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NOAA Lagrangian Puff Atmospheric Fate and Transport Model
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Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
(e.g., once every 7 hours).
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Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.
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In principle, we need do this for each source
In the Inventory

But, since there are more than 100,000
sources in the U.S. and Canadian inventory,
we need shortcuts...

Shortcuts described in Cohen et al
Environmental Research 95(3), 247-265, 2004
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 For each run, simulate fate and transport everywhere,
but only keep track of impacts on each selected receptor
(e.g., Great Lakes, Chesapeake Bay, etc.)

e Only run model for a limited number (~100) of hypothetical,
Individual unit-emissions sources throughout the domain

« Use spatial interpolation to estimate impacts from sources at
locations not explicitly modeled



Spatial interpolation
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Perform separate simulations at each location for emissions
of pure Hg(0), Hg(ll) and Hg(p)

[after emission, simulate transformations between Hg forms]

Impact of emissions mixture taken as a linear combination
of Impacts of pure component runs on any given receptor

10



Source

Impact of Source
Emitting

30% Hg(0)

50% Hg(ll)
20% Hg(p)

“Chemical Interpolation”

0.3 x

0.5 x

0.2 x

Impact of Source Emitting Pure Hg(0)

+

Impact of Source Emitting Pure Hg(ll)

+

Impact of Source Emitting Pure Hg(p)
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Emissions
Inventories

What do atmospheric
mercury models need?

Meteorological
Data

Scientific understanding of
phase partitioning,
atmospheric chemistry,
and deposition processes

Ambient data for comprehensive
model evaluation and improvement

12



Emissions Inventories

Previous Work

* 1996, 1999 U.S. NEI
» 1995, 2000 Canada

13



Emissions Inventories

Previous Work

* 1996, 1999 U.S. NEI
» 1995, 2000 Canada

Current Objectives

« 2002 U.S. NEI

» 2002 Canada

 Global — 2000 (Pacyna-NILU)
» Natural sources

* Re-emitted anthropogenic
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Emissions Inventories

Previous Work

* 1996, 1999 U.S. NEI
» 1995, 2000 Canada

Current Objectives

« 2002 U.S. NEI

» 2002 Canada

» Global — 2000 (Pacyna-NILU)
 Natural sources

* Re-emitted anthropogenic

Challenges and Notes

Speciation?

Short-term variations (e.g. hourly) [CEM’s?]
Longer-term variations (e.g., maintenance)?
Mobile sources

Harmonization of source-categories

Emissions inventories currently only become available
many years after the fact; how can we evaluate models

using current monitoring data?

15



Meteorological Data

Previous Work

* For U.S./Canadian modeling, 1996 data from
NOAA Nested Grid Model (NGM), 180 km

16



Meteorological Data

Previous Work

e For U.S./Canadian modeling, 1996 data from
NOAA Nested Grid Model (NGM), 180 km

Current Objectives

«U.S. - NOAA EDAS 40 km, 3 hr
* Global - NOAA GDAS 1°x 1°, 3 hr
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Meteorological Data

Previous Work

e For U.S./Canadian modeling, 1996 data from
NOAA Nested Grid Model (NGM), 180 km

Current Objectives

e US. - NOAAEDAS 40 km, 3 hr
» Global = NOAA GDAS 1°x 1°, 3 hr

Challenges and Notes

Forecast vs. Analysis

Data assimilation

Precipitation??

