weather Highlights 23 February - 01 March 2009

SWO PRF 1748 03 March 2009

Solar activity was very low. No flares were observed. New-cycle-polarity Region 1013 (N26, L=146, class/area Cso/020 on 24 February) emerged on 24 February. It gradually decayed to a spotless plage region on 27 February.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at mostly quiet levels during 23 - 26 February. Activity increased to quiet to unsettled levels on 27 February with minor to major storm periods at high latitudes. Activity decreased to mostly quiet levels during the rest of the period. ACE solar wind data indicated the increased activity of 27 February was due to a recurrent coronal hole high-speed stream (CH HSS). The HSS began on 27 February. Velocities increased to a maximum of 701 km/sec at 27/2000 UTC, then gradually decreased for the rest of the period (minimum 384 km/sec at 01/2340 UTC). Interplanetary magnetic field changes associated with the onset of the CH HSS included increased Bt (peak 11 nT at 27/0940 UTC), and brief, intermittent periods of southward Bz (minimum -7 nT at 27/1006 UTC).

Space Weather Outlook 04 - 30 March 2009

Solar activity is expected to be at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to increase to high levels during 14 - 18 March. Normal flux levels are expected during the rest of the period.

Geomagnetic field activity is expected to be at predominantly quiet levels through 12 March. Activity is expected to increase to quiet to active levels during 13 - 14 March with a chance for minor to major storm periods at high latitudes due to a recurrent CH HSS. Activity is expected to decrease to mostly quiet levels during 15 - 30 March.

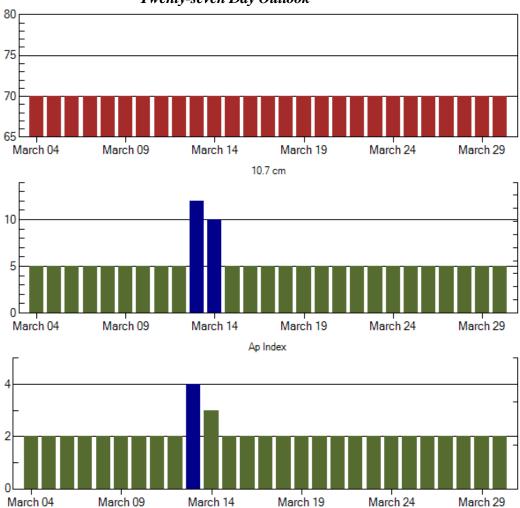
Daily Solar Data

				Daily 50	m D	ııı						
	Radio	Sun	Sunspot	X-ray				Flares				
	Flux	spot	Area	Background	X	-ray F	lux		O	otical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
23 February	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
24 February	71	12	20	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
25 February	71	14	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
26 February	70	12	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
27 February	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
28 February	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
01 March	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-si	r)	Electron Fluence (electrons/cm²-day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
23 February	1.1E+6	2.0E+4	4.2E+3	4.2E+6
24 February	7.3E+5	1.9E + 4	4.1E+3	2.6E+6
25 February	5.5E+5	1.8E + 4	4.2E+3	4.7E+6
26 February	8.1E + 5	2.0E+4	4.3E+3	6.8E+6
27 February	1.3E+6	1.8E + 4	4.1E+3	2.0E+6
28 February	1.7E+6	1.9E+4	3.9E+3	2.9E+5
01 March	1.7E+6	1.8E+4	3.9E+3	4.4E+5

