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Three “forms” of atmospheric mercury

Elemental Mercury: Hg(0)
» ~ 9500 of total Hg in atmosphere

* long atmospheric lifetime (~ 0.5 - 1 yr); globally distributed

Reactive Gaseous Mercury (“RGM”)
« a few percent of total Hg in atmosphere
« oxidized mercury: Hg(ll)
» HgCI2, others species?
» somewhat operationally defined by measurement method
* very water soluble
« short atmospheric lifetime (~ 1 week or less);
» more local and regional effects

* not very water soluble

Particulate Mercury (Hg(p)
» a few percent of total Hg in atmosphere
* not pure particles of mercury...
(Hg compounds associated with atmospheric particulate)
* species largely unknown (in some cases, may be HgO?)
» moderate atmospheric lifetime (perhaps 1~ 2 weeks)
* local and regional effects
* bioavailability?
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NOAA HYSPLIT

MODEL

Figure 1. Lagrangian Puff Air Transport and Deposition Model

1

d
]

2

ﬂ: mezss of pollukand
(decrmases o de-sbruc ton and
deposion occur easch time skep)

Carteriine of puff motion

detarmined bes wind
diraction amd waloaiby

Phchahdis and chamical
transformetion of poliutent ales
enimated a1 eaoh Limes stop

instial paff

lovzaficm = ot
EoursE, will
indtial masa
& mize

.|
e

L

___---""’f

 ——

Fuffs s
lczation cantinualky

frackmsd.

sza, and

ul

Tl o aameced 8§
Friom @ Pl disring

& green times slep ia
aalowlated from ths
wam of Tha sskimal-
ad drr @nd el
depomiion of gan
and partiols-phass
malarial, BEmed on
poliufeani cone. in
the pofl the looal
weadihar. amd the
Falurs of Lha
murrfaom

v

-

o

depomrticn &

_._-—'_‘—-_\_l___._,_.

L

o o to lal

III-\.,.‘_LIHI

P

T,

" e,

ey

6



Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
(e.g., once every 7 hours).
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Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.

§ T 3

Release atT

| Release at Time = 8"

L

| Release at Time = 15|




0.1°x 0.1°
subgrid
for
near-field
analysis

source
location

900 0 900 1800 Kilometers
e —




0.1°x 0.1°
subgrid
for
near-field
analysis

|

| 11 i
1
&
source
location
.

400 Kilometers



Annual deposition summary for emissions of
elemental Hg from a 250 meter high source
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Annual deposition summary for emissions of
particulate Hg from a 250 meter high source
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Annual deposition summary for emissions of
ionic Hg from a 250 meter high source
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Annual deposition summary for emissions of
elemental Hg from a 250 meter high source
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Annual deposition summary for emissions of
particulate Hg from a 250 meter high source
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Why Is emissions speciation information critical?
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Why Is emissions speciation information critical?
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Geographic Distribution of Largest Anthropogenic Mercury
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Emissions of lonic Mercury (RGM) from Different Anthropogenic
Source Sectors in Great Lakes States and Provinces (~1999-2000)
[Total RGM emissions = 13.4 metric tons/year]
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Why do we need atmospheric mercury models?

» 10 get comprehensive source attribution information ---
we don’t just want to know how much iIs depositing at any
given location, we also want to know where it came
from...

» 10 estimate deposition over large regions,
...because deposition fields are highly spatially variable,
and one can’t measure everywhere all the time...

» to estimate dry deposition

» 1o evaluate potential consequences of alternative future
emissions scenarios
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Emissions

Inventories

What do atmospheric
mercury models need?

Data

Meteorological

Scientific understanding of
phase partitioning,
atmospheric chemistry,
and deposition processes

Ambient data for comprehensive
model evaluation and improvement
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some challenges facing mercury modeling

emissions | « need all sources
Inventories | « accurately divided into different Hg forms
e U.S. 1996, 1999, 2003 / CAN 1995, 2000, 2005
 temporal variations (e.g. shut downs)

24
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some challenges facing mercury modeling

meteorological
data

* precipitation not well characterized




some challenges facing mercury modeling

scientific
understanding

» what iIs RGM? what is Hg(p)?

* accurate info for known reactions?
 do we know all significant reactions?
 natural emissions, re-emissions?

=t




some challenges facing mercury modeling

ambient data for
model evaluation

e Mercury Deposition Network (MDN) is great, but:

* also need RGM, Hg(p), and Hg(0) concentrations

» also need data above the surface (e.g., from aircraft)

* also need source-impacted sites (not just background)

L
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Sites with 1996 mercury wet deposition
data in the Great Lakes region
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Where does the mercury come from that's deposited directly onto Lake Ontario?

Deposition Contribution of
Source Area to Receptor
(ug deposited / year per
km? of receptor area) per
(km? of source area)
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Largest atmospheric deposition
contributors to Lake Ontario
based on 1999-2000 emissions
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Fraction of total
Modeled deposition
Contributed by a
Particular source
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municipal waste incin
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cther waste incin
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Top 25 Contributors to Hg Deposition Directly

to Lake Ontario based on 1999-2000 U.S./Canadian emissions
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Some Next Steps

Use more highly resolved meteorological data grid

Expand model domain to include global sources

Simulate natural emissions and re-emissions of previously deposited Hg

Additional model evaluation exercises ... more sites, more time periods,
more variables [Measurements in Chesapeake Bay region]

Sensitivity analyses and examination of atmospheric Hg chemistry
(e.g. marine boundary layer, upper atmosphere)

Dynamic linkage with ecosystem cycling models
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Conclusions

Source-attribution information is important

Impacts are episodic & depend on form of mercury emitted
Modeling needed to get source-attribution information

Not enough monitoring data to evaluate and improve models
Many uncertainties but useful model results are emerging

Models don’t have to be perfect to give useful information
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