Space Weather Highlights 16 February - 22 February 2009

SWO PRF 1747 24 February 2009

Solar activity was very low. No flares were observed. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels during 16 - 18 February.

Geomagnetic field activity was at quiet levels during most of the period. ACE solar wind velocities decreased from 523 to 282 km/sec during 16 - 18 February as a recurrent coronal hole high-speed stream (CH HSS) subsided. Solar wind velocities gradually increased from 282 to 490 km/sec during 19 - 22 February, possibly due to a recurrent HSS. During this period, IMF Bz varied from +08 to -06 nT and IMF Bt ranged from 01 to 10 nT.

Space Weather Outlook 25 February 2009 - 23 March 2009

Solar activity is expected to be at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to increase to high levels during 14 - 18 March. Normal flux levels are expected during the rest of the period.

Geomagnetic field activity is expected to be at predominantly quiet levels during 25 February - 12 March. Activity is expected to increase to quiet to active levels during 13 - 14 March with storm periods possible at high latitudes due to a recurrent CH HSS. Activity is expected to decrease to mostly quiet levels during 15 - 23 March.

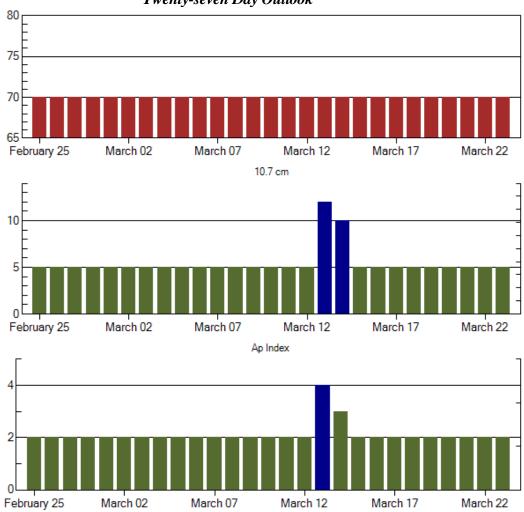
Daily Solar Data

	Radio	Sun	Sunspot	X-ray	Flares							
	Flux	spot	Area	Background	X	-ray F	lux		Optical			
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	C	M	X	S	1	2	3	4
16 February	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
17 February	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
18 February	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
19 February	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
20 February	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
21 February	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
22 February	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

	Pro	oton Fluence		Electron Fluence
	(proto	ons/cm ² -day-sı	·)	(electrons/cm ² -day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
16 February	1.5E+6	1.8E+4	4.3E+3	8.5E+7
17 February	1.1E+6	1.9E + 4	4.1E+3	6.3E+7
18 February	1.3E+6	2.0E+4	4.2E + 3	6.9E+7
19 February	1.5E+6	2.0E+4	4.4E+3	5.6E+7
20 February	1.4E+6	1.9E + 4	4.4E+3	2.7E+7
21 February	1.7E+6	2.0E+4	4.3E+3	1.1E+7
22 February	1.2E+6	1.8E+4	3.9E + 3	6.8E+6

Daily Geomagnetic Data


	Duny Geomagnetic Data											
	N	Iiddle Latitude		High Latitude		Estimated						
	F	Fredericksburg	College			Planetary						
Date	Α	K-indices	Α	K-indices	A	K-indices						
16 February	2	2-0-0-0-1-1-1-0	2	1-0-0-1-1-1-1	3	1-0-0-1-1-1-0-1						
17 February	1	0-0-0-0-0-1-1	0	0-0-0-0-0-0-1	1	1-0-0-0-1-0-0-1						
18 February	1	1-0-0-0-0-0-1	1	1-0-0-0-0-1-0	2	2-0-0-0-0-1-1						
19 February	0	0-0-0-0-1-0-0	0	0-0-0-0-1-0-0	1	0-0-0-0-0-1-0-1						
20 February	3	1-1-0-0-1-1-2-1	3	0-1-0-1-1-0-1-2	3	1-1-0-0-1-0-1-2						
21 February	2	0-0-0-1-1-1-1	3	1-0-0-3-2-0-0-0	3	0-0-0-1-1-0-1-1						
22 February	3	0-0-2-2-1-0-1-1	4	0-0-2-3-2-0-0-0	3	0-0-2-2-1-0-0-1						

Alerts and Warnings Issued

Date & Time of Is	sue	Type of Alert or Warning	Dat	e & Time of Event UTC
16 Feb 1521	ALER'	Γ: Electron 2MeV Integral Flux >= 1	1000pfu	16 Feb 1505
17 Feb 1744	ALER'	Γ : Electron 2MeV Integral Flux >= 1	1000pfu	17 Feb 1725
18 Feb 1742	ALER'	Γ: Electron 2MeV Integral Flux >= 1	1000pfu	18 Feb 1725

