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For many (but not all) aquatic ecosystems,
much of the loading comes directly or indirectly
through the atmospheric pathway...

For the atmospheric pathway:

1 How much of the mercury in atmospheric
mercury deposition comes from local, regional,
national, continental, and global sources?

J How important are different source types?



1. The impact of any given mercury emissions
source on any receptor iIs highly variable

1 extreme spatial and temporal variations

 Think about the weather and then add all
the chemistry and physics of mercury’s
Interactions with the “weather”




2. The impact of any given mercury emissions
source on any receptor is highly dependent on
the “type” of mercury emitted

d Elemental mercury - Hg® - is not readily dry or
wet deposited, and its conversion to ionic Hg or
Hg(p) Is relatively slow

 Particulate mercury — Hg(p) - is moderately
susceptible to dry and wet deposition

 lonic mercury — also called Reactive Gaseous
Mercury or RGM - is very easily dry and wet
deposited

A Conversion of RGM to Hg® in plumes?




Example simulation of the atmospheric fate
and transport of mercury emissions:

 hypothetical 1 kg/day source of
RGM, Hg(p) or Hg(0)

1 source height 250 meters
 results tabulated on a 1° x 1° receptor grid

 annual results (1996)
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Estimated Speciation Profile for 1999 U.S.
Atmospheric Anthropogenic Mercury Emissions

Very uncertain for most sources
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Estimated 1999 U.S. Atmospheric Anthropogenic Mercury Emissions
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 Each type of source has a very different
emissions speciation profile

d Even within a given source type, there can
be big differences — depending on process
type, fuels and raw materials, pollution
control equipment, etc.



3. There can be large local and regional
Impacts from any given source

[ same hypothetical 1 kg/day source of RGM
 source height 250 meters

1 exactly the same simulation, but results
tabulated on a 0.1° x 0.1° receptor grid

 overall results for an entire year (1996)
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Annual deposition summary for emissions of
elemental Hg from a 250 meter high source
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Annual deposition summary for emissions of
particulate Hg from a 250 meter high source

NG | | | | | |

T

o

- Annual Deposition Flux
0 F (ug/m2-yr)

arising from a 1 kg/day
emissions source

0-0.01
[ ]0.01-0.03

[ ]0.03-0.1

[ |01-03
0 0.3-1
[ 11-3
[ ]3-10

I 10 - 30
I 30 - 100

\IO

.1 x 0.1 degree gridm

N A
0 100 200 300 400 200 Kilometers

e ] —— N

Hypothetical emissions source at lat = 42.5, long = -97.5;
simulation for entire year 1996 using archived NGM meteorology (180 km resolution)



Annual deposition summary for emissions of
ionic Hg from a 250 meter high source
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Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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4. At the same time, medium to long range
transport can’t be ignored
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Cumulative fraction deposited within different distances from a hypothetical source
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Cumulative fraction deposited out to different distance ranges from a hypothetical source
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5. There are a lot of sources...

1 Large spatial and temporal variations

1 Each source emits mercury forms in
different proportions

A lot of different sources can contribute
significant amounts of mercury through
atmospheric deposition to any given
receptor



Geographic Distribution of Estimated Anthropogenic Mercury
Emissions in the U.S. (1999) and Canada (2000)
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6. Getting the source-apportionment
Information we all want is difficult

d With measurements alone, generally impossible

d Coupling measurements with back-trajectory analyses
yields only a little information

d Comprehensive fate and transport modeling —
“forward” from emissions to deposition — holds the

promise of generating detailed source-receptor
Information




/. There are a lot of uncertainties in current
comprehensive fate and transport models

 atmospheric chemistry of mercury
[ concentrations of key reactants
[ mercury emissions (amounts & speciation profile)

 meteorological data (e.g., precipitation)




8. Nevertheless, many models seem to be
performing reasonably well, i.e., are able to
explain a lot of what we see
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9. A model does not have to be perfect in order
to be useful

[ Often, most decisions just require qualitatively
reasonable results

d And realistically, most if not all data and information
used In decision-making has uncertainties
(e.g., public health impacts, economic impacts)

d So, we shouldn’t demand perfection of models




10. To get the answers
we need, we need

to use both
monitoring and
modeling --

together

Modeling
needed to help

Interpret
measurements
and estimate
source-
receptor
relationships

Monitoring
needed to
develop

models and to
evaluate their
accuracy



11. MDN is GREAT!...but there are some big
gaps In atmospheric monitoring — making it
very difficult to evaluate and improve models

d We desperately need national MDN-like network to
measure ambient air concentrations of Hg0, Hg(p), and
RGM, with readily available data

d What is RGM? What is Hg(p)?

d Both “background/regional” and near-source
measurements needed...

d Measurements at different heights in the atmosphere




Dry Deposition?

O Dry deposition is important, and difficult — if not
Impossible — to measure reliably with current
techniques...

1 Essentially all dry deposition estimates made
currently are made by applying models

d National ambient network of speciated ambient
measurements will help to evaluate and improve
models of dry deposition



Source-Apportionment
where does the mercury In

mercury deposition come from?




Source-apportionment
answers depend on

- where you are, and

J when you are

(and the effects of deposition
will be different in each ecosystem)



) For areas without large emissions sources

1 the deposition may be relatively low,
J but what deposition there is may largely come from
natural and global sources

) For areas with large emissions sources

1 the deposition will be higher
J and be more strongly influenced by these large
emissions sources...
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Example of

modeling results:
Chesapeake Bay




F Largest Regional Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Largest Local Individual Sources Contributing to

1999 Mercury Deposition Directly to the Chesapeake Bay
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Emissions and Direct Deposition Contributions from Different
Distance Ranges Away From the Chesapeake Bay
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Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake Bay
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Conclusions

Source-attribution information is important

Impacts are episodic & depend on form of mercury emitted
Modeling needed to get source-attribution information

(more!) Monitoring for model evaluation & refinement
Models don’t have to be perfect to give useful information

Many uncertainties but useful model results are emerging

Many opportunities exist for improvements in
modeling/monitoring integrated approaches to develop
source-attribution information