Difficult to archive NOAA analysis datasets

Need finer-resolution datasets, especially for
near-field analysis and model evaluation

* We have conversion filters (e.g., for MM5), but
these data are not readily available

* What is the best way to archive and share data?
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Atmospheric Chemistry and Physics

» Typical chemical mechanism

_ * Prescribed fields for reactive trace gases (e.g., O,,
Previous Work OH, SO,) and other necessary constituents (e.g.,
soot) based on modeled, measured, and/or
empirical relationships

19



Atmospheric Chemical Reaction Scheme for Mercury

Reaction Rate Units Reference
GAS PHASE REACTIONS

Hg® + O; — Hg(p) 3.0E-20 cm3/molec-sec Hall (1995)

Hg® + HCI —» HgCl, 1.0E-19 cm3/molec-sec Hall and Bloom (1993)

Hg° + H,0, - Hg(p) 8.5E-19 cm3/molec-sec Tokos et al. (1998) (upper limit based
on experiments)

Hg° + Cl, - HgCl, 4.0E-18 cm3/molec-sec Calhoun and Prestbo (2001)

Hg® +OHe —» Hg(p) 8.7E-14 cm3/molec-sec Sommar et al. (2001)

AQUEOUS PHASE REACTIONS

Hg? + O, —» Hg*?

4.7E+7 (molar-sec)?

Munthe (1992)

Hg® + OHe —» Hg*?

2.0E+9 (molar-sec)?

Lin and Pehkonen(1997)

HgSO, - Hg° T*e((L971*T)-12595.0)T) gec-1 Van Loon et al. (2002)
[T = temperature (K)]

Hg(ll) + HO,» —» Hg° ~0 (molar-sec)? Gardfeldt & Jonnson (2003)
Hg? + HOCI — Hg* 2.1E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg? + OCIt —» Hg*? 2.0E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg(I1) <> Hg(I1) g0y 9.0E+2 liters/gram; eqlbrm: Seigneur et al. (1998)

t = 1/hour rate: Bullock & Brehme (2002).
Hg* + h<— Hg° 6.0E-7 (sec)* (maximum) Xiao et al. (1994);

Bullock and Brehme (2002)
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Atmospheric Chemistry and Physics

Previous Work

* Typical chemical mechanism

* Prescribed fields for reactive trace gases (e.g., O,
OH, SO,) and other necessary constituents (e.g.,
soot) based on modeled, measured, and/or
empirical relationships

Current Objectives

* Include new information on chemistry, e.g.,
bromine reactions, etc.

o Add SO2 and potentially other compounds into
iIn-situ plume chemistry treatment

 Sensitivity analyses

» Consider using gridded chemical output from
full-chemistry atmospheric model (e.g., CMAQ)

e Option - run HYSPLIT in Eulerian mode for
chemistry; conduct one-atmosphere simulation

21



Atmospheric Chemistry and Physics

Previous Work

* Typical chemical mechanism

* Prescribed fields for reactive trace gases (e.g., O,
OH, SO,) and other necessary constituents (e.g.,
soot) based on modeled, measured, and/or
empirical relationships

Current Objectives

Challenges and Notes

 What is RGM?

 What is Hg(p)?

* What is solubility of Hg(p)?

 Fate of dissolved Hg(ll) when droplet dries out?
» What reactions don’t we know about yet?

« What are rates of reactions?

» Uncertainties in wet & dry deposition processes...

22



Model Evaluation

Previous
Work

e US: 1996 MDN measurements
» Europe: 1999 speciated ambient concentrations in short-term
episodes, monthly wet deposition

23



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
Intro- Stage | Stage 11 Stage 11l Conclu-
duction Chemistry Ha(p) Wet Dep Dry Dep Budgets S10ns

Total Gaseous Mercury (ng/m?3) at Neuglobsow: June 26 — July 6, 1995

HYSPLIT

measurements

04-Jul  06-Jul




EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
Intro- Stage | Stage 11 Stage 11l Conclu-
duction Chemistry _ Ha(p) _ Wet Dep Dry Dep Budgets sions