Daily Geomagnetic Data


	Iiddle Latitude	1	III ala II adda. da	1				
			High Latitude	Estimated				
Fredericksburg			College	Planetary				
Α	K-indices	A	K-indices	Α	K-indices			
3	1-0-0-0-2-2-1-2	5	0-0-0-2-3-3-1-0	5	1-0-0-0-2-3-2-2			
6	1-3-3-1-1-1-0-1	5	1-1-3-2-2-1-0-0	6	2-3-2-1-1-0-1			
2	1-1-1-1-0-1-0	2	1-0-0-3-0-0-0	3	1-1-0-1-1-1-0-0			
2	1-1-0-0-1-0-0-1	0	0-0-0-0-0-0-1	2	1-1-0-0-0-0-1-2			
7	1-1-2-3-3-1-2-1	20	1-0-3-5-6-2-2-1	8	1-1-2-3-3-2-2-2			
4	3-2-2-0-0-0-1-1	3	1-2-2-1-0-0-1-0	5	3-2-2-0-0-0-1-2			
2	2-1-1-0-1-0-0-0	1	0-1-1-0-0-0-0-0	3	1-1-0-0-0-0-1-1			
	6 2 2 7 4	3 1-0-0-0-2-2-1-2 6 1-3-3-1-1-1-0-1 2 1-1-1-1-0-1-0 2 1-1-0-0-1-0-0-1 7 1-1-2-3-3-1-2-1 4 3-2-2-0-0-1-1	3 1-0-0-0-2-2-1-2 5 6 1-3-3-1-1-1-0-1 5 2 1-1-1-1-1-0-1-0 2 2 1-1-0-0-1-0-0-1 0 7 1-1-2-3-3-1-2-1 20 4 3-2-2-0-0-1-1 3	3 1-0-0-0-2-2-1-2 5 0-0-0-2-3-3-1-0 6 1-3-3-1-1-1-0-1 5 1-1-3-2-2-1-0-0 2 1-1-1-1-1-0-1-0 2 1-0-0-3-0-0-0-0 2 1-1-0-0-1-0-0-1 0 0-0-0-0-0-0-1 7 1-1-2-3-3-1-2-1 20 1-0-3-5-6-2-2-1 4 3-2-2-0-0-1-1 3 1-2-2-1-0-0-1-0	3 1-0-0-0-2-2-1-2 5 0-0-0-2-3-3-1-0 5 6 1-3-3-1-1-1-0-1 5 1-1-3-2-2-1-0-0 6 2 1-1-1-1-1-0-1-0 2 1-0-0-3-0-0-0 3 2 1-1-0-0-1-0-0-1 0 0-0-0-0-0-0-1 2 7 1-1-2-3-3-1-2-1 20 1-0-3-5-6-2-2-1 8 4 3-2-2-0-0-1-1 3 1-2-2-1-0-0-1-0 5			

Alerts and Warnings Issued

	8	
Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
27 Feb 1014	WARNING: Geomagnetic K = 4	27 Feb 1014 - 1600
27 Feb 1018	ALERT: Geomagnetic $K = 4$	27 Feb 1017

Twenty-seven Day Outlook

Largest Daily Kp Index

-	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
04 Mar	70	5	2	18 Mar	70	5	2
05	70	5	2	19	70	5	2
06	70	5	2	20	70	5	2
07	70	5	2	21	70	5	2
08	70	5	2	22	70	5	2
09	70	5	2	23	70	5	2
10	70	5	2	24	70	5	2
11	70	5	2	25	70	5	2
12	70	5	2	26	70	5	2
13	70	12	4	27	70	5	2
14	70	10	3	28	70	5	2
15	70	5	2	29	70	5	2
16	70	5	2	30	70	5	2
17	70	5	2				

Energetic Events

	Time		X-ray	Opt	ical Information	1	Peak	Sweep Freq
Date		1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV

No Events Observed

-	1	•	•
H	are	•	121

Time Begin Max No Flares Observed No Flares Observed		X-ray Class.	Imp / Brtns	Optical Location Lat CMD	Rgn
Begin Max No Flares Observed		•	-		Rgn
No Flares Observed		Class.	Brtns	Lat CMD	
No Flares Observed					
No Flares Observed					
No Flares Observed					
No Flares Observed					
No Flares Observed					
No Flares Observed					
	No Flares Observed No Flares Observed	No Flares Observed No Flares Observed No Flares Observed	No Flares Observed No Flares Observed	No Flares Observed No Flares Observed	No Flares Observed No Flares Observed

Region Summary

A A A

	Location		Sunspot Characteristics					Flares						
	Helio	Area	Extent	Spot	Spot	Mag	X	K-ray	7		(Optio	al	
Date	(°Lat°CMD) Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	\overline{C}	M	X	S	1	2	3	4

Region 1012

11 Feb S06E62	275	0010	01	Axx	001	
12 Feb S05E48	276	0010	01	Axx	001	
13 Feb S06E34	278	0010	01	Axx	001	
14 Feb S06E20	278					
15 Feb S06E07	278					
16 Feb S06W06	278					
17 Feb S06W19	278					
18 Feb S06W32	278					
19 Feb S06W45	278					
20 Feb S06W58	278					
21 Feb S06W71	278					
22 Feb S06W84	278					

0 0 0 0 0 0 0 0

Crossed West Limb.

23 Feb S06W97

Absolute heliographic longitude: 278

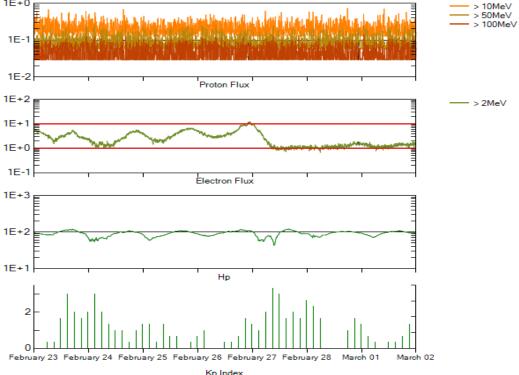
278

Region Summary

				11	egion i	Junnu	<i>y y</i>							
Locatio	n		Sunspot	Characte	ristics						Flare	es		
<u></u>	Helio	Area	Extent	Spot	Spot	Mag		X-ra	ıy		(Optic	cal	
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
Re	gion 10	13												
24 Feb N26E20	146	0020	02	Cso	002	В								
25 Feb N26E07	146	0010	04	Bxo	004	В								
26 Feb N26W06	146	0010	02	Bxo	002	В								
27 Feb N26W19	146													
28 Feb N26W32	146													
01 Mar N26W45	146													
							0	0	0	0	0	0	0	0
							•	•	Ü	•	•	•	•	J

Still on Disk.

