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For mercury, how important is atmospheric
deposition relative to other loading pathways?

Estimates of the Percent of Great Lakes Loadings
Attributable to the Atmospheric Deposition Pathwa
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Three “forms” of atmospheric mercury

Elemental Mercury: Hg(0)
» ~ 9500 of total Hg in atmosphere

* long atmospheric lifetime (~ 0.5 - 1 yr); globally distributed

Reactive Gaseous Mercury (“RGM”)
« a few percent of total Hg in atmosphere
« oxidized mercury: Hg(ll)
» HgCI2, others species?
» somewhat operationally defined by measurement method
* very water soluble
« short atmospheric lifetime (~ 1 week or less);
» more local and regional effects

* not very water soluble

Particulate Mercury (Hg(p)
» a few percent of total Hg in atmosphere
* not pure particles of mercury...
(Hg compounds associated with atmospheric particulate)
* species largely unknown (in some cases, may be HgO?)
» moderate atmospheric lifetime (perhaps 1~ 2 weeks)
* local and regional effects
* bioavailability?
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Figure 1. Lagrangian Puff Air Transport and Deposition Modal
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Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
(e.g., once every 7 hours).
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Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.
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The impact of any given mercury emissions source on any
receptor Is highly variable, both in space and in time
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lllustrative example of total deposition at a location
~40 km "downwind" of a 1 kg/day RGM source
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The impact of any given mercury emissions
source on any receptor is highly dependent on
the “type” of mercury emitted

d Elemental mercury - Hg® - is not readily dry or
wet deposited, and its conversion to ionic Hg or
Hg(p) Is relatively slow

 Particulate mercury — Hg(p) - is moderately
susceptible to dry and wet deposition

 lonic mercury — also called Reactive Gaseous
Mercury or RGM - is very easily dry and wet
deposited

A Conversion of RGM to HgY in plumes? 10
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Annual deposition summary for emissions of
elemental Hg from a 250 meter high source
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Hypothetical emissions source at lat = 42.5, long = -97.5;
simulation for entire year 1996 using archived NGM meteorology (180 km resolution)
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Annual deposition summary for emissions of
particulate Hg from a 250 meter high source
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simulation for entire year 1996 using archived NGM meteorology (180 km resolution)
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Annual deposition summary for emissions of

ionic Hg from a 250 meter high source
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simulation for entire year 1996 using archived NGM meteorology (180 km resolution)
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Annual deposition summary for emissions of
elemental Hg from a 250 meter high source
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Annual deposition summary for emissions of
particulate Hg from a 250 meter high source
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Estimated Speciation Profile for 1999 U.S.
Atmospheric Anthropogenic Mercury Emissions

Very uncertain for most sources
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 Each type of source has a very different
emissions speciation profile

d Even within a given source type, there can
be big differences — depending on process
type, fuels and raw materials, pollution
control equipment, etc.

17



Estimated 1999 U.S. Atmospheric Anthropogenic Mercury Emissions
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Emissions of lonic Mercury (RGM) from Different Anthropogenic
Source Sectors in Great Lakes States and Provinces (~1999-2000)
[Total RGM emissions = 13.4 metric tons/year]
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There can be large local and regional impacts

Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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Hypothesized rapid reduction of Hg(I1) in plumes?
If true, then dramatic impact on modeling results.. o



At the same time, medium to long range
transport can’t be ignored

Cumulative fraction deposited out to different distance ranges from a hypothetical source
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There are a lot of sources...

1 Large spatial and temporal variations

1 Each source emits mercury forms in
different proportions

A lot of different sources can contribute
significant amounts of mercury through
atmospheric deposition to any given
receptor

22



Geographic Distribution of Largest Anthropogenic Mercury
Emissions Sources in the U.S. (1999) and Canada (2000)
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Getting the source-apportionment
Information we all want is difficult

d With measurements alone, generally impossible

d Coupling measurements with back-trajectory analyses
yields only a little information

d Comprehensive fate and transport modeling —
“forward” from emissions to deposition — holds the

promise of generating detailed source-receptor
Information

25



There are a lot of uncertainties in current comprehensive fate
and transport models... Nevertheless, many models seem to

be performing reasonably well, i.e., are able to explain a lot
of what we see

Comparison of measured vs. modeled TPM
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Emissions sources which are among the
top-25 model-estimated contributors to
one or more of the Great Lakes
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Geographical Distribution of 1999 Direct
Deposition Contributions to Lake Michigan
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Emissions (metric tons/year)

Emissions and Deposition Contributions from Different
Distance Ranges Away From Lake Michigan
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Top 25 Contributors to 1999 Hg Deposition Directly to Lake Michigan
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source-
attribution —

the
“big picture”




Natural vs.
anthropogenic
mercury?