Total Particulate Mercury (pg/m?3) at Neuglobsow, Nov 1-14, 1999

150

02 Nov O4—Nov 06- Nov 08- Nov 10-Nov 12- Nov 14-Nov




EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

Intro- I Stage | I Stage Il I Stage 11l I Conclu-
duction sions

Chemistry Ha(p) Dry Dep Budgets

Reactive Gaseous Mercury at Neuglobsow, Nov 1-14, 1999

HYSPLIT Neuglobsow RGM

11/11/99
11/13/99




Model Evaluation

e US: 1996 MDN measurements

Crevious o Europe: 1999 speciated ambient concentrations in short-term
Work : -

episodes, monthly wet deposition
Current o Attempt to utilize all available speciated ambient concentrations
Objectives and wet deposition data from U.S. and other regions
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Model Evaluation

e US: 1996 MDN measurements

Crevious o Europe: 1999 speciated ambient concentrations in short-term
Work : -
episodes, monthly wet deposition
Current « Attempt to utilize all available speciated ambient concentrations
Objectives and wet deposition data from U.S. and other regions
» Comprehensive evaluation has not been possible due to large gaps
in availability of monitoring and process-related data
* Need data for upper atmosphere as well as surface
* Need data for both source-impacted and background sites
Challenges » Use of recent monitoring data with EPA 2002 inventory?
and Notes

* Time-resolved monitoring data vs. non-time-resolved emissions?
» Hard to diagnose differences between models & measurements

« Can we find better ways to share data for model evaluation (and
other purposes)? To this end, discussion is beginning on national,
cooperative, ambient Hg monitoring network

28
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. WET DEPOSITION

' = complex — hard to diagnose

= weekly — many events

= packground — also need near- fleld

. AMBIENT AIR CONCENTRATIONS |
more fundamental — easier to diagnose
» need continuous — episodic source impacts :

» need speciation — at least RGM, Hg(p), Hg(O)

= need data at surface and above ; 2¢




Hg from
other sources:
local, regional
& more distant

v

Series 3300 CEM

Resolution: 2.5 m in Duration: 11 Days

-Continuous Speciated Mercury Data
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Series 3300 CEM - Continuous Speciated Mercury Data

Resolution: 2.5 min Duration: 11 Days
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Source: Tekran Instruments Corporation
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Example of results:
Rock Creek Watershed

32



Largest Model-Estimated U.S./Canada Anthropogenic Contributors to 1999
Mercury Deposition to the Rock Creek Watershed (large region)

Coal-Fired
. Electricity
Generation

L Other Fuel
§ Combustion
Activities

. Waste
Incineration

Smelters
7and other
Metallurgical

Rock Creek
& == Watershed

Manufacturing
and Other

Fraction of Total
Modeled Deposition
Contributed by Source

®
®
® = 01-1%
®
A 1-3%
® 0, . 3-10%
o
. . 10 - 30%

1000 Kilometers?,
—

. > 30%
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Largest Model-Estimated U.S./Canada Anthropogenic Contributors to 1999

Mercury Deposition to the Rock Creek Watershed (close up)

ﬁ Keystone I
L]
: # Homer City I

Pentagon |

S ERmmeia

ot ] Potomac River =

‘ Possum Point =

i

\\

&
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Rock Creek
Park Watershed

S

Phoenix Services

sz

o o
.
o 0
P oY

_»;\

o | Chesterfield :\

100

,)' Brandon Shores

?‘ |Cha|k Point

Coal-Fired
Electricity
Generation

Other Fuel
Combustion
Activities

Waste
Incineration

Smelters
and other
Metallurgical

Manufacturing
and Other

Fraction of Total
Modeled Deposition
Contributed by Source

A

0.1-1%
1-3%

W 3-10%

& 10-30%
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Proportions of 1999 Model-Estimated Atmospheric
Deposition to the Rock Creek Watershed from Different
Anthropogenic U.S./Canada Mercury Emissions Source Sectors

all other fuel combustion
1.8%

municipal waste incin
17.2%

~medical waste incin
14.2%

coal-fired elec gen
50.7%

other waste incin

5.4%
: metallurgical
other coal combustion 2.1%
_ (_)'2% _ cement/concrete
oil combustion (non-mobile) 0.7%
3.1% chemical/other manufacturing
4.6%
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Top 25 Contributors to Hg Deposition to Rock Creek Watershed