Absolute heliographic longitude: 146


Recent Solar Indices (preliminary) Of the observed monthly mean values

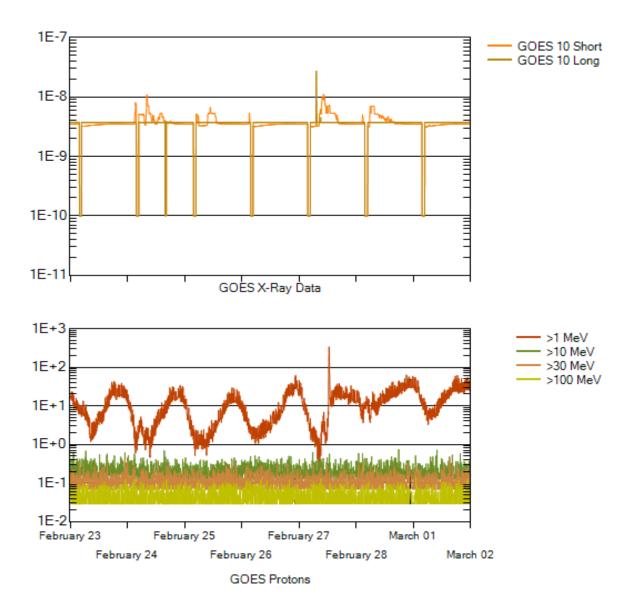
					<u>monthly</u>	mean values			
			ot Numbe			Radio		Geoma	-
	Observed			Smooth		*Penticton		<u>Planetary</u>	_
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
					2007				
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6
September	r 4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8
0 . 1	1.0	0.0	0.70	10.0	<i>c</i> 1	~~ ~	71.5	0	7.0
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
					2000				
		2.4	0.47		2008	50 1	7 0.0	_	
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
A pril	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1
April May	4.9 5.7	2.9	0.59	5.3 5.7	3.5	68.4	69.7	6	7.1 6.9
June	4.2	3.1	0.74	5.2	3.3	65.9	69.2	7	6.8
June	4.4	٦.1	0.74	3.4	3.4	03.9	07.2	/	0.0
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6
August	0.0	0.5	**	1.0	2.,	66.4	30.0	5	0.0
September		1.1	0.73			67.1		5	
September	1.5	1.1	0.75			07.1		3	
October	5.2	2.9	0.56			68.3		6	
November		4.1	0.60			68.6		3	
December		0.8	0.62			69.2		2	
					2009				
January	2.8	1.5	0.54			69.8		3	
•									

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 23 February 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

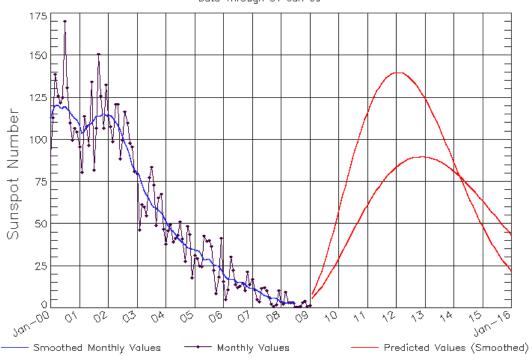
Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

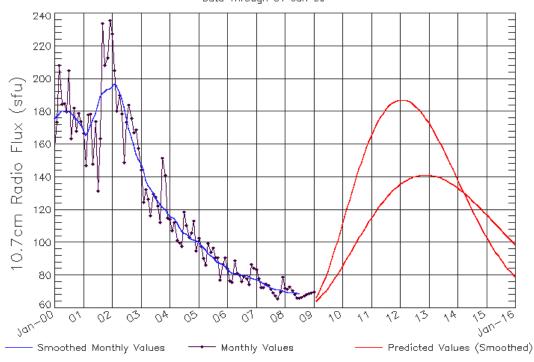
X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.

