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This report does not attempt to report on
all of the many aspects of mercury
contamination in the Great Lakes.

It is limited to the following two primary
components:

" Analysis of the atmospheric
transport and deposition of U.S.
and Canadian anthropogenic
mercury emissions to the Great
Lakes using the NOAA
HYSPLIT-Hg model;

" [lustrative literature data
regarding trends in Great Lakes
mercury contamination.
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Key Findings

Source-attribution information is needed for policy development
2. Atmospheric modeling is the only way to obtain comprehensive source-attribution information

Monitoring alone provides values/trends at a few locations, but it cannot answer certain key questions
= Why are the values what they are, e.g., source attribution?
= What are the values in other locations? Why are there (or are there not) spatial and/or temporal trends?
= What might happen in the future under different environment/policy conditions?

4. However, atmospheric monitoring data are essential to evaluate and improve models
» Atmospheric mercury modeling and monitoring are far more useful together than they are apart
» Monitoring programs need to be designed with model evaluation and improvement in mind

5. The fate and transport of atmospheric mercury is complex

« Scarcity of modeling resources and monitoring* & process** data means that models haven’t been adequately evaluated
* monitoring data refers to atmospheric concentration measurements in air and precipitation
** process data refers to measurements of fundamental phenomena such as chemical reactions and atmospheric deposition processes

» Thus, while there are many uncertainties in current models, the magnitude of the uncertainties is poorly known

6. A number of steps could be taken to characterize uncertainties and reduce them if necessary
= Collection of additional monitoring data and carrying out process research
= Increased quality and frequency of emissions data and inventories
= Comprehensive model evaluation/improvement, sensitivity analyses, and intercomparison experiments

7. Modeling has provided preliminary, useful information about mercury deposition to the Great Lakes
= Detailed, source-attribution results for U.S. and Canadian anthropogenic sources
= Of these sources, the biggest contribution is from U.S. coal-fired power plants in the Great Lakes region
= Waste incineration emissions and deposition decreased significantly during the 1990’s, but timing poorly known

8. Further work could provide more complete information

= Characterize/reduce uncertainties as described above
= Extend model to include global anthropogenic and natural sources
= Carry out simulations of past, present, and potential future atmospheric deposition and source-attribution

9. Trend data have been assembled for mercury in Great Lakes sediments, biota, emissions and deposition

= Levels tended to rise from ~1900 through the 1960’s and 1970’s, with a peak during WWII.

= Reductions in the ~1970’s, possibly due to the closure or changes at regional mercury-based chlor-alkali factories
= Levels have remained relatively constant since the 1980’s

= Interpretation of trend data is complicated by a scarcity of data on historical emissions and loading rates
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>

Why do we need atmospheric mercury models?

to get comprehensive source attribution information
...we don’t just want to know how much is depositing at any given
location, we also want to know where it came from:

® different source regions (local, regional, national, continental, global)
® different jurisdictions (different states and provinces)

® anthropogenic vs. natural emissions

® different anthropogenic source types (power plants, waste incin., etc)

to estimate deposition over large regions
...because deposition fields are highly spatially variable,
and one can’t measure everywhere all the time...

to estimate dry deposition
... presently, dry deposition can only be estimated via models

to evaluate potential consequences of alternative future
emissions scenarios

10
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Challenges / critical data needs for model evaluation:

Q

Need wet deposition — like data collected in the existing Mercury Deposition
Network (MDN) -- but also need ambient air concentrations of different forms
of mercury, i.e., reactive gaseous mercury [RGM], particulate mercury [Hg(p)],
and elemental mercury [Hg(0)]. Ambient air concentration data is extremely
scarce.

Need sites that are impacted by large sources as well as background sites
that are not impacted by large sources. Most current measurement sites are
“background” sites.

Most current measurements are currently done at ground level. Also needed
are measurements in the atmosphere above the surface (e.g., taken on
aircraft, towers...)

Unlike the wet deposition data assembled in the Mercury Deposition Network,
for ambient concentration data, there are significant data availability issues
for what little such data that there is.

NOAA is playing a central role with EPA in the emerging national mercury
ambient concentration measurement network under the umbrella of the
National Atmospheric Deposition Program (NADP). NOAA has “donated” the
first three sites for this new network. Contingent upon the cooperation of