257 DE g Indian River
N PA gShawville
- | W coal-fired elec gen NV v Jerritt Canyon
- : NC mBelews Creek
A
. other f%Jellcomb.usuon SC @ Westinghouse Savannah Riv.
1 | Y metallurgical PA @ Montour
- NC @ BMWNC

. MD @ Baltimore RESCO
. WV gJohn E Amos

15 - MD @ Stericycle

. MD @ Montgomery County Incin.
s PA g Keystone

= PA g Homer City

- W g Mt. Storm

10 - VA g Chesterfield

= NC g Roxboro

8 MD g Brandon Shores

- VA g Possum Point
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5 - MD gMorgantown

8 MD gChalk Point

- VA g Potomac River

. VA @ Arlington - Pentagon

. MD @ Phoenix Services

Rank

0
0% 20% 40% 60% 80% 100%
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Atmospheric Deposition Flux to the Rock Creek Watershed
from Anthropogenic Mercury Emissions Sources in the U.S. and Canada

municipal waste incin — 1989
medical waste incin — 1999
hazardous waste incin — 19499
industrial waste incin — 1999
other waste incin — 1999

chloralkali — 1999
other c:hemil::lﬂlfmﬂnuf — } ggg

u aper —
c:emer?tfc:puril]c:rgte — 19499
mining —1999
metallurgical processes —1999
lamp manuf & breakage — 1999
other manufacturing — 19899
other —1999

other fuel combustion — 1999
natural gas combustion —1999
mobile sources —1994

oil combustion (non-mobile) —1999
coal combustion {other) —1998

coal elec (not IPM) — 1999
coal elec (IPM) — 19899

coal elec — base case — 2010
coal elec — Clear Skies — 2010

coal elec — base case — 2020
coal elec — IAQRfTrading — 2020
coal elec — Clear Skies — 2020

l USA
[ canada

1 2 3 4
Total Atmos. Dep Flux to the Rock Creek Watershed (g Hg/km2-year)

5
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Context



Hg from
other sources:
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& more distant
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Atmospheric Mercury Fate Processes

--------------------------------
.........................
---------
................
»
.............

Polar sunrise

]
......

halogen-mediated

i “mercury depletion events” i
heterogeneous oxidation?; :

Br
== — -
S S S CLOUD DROPLET
H |
Vapor phase:
Hg(0) oxidized to RGM Ha(p)
anng(p)byOs,Hzoz O EEEEEEEEEEEEER
Cl,, OH, HCI
Primary [ <
Anthropogenic
Emissions
I I I Natural Re-emission of previously

deposited anthropogenic
and natural mercury

emissions

Hg(0) oxidized to dissolved

- Elemental Mercury [Hg(0)]
- Hg(ll), ionic mercury, RGM
- Particulate Mercury [Hg(p)]

Hg(ll) reduced to Hg(0)
by SO, and sunlight

— Adsorption/
mmum desorption
of Hg(ll) to
/from soot
N =—

Hg(ll) species by O, OH,
HOCI, OCI-

Wet deposition
Dry deposition




A policy development requires:
» source-attribution (source-receptor info)
» estimated impacts of alternative future scenarios

 estimation of source-attribution & future impacts
requires atmospheric models

O atmospheric models require:
* knowledge of atmospheric chemistry & fate
* emissions data
» ambient data for “ground-truthing”
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Some Current Atmospheric Chemistry Challenges

O Plume chemistry, e.g., rapid reduction of RGM to
elemental mercury?

» If significant reduction of RGM to Hg(0)
IS occurring in power-plant plumes, then
much less local/regional deposition

47



RGM reduction in power-plant plumes?

[ No known chemical reaction is capable of causing significant
reduction of RGM In plumes — e.g. measured rates of SO,
reduction can’t explain some of the claimed reduction rates

1 Very hard to measure
d Aircraft
1 Static Plume Dilution Chambers (SPDC)
1 Ground-based measurements
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RGM reduction in power-plant plumes?