ISES Solar Cycle Sunspot Number Progression Data Through 31 Jan 09

Updated 2009 Feb 24

NOAA/SWPC Boulder,CO USA

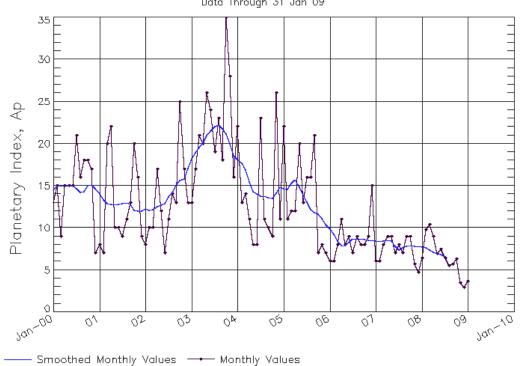

SEC Prediction of Smoothed Sunspot Number

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	21	19	17	17	17	16	15	16	16	14	13	12
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	12	12	11	10	9	8	7	6	6	6	6	5
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	4	4	3	3	4	3	3	2/2	3/2	3/2	4/3	6/4
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)	(7)	(8)
2009	8/5	10/6	13/7	16/9	19/11	23/12	27/15	30/16	35/19	40/21	45/23	51/26
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15)	(15)	(15)	(15)	(15)
2010	56/29	62/31	67/34	73/37	78/39	83/42	88/45	93/48	98/50	103/53	107/55	111/58
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2011	115/60	119/63	122/65	125/67	128/70	131/72	133/74	135/75	136/77	137/79	138/80	139/82
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2012	139/3	139/84	139/85	139/86	138/87	137/88	136/88	134/89	133/89	131/89	129/89	127/90
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2013	124/89	122/89	119/89	116/89	113/88	110/87	107/87	104/86	100/85	97/84	94/83	90/82
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2014	87/81	83/80	80/78	77/77	73/76	70/74	67/73	63/71	60/70	57/68	54/67	51/65
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2015	48/63	46/62	43/60	40/58	38/57	36/55	33/53	31/51	29/50	27/48	25/46	23/45
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)

Note: Hi is for the larger solar cycle prediction, Lo is for the smaller solar cycle prediction

ISES Solar Cycle F10.7cm Radio Flux Progression
Data Through 31 Jan 09

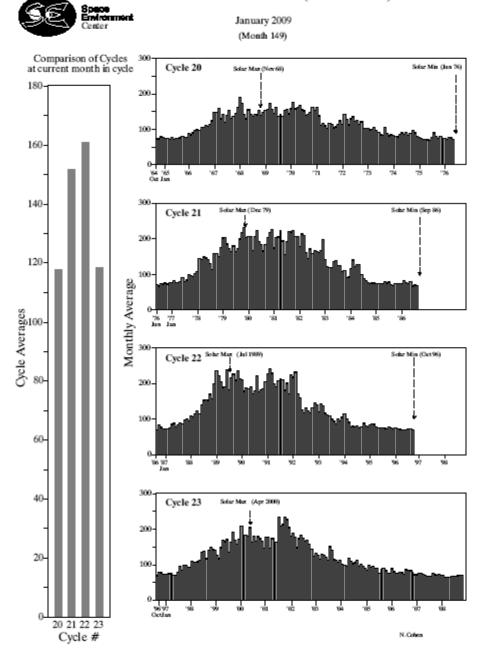
Updated 2009 Feb 24


NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	84	83	82	81	81	81	80	80	80	79	79	78
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	78	77	76	75	74	73	73	72	72	72	71	71
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	70	70	70	70	70	69	69	68/62	68/62	68/61	68/61	69/61
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)	(7)	(9)
2009	70/62	71/62	73/63	75/64	78/65	81/66	84/70	86/74	91/76	95/78	100/80	105/82
	(11)	(13)	(15)	(17)	(19)	(21)	(22)	(23)	(23)	(23)	(23)	(23)
2010	110/85	115/87	120/90	125/92	130/95	135/97	140/100	144/102	149/105	153/107	157/110	161/112
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2011	165/114	168/116	171/119	174/121	176/123	179/124	181/126	182/128	184/130	185/131	186/132	186/134
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2012	187/135	187/136	187/137	186/138	185/139	185/139	183/140	182/140	181/140	179/141	177/141	175/171
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2013	173/141	170/141	168/140	165/140	162/139	160/139	157/138	154/138	151/137	148/136	145/135	141/134
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2014	138/133	135/132	132/131	129/129	126/128	123/127	120/126	117/124	114/123	111/121	108/120	106/118
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2015	103/117	101/115	98/114	96/112	93/111	91/109	89/107	87/106	85/104	83/103	82/101	80/100
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)

ISES Solar Cycle Ap Progression Data Through 31 Jan 09



Updated 2009 Feb 24

NOAA/SWPC Boulder,CO USA

Solar Radio Flux (10.7 cm)