Twenty-seven Day Outlook

Lacasa Daile Ma	I
Largest Daily Kp	ınaex

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
25 Feb	70	5	2	11 M ar	70	5	2
26	70	5	2	12	70	5	2
27	70	5	2	13	70	12	4
28	70	5	2	14	70	10	3
01 Mar	70	5	2	15	70	5	2
02	70	5	2	16	70	5	2
03	70	5	2	17	70	5	2
04	70	5	2	18	70	5	2
05	70	5	2	19	70	5	2
06	70	5	2	20	70	5	2
07	70	5	2	21	70	5	2
08	70	5	2	22	70	5	2
09	70	5	2	23	70	5	2
10	70	5	2				

	Entifycut Events											
	Time X-ray		Optical Information			Peak	Sweep Freq					
Date		1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity				
	Regin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV				

No Events Observed

•	•	•	•
H	aro	•	101

			I tui C List								
					Optical						
	Time				Location	Rgn					
Date	Begin Max I	End	Class.	Brtns	Lat CMD						
16Feb	No Flares Observed										
17 Feb	No Flares Observed										
18 Feb	No Flares Observed										
19 Feb	No Flares Observed										
20 Feb	No Flares Observed										
21 Feb	No Flares Observed										
22 Feb	No Flares Observed										

Region Summary

	Location		Sunspot Characteristics				Flares						_				
_	He	elio	Area		Extent	Spot	Spot	Mag	_	X-1	ay	_	(Optic	al		
Date (°	Lat ° CMD) Lor	ı ((10^{-6} he)	emi) ((helio)	Class	Count	Class	C	N	1 X	S	1	2	3	4	

Region 1012

11 Feb S06E62	275	0010	01	Axx	001	A
12 Feb S05E48	276	0010	01	Axx	001	A
13 Feb S06E34	278	0010	01	Axx	001	Α
14 Feb S06E20	278					
15 Feb S06E07	278					
16 Feb S06W06	278					

17 Feb S06W19 278

18 Feb S06W32 278

19 Feb S06W45 278

20 Feb S06W58 278

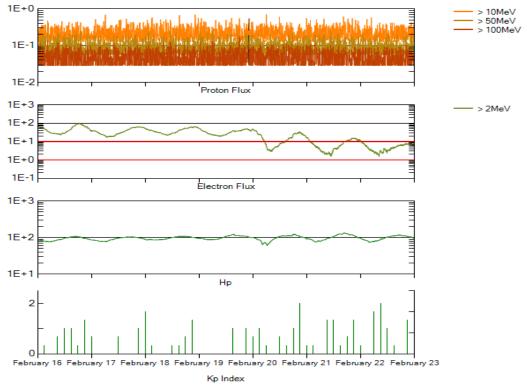
21 Feb S06W71 278

22 Feb S06W84 278

Still on Disk.

Absolute heliographic longitude: 278

0 0 0 0 0 0 0 0


Recent Solar Indices (preliminary) Of the observed monthly mean values

Of the observed monthly mean values												
			ot Numbe			Radio		Geomagnetic				
	Observed			Smooth		*Penticton		Planetary				
<u>Month</u>	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	<u>Ap</u>	Value			
2007												
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4			
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4			
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5			
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4			
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8			
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4			
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6			
September	r 4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8			
1												
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9			
November	2.5	1.7	0.68	9.4	5.7	69.7	71.1	5	7.8			
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8			
	2008											
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7			
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6			
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4			
		, , ,				,,	07.10					
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1			
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9			
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8			
0 0,110		0.1	017	0.2	0.2	32.5	07.2	•	0.0			
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6			
August	0.0	0.5	**			66.4		5				
September		1.1	0.73			67.1		5				
						0,12		_				
October	5.2	2.9	0.56			68.3		6				
November		4.1	0.60			68.6		3				
December		0.8	0.62			69.2		2				
			- · 					_				
2009												
January	2.8	1.5	0.54			69.8		3				
Januar y	2.0	1.5	U.J T			07.0		J				

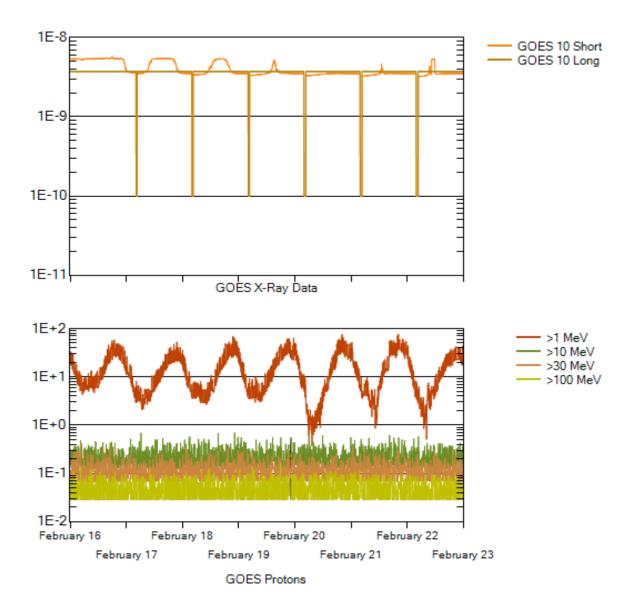
NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

^{**}SEC sunspot number was less than RI value, so a ratio could not be done.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 16 February 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