Most current state-of-the-science models do not include processes
that lead to significant reduction in plumes

Recent measurement results show less reduction

Significant uncertainties — e.g., mass balance errors comparable to
measured effects...

Current status — inconclusive... but weight of evidence suggest that
while some reduction may be occurring, it may be only a relatively
small amount

Recent measurements at Steubenville, OH appear to show strong
local mercury deposition from coal-fired power plant emissions.

49



Some Current Atmospheric Chemistry Challenges

1 Boundary conditions for regional models?

50



Some Current Atmospheric Chemistry
Challenges

4 Oxidation of elemental mercury by O, and OH® may be
over-represented, leading to overestimation of the

contribution of global sources to regional deposition

Calvert, J., and S. Lindberg (2005). Mechanisms of mercury removal by O3 and
OH in the atmosphere. Atmospheric Environment 39: 3355-3367.
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Some Current Atmospheric Chemistry
Challenges

O Atmospheric methyl-mercury: significance? sources?

transport? chemistry? deposition?

e.g., Hall et al. (2005). Methyl and total mercury in precipitation in the Great
Lakes region. Atmospheric Environment 39: 7557-7569.
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Some Current Atmospheric Chemistry
Challenges

Plume chemistry, e.g., rapid reduction of RGM to
elemental mercury?

Boundary conditions for regional models?

Oxidation of elemental mercury by O, and OH® may be
over-represented, leading to overestimation of the

contribution of global sources to regional deposition

Calvert, J., and S. Lindberg (2005). Mechanisms of mercury removal by O3 and
OH in the atmosphere. Atmospheric Environment 39: 3355-3367.

Atmospheric methyl-mercury: significance? sources?

transport? chemistry? deposition?

e.g., Hall et al. (2005). Methyl and total mercury in precipitation in the Great
Lakes region. Atmospheric Environment 39: 7557-75609.

Source-Receptor answers influenced by above factors

53
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Geographic Distribution of Estimated Anthropogenic Mercury
Emissions in the U.S. (1999) and Canada (2000)

Mercury Emissions
(gramslkmz- yr)

10-0.001
10.001-0.01
I 0.01-0.1
. 041-1
T 1-10

I 10 - 100

I 100 - 1000
I 1000 - 10000

0 1000 Kilometers
T




Temporal Problems with Emissions Inventories

Variations on time scales of minutes to hours
= CEM’s needed — and not just on coal-fired power plants

= CEM’s must be speciated or of little use in developing
critical source-receptor information

= Clean Air Mercury Rule only requires ~weekly total-Hg
measurements, for purposes of trading

We don’t have information about major events

" e.g., maintenance or permanent closures, installation
of new pollution control devices, process changes

» Therefore, difficult to interpret trends in ambient data

5

Long delay before inventories released

= 2002 inventory is being released this year in U.S,;
till now, the latest available inventory was for 1999

= How can we use new measurement data?




Overall Budget of Power Plant

1000 MW x $0.10/kw-hr
= $1,000,000,000 per year

Speciation Continuous
Emissions Monitor (CEM):

~$200,000 to purchase/install -
Cost of Electricity

Amortize over 4 yrs: ~$50,000/yr
0.10/kw-hr = 0.10001/kw-hr

~$50,000/yr to operate $1000/yr = $1000.10/yr

Total: ~$100,000/yr
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Why are emissions speciation data - and potential
plume transformations -- critical?