Studies show that
anthropogenic
activities have
typically increased
bioavailable Hg
concentrations in
ecosystems by a
factor of 2-10
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another example
3.24  of atmospheric -

deposition flux - T
Hg flux/ “7  increasing due to
pre- 5 5| anthropogenic
industrial ‘ emissions -y
Hg flux

Average mercury accumulation rate relative to pre-industrial (1800-1850)
accumulation rate in five lakes in Northern Alaska (based on sediment cores)

from Fitzgerald et al. (2005), “Modern and Historic Atmospheric Mercury Fluxes in Northern
Alaska: Global Sources and Arctic Depletion” Environ Sci Tech 39, 557-568 35



What is the relative
Importance of global,
national, regional, and
local sources?
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Data used by EPA to support recent Clean Air Mercury Rule

Mercury Deposition in the U.S.
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(slide courtesy of Rob Mason, Univ. of CT)

Data from Selgneur et al. (2004) model paper
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the Seigneur et
al. (2004) paper
shows that, for
regions where
deposition is
high, the impact
of local/regional
sources is the
main cause for
these elevated
concentrations.
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Results from the EPA REMSAD Mercury model

—168.0

Erle]

o240

1504

120

g

=

LEVEL 1 THO + MANIMTM — 1DD.0 { 106 2¥R)
Tima: 100 Jan 1, 1898—100 Der A1, 1948 — MINIMUM = 1% (333 168
Deg. Longiiude
1083 —116.8 —1D4.E —80.6 —B2A —nLE —E0.2

rTTTTTTTT T T T T T T T T T TT T T T T T T T T T T T TT T T T T T T T T TTTT I T TTTT TTTT T T TT TTT T ]
C - et
- 4o
- 'w ."ﬁ 1 g
C ] 5
- Tﬂ 1 3
- ] o
» * 'l'r F m a
— — 3.
- ¥ i’hi‘ .
- ' b o -
- 5 n
C ¥ T ! ]
- ' -
C ™ ! —
:— :“ EE‘?.E
Coll i1l EEEN RN
a &0 180 LA 40 aog 380 P

F B B R e B e % s

T e s b &0
Percent non-US for 1998

REMSAD ATDM V7,12

Source: REMSAD model

+ Based on this modeling

approximately half of
U.S. mercury deposition
is from domestic
anthropogenic sources
and half is from other
sources

Domestic sources
dominate deposition for
large part of Eastern
U.S.

Global sources are
dominant in the
Western U.S.

Source: slide developed
by Anne Pope for the Hg
Roundtable conference
call April 21, 2005
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Modeled vs. Measured Wet Deposition at Mercury
Deposition Network Site MD 13 during 1996
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HYSPLIT
modeling has
shown that

In areas of
significant local
and regional
anthropogenic
sources,
ambient
measurements
can be explained
reasonably well
by considering
only these local
and regional
anthropogenic
sources.
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Source-apportionment answers
depend a lot on where you are

) For areas without large emissions sources

1 the deposition may be relatively low,
1 but what deposition there is may largely come from
natural and global sources

) For areas with large emissions sources

1 the deposition will be higher
1 and be more strongly influenced by these large
emissions sources...
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What is the relative importance of global,
national, regional, and local sources?

Possible answers are emerging as
our understanding improves, but
there Is no scientific consensus yet...
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Conclusions

Source-attribution information is important

Impacts are episodic & depend on form of mercury emitted
Modeling needed to get source-attribution information

(more!) Monitoring needed for model evaluation & refinement

Many uncertainties but useful model results are emerging —
these HYSPLIT model results are being extended to include global &
natural emissions, and re-emissions

The question of the relative importance of global vs. national vs.
regional vs. local sources is complex —
the answer depends on location and on what model one is using...
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