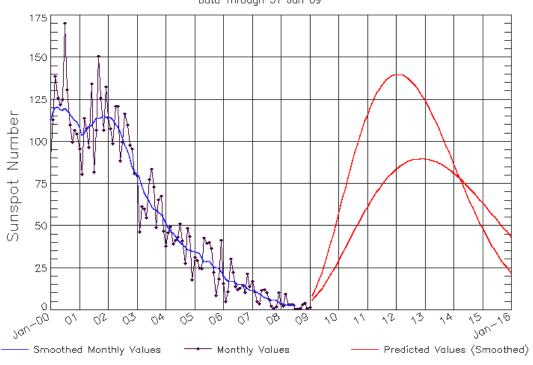
Protons plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

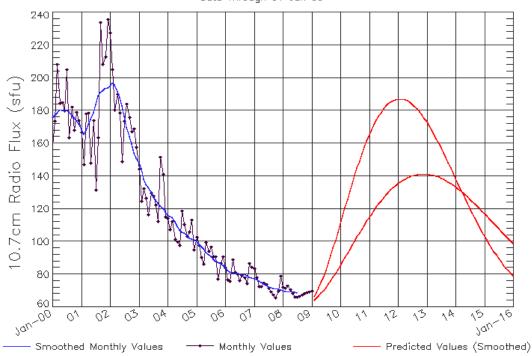
X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.

ISES Solar Cycle Sunspot Number Progression Data Through 31 Jan 09

SEC Prediction of Smoothed Sunspot Number

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	21	19	17	17	17	16	15	16	16	14	13	12
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	12	12	11	10	9	8	7	6	6	6	6	5
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	4	4	3	3	4	3	3	2/2	3/2	3/2	4/3	6/4
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)	(7)	(8)
2009	8/5	10/6	13/7	16/9	19/11	23/12	27/15	30/16	35/19	40/21	45/23	51/26
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15)	(15)	(15)	(15)	(15)
2010	56/29	62/31	67/34	73/37	78/39	83/42	88/45	93/48	98/50	103/53	107/55	111/58
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2011	115/60	119/63	122/65	125/67	128/70	131/72	133/74	135/75	136/77	137/79	138/80	139/82
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2012	139/3	139/84	139/85	139/86	138/87	137/88	136/88	134/89	133/89	131/89	129/89	127/90
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2013	124/89	122/89	119/89	116/89	113/88	110/87	107/87	104/86	100/85	97/84	94/83	90/82
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2014	87/81	83/80	80/78	77/77	73/76	70/74	67/73	63/71	60/70	57/68	54/67	51/65
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2015	48/63	46/62	43/60	40/58	38/57	36/55	33/53	31/51	29/50	27/48	25/46	23/45
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)


Note: Hi is for the larger solar cycle prediction, Lo is for the smaller solar cycle prediction

NOAA/SWPC Boulder,CO USA

Updated 2009 Feb 24

ISES Solar Cycle F10.7cm Radio Flux Progression Data Through 31 Jan 09

Updated 2009 Feb 24

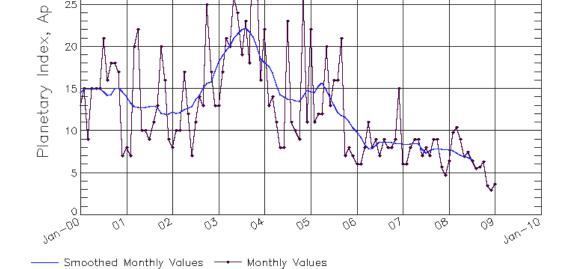
NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo											
2006	84	83	82	81	81	81	80	80	80	79	79	78
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	78	77	76	75	74	73	73	72	72	72	71	71
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	70	70	70	70	70	69	69	68/62	68/62	68/61	68/61	69/61
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)	(7)	(9)
2009	70/62	71/62	73/63	75/64	78/65	81/66	84/70	86/74	91/76	95/78	100/80	105/82
	(11)	(13)	(15)	(17)	(19)	(21)	(22)	(23)	(23)	(23)	(23)	(23)
2010	110/85	115/87	120/90	125/92	130/95	135/97	140/100	144/102	149/105	153/107	157/110	161/112
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2011	165/114	168/116	171/119	174/121	176/123	179/124	181/126	182/128	184/130	185/131	186/132	186/134
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2012	187/135	187/136	187/137	186/138	185/139	185/139	183/140	182/140	181/140	179/141	177/141	175/171
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2013	173/141	170/141	168/140	165/140	162/139	160/139	157/138	154/138	151/137	148/136	145/135	141/134
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2014	138/133	135/132	132/131	129/129	126/128	123/127	120/126	117/124	114/123	111/121	108/120	106/118
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2015	103/117	101/115	98/114	96/112	93/111	91/109	89/107	87/106	85/104	83/103	82/101	80/100
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)

ISES Solar Cycle Ap Progression Data Through 31 Jan 09

35 [


30

25

20

15

Updated 2009 Feb 24

NOAA/SWPC Boulder,CO USA