100

M Hg() emit Il Hg(0) emit

10 ] Hg(p) emit

0.1

deposition flux (ug/m2-yr) for
hypothetical 1 kg/day source

0.001

0-15 15-30 30 - 60 60 - 120 120 - 250
distance range from source (km)

Logarithmic

NOTE: distance results averaged over all directions —
Some directions will have higher fluxes, some will have lower 59
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New Receptors from David Schmeltz, March 2003

| Adirondack State Park

Puget Sound

Lake Tahoe

J Mesa Verde Natl Park
}F

L

L

Ry

Mobile Bay

Massachusetts Bay

Long Island Sound

Sandy Hook

Mammoth Cave Natl Park
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Hg Deposition from U.S. Coal-Fired Power Plants in 1999

and Percent Change in Impact in 2020 with Clear Skies
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Hg Deposition from U.S. Coal-Fired Power Plants in 1999
and Percent Change in Impact in 2020 with IAQR/Trading Scenario
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Results for
Mammoth Cave
National Park
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Top 25 Contributors to Hg Deposition to Mammoth Cave National Park

25 |

IL g Joppa
KY g Ghent

IN g Clifty Creek

TX gMonticello
KY g Coleman
GA g Scherer

s IN g Gibson

. FL @ St. Joseph®s Hospital
. TN [] Env. Waste Reduction
- TN ] Olin Corp.
AL g Miller

- TN g Bull Run

- AL g Colbert

f AL g Gaston

_ NV v Jerritt Canyon
AL g Gorgas

f GA g Bowen

8 AL g Widows Creek

. IN @ Rockport

- KY g Paradise

5 - TN @ Sumner County Incin.

- TN @ Kingston

8 KY @ LWD

- TN @ Johnsonville

-1 TN g Gallatin

Rank

coal-fired elec gen
other fuel combustion
waste incineration
metallurgical
manufacturing/other
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Atmospheric Deposition Flux to Mammoth Cave National Park
from Anthropogenic Mercury Emissions Sources in the U.S. and Canada

municipal waste incin — 1998
medical waste incin — 1999
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coal elec — base case — 2010
coal elec — Clear Skies — 2010

coal elec — base case — 2020
coal elec — IAQRfTrading — 2020
coal elec — Clear Skies — 2020
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Results for
Chesapeake Bay



Coal-Fired
. . Electricity
Generation
Other Fuel

Combustion
Activities

. Waste
Incineration

Smelters
Chesapeake and other
Bay

Metallurgical

Fraction of Total
Modeled Deposition
Contributed by Source

0.1-1%
1-3%

Manufacturing
and Other

3-10%

]

A

|

& 10-30%
. > 30%

0 500 Kilometers




5 i Coal-Fired
. . Electricity
- Generation

Phoenix Services Other Fuel

Combustion
Activities

- Brandon Shores
4 - H.A. Wagner . Waste

Incineration

Baltimore RESCO

—

Smelters
and other
Metallurgical

Manufacturing

and Other
Chalk Point | Nz
Indian Riverl
Morgantown
Yorktown | NASA Incinerator Fraction of Total
= ~ Modeled Deposition
Chesterfield I'".\'-- Contributed by Source
- 10,
Norfolk Navy Yard ¥ %1%
A 1-3%
Chesapeake Energy Center o W 3-10%
& 10-30%
0 100 Kilometers | . > 30%



Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake Bay

25 ] MD @ Harford Co. Incin.
7 PA @ Harrisburg Incin.
7 NC g Belews Creek

7 B coal-fired elec gen MD [ Phoenix Services
] - PA @ Montour
A other fuel combustion » :
20 ] . . VA g Possum Point
- ® waste incineration NC @ BMWNC
y v metallurgical PA H Keystone
]

manufacturing/other WF\’,A..MT.OQELE v

15 | MD @ BALTIMORE RESCO
| NC @ Roxboro

| DE mINDIAN RIVER

| VA B Yorktown

| VA mChesterfield

10 | VA @ Chesapeake Energy Ctr.
- VA @ Hampton/NASA Incin.

- VA @ Norfolk Navy Yard

_ MD @ H.A. Wagner

] VA @ NASA Incinerator

5 | MD mChalk Point

- MD @ Morgantown

o MD @ Stericycle Inc.

- MD @ Brandon Shores

] MD @ Phoenix Services

Rank
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Atmospheric Deposition Flux to the Chesapeake Bay from
Anthropogenic Mercury Emissions Sources in the U.S. and Canada

municipal waste incin — 1989
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Atmospheric Deposition Flux to the Chesapeake Bay Watershed
from Anthropogenic Mercury Emissions Sources in the U.S. and Canada
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model
evaluation



Emissions

Inventories

What do atmospheric
mercury models need?

Data

Meteorological

Scientific understanding of
phase partitioning,
atmospheric chemistry,
and deposition processes

Ambient data for comprehensive
model evaluation and improvement
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some challenges facing mercury modeling

emissions
inventories

* need all sources

« accurately divided into different Hg forms

e U.S. 1996, 1999, 2003 / CAN 1995, 2000, 2005
 temporal variations (e.g. shut downs)

/8



Why iIs emissions speciation information critical?

100

M Hg() emit Il Hg(0) emit

10 ] Hg(p) emit

0.1

deposition flux (ug/m2-yr) for
hypothetical 1 kg/day source

0.001

0-15 15-30 30-60 60 - 120 120 - 250
- - distance range from source (km
Logarithmic : {km)

Hypothesized rapid reduction of Hg(l1) in plumes?
If true, then dramatic impact on modeling results... +q



some challenges facing mercury modeling

meteorological
data

* precipitation not well characterized
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some challenges facing mercury modeling

scientific
understanding

» what iIs RGM? what is Hg(p)?

* accurate info for known reactions?
 do we know all significant reactions?
 natural emissions, re-emissions?
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Atmospheric Chemical Reaction Scheme for Mercury

Reaction Rate Units Reference
GAS PHASE REACTIONS

Hg® + O; — Hg(p) 3.0E-20 cm3/molec-sec Hall (1995)

Hg® + HCI —» HgCl, 1.0E-19 cm3/molec-sec Hall and Bloom (1993)

Hg° + H,0, - Hg(p) 8.5E-19 cm3/molec-sec Tokos et al. (1998) (upper limit based
on experiments)

Hg° + Cl, - HgCl, 4.0E-18 cm3/molec-sec Calhoun and Prestbo (2001)

Hg? +OHC — Hg(p) 8.7E-14 cm3/molec-sec Sommar et al. (2001)

AQUEOUS PHASE REACTIONS

Hg? + O, —» Hg*?

4.7E+7 (molar-sec)?

Munthe (1992)

Hg® + OHC — Hg*?

2.0E+9 (molar-sec)?

Lin and Pehkonen(1997)

HgSO, - Hg° T*e((L971*T)-12595.0)T) gec-1 Van Loon et al. (2002)
[T = temperature (K)]

Hg(ll) + HO,C — Hg° ~0 (molar-sec)? Gardfeldt & Jonnson (2003)
Hg? + HOCI — Hg* 2.1E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg? + OCIt —» Hg*? 2.0E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg(I1) <> Hg(I1) g0y 9.0E+2 liters/gram; eqlbrm: Seigneur et al. (1998)

t = 1/hour rate: Bullock & Brehme (2002).
Hg* + h<— Hg° 6.0E-7 (sec)! (maximum) Xiao et al. (1994);

Bullock and Brehme (2002)

J 00



some challenges facing mercury modeling

ambient data for
model evaluation

e Mercury Deposition Network (MDN) is great, but:

* also need RGM, Hg(p), and Hg(0) concentrations

» also need data above the surface (e.g., from aircraft)

* also need source-impacted sites (not just background)
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Some Additional Measurement Issues
(from a modeler’s perspective)

e Data availability
e Simple vs. Complex Measurements



Some Additional Measurement Issues
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e Data avallability
e Simple vs. Complex Measurements



Data availability

A major impediment to evaluating and
Improving atmospheric Hg models has been
the lack of speciated Hg air concentration data

There have been very few measurements to
date, and these data are rarely made available
In a practical way (timely, complete, etc.)

The data being collected at Piney
Reservoir could be extremely helpful!




Some Additional Measurement Issues
(from a modeler’s perspective)

e Data avalilability
e Simple vs. Complex Measurements



Simple vs. Complex Measurements:
1. Wet deposition iIs a very complicated phenomena...

= many ways to get the “wrong” answer —
Incorrect emissions, incorrect transport,
Incorrect chemistry, incorrect 3-D precipitation,
Incorrect wet-deposition algorithms, etc..

=models need ambient air concentrations
first, and then if they can get those right,
they can try to do wet deposition...

ambient air
monitor

monitor



Simple vs. Complex Measurements:
2. Potential complication with ground-level monitors...

(“fumigation”, “filtration”, etc.)...

= atmospheric phenomena are complex and not well understood;

= models need “simple” measurements for diagnostic evaluations;

= ground-level data for rapidly depositing substances (e.g., RGM) hard to interpret
= elevated platforms might be more useful (at present level of understanding)

monitor above
the canopy

monitor
at ground
level




Simple vs. Complex measurements - 3. Urban areas:
a. Emissions inventory poorly known
b. Meteorology very complex (flow around buildings)

C. SO0, measurements in urban areas not particularly useful
for current large-scale model evaluations

i eIy | B
A ST A EESERiail




Simple vs. Complex Measurements —
4: extreme near-field measurements

Sampling site?

® Sampling near intense sources?
® Must get the fine-scale met “perfect”

Ok, If one wants
to develop
hypotheses
regarding
whether or not
this is actually a
source of the
pollutant (and
you can’tdo a
stack test for
some reason!).



Complex vs. Simple Measurements —
5: Need some source impacted measurements

Major questions regarding plume chemistry
and near-field impacts (are there “hot spots”?)

Most monitoring sites are designed to be
“regional background” sites (e.g., most
Mercury Deposition Network sites).

We need some source-impacted sites as well to
help resolve near-field questions

But not too close — maybe 20-30 km is ideal (?)



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

Intro- Stage | Stage 11 Stage 11 Conclu-

Total Gaseous Mercury (ng/m?3) at Neuglobsow: June 26 — July 6, 1995
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
Total Particulate Mercury (pg/m?3) at Neuglobsow, Nov 1-14,
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Simple vs. Complex Measurements:
1. Wet deposition Is a very complicated phenomena...

= many ways to get the “wrong” answer —
Incorrect emissions, incorrect transport,
Incorrect chemistry, incorrect 3-D precipitation,
Incorrect wet-deposition algorithms, etc..

=models need ambient air concentrations
first, and then if they can get those right,
they can try to do wet deposition...

ambient air
monitor

monitor



speciated ambient concentration data is scarce
» few measurement sites at ground level
= very few measurements aloft

therefore, atmospheric mercury models have
not really been comprehensively evaluated yet
= we don’t really know how good or bad they are

collaboration between measurement and
modeling community is key

" measurers need modelers to help interpret data
= modelers need measurements to evaluate models




model
Intercomparison



HYSPLIT 1996

Wet + Dry Deposition: HYSPLIT (Nebraska) ]

for emissions of different mercury forms from different stack heights
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Wet + Dry Deposition: ISC (Tampa)

for emissions of different mercury forms from different stack heights
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Ontario Michigan Huron Superior

Model-estimated U.S. utility atmospheric mercury
deposition contribution to the Great Lakes:
HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs.
CMAQ-HG (2001 meteorology, 2001 emissions).




B HYSPLIT
|| 25% added to CMAQ

] CMAQ
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Ontario Michigan Huron Superior

O Model-estimated U.S. utility atmospheric mercury deposition
contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology,
1999 emissions) vs. CMAQ-Hg (2001 meteorology, 2001 emissions).

This figure also shows an added component of the CMAQ-Hg
estimates -- corresponding to 30% of the CMAQ-Hg results — in an
attempt to adjust the CMAQ-Hg results to account for the deposition
underprediction found in the CMAQ-Hg model evaluation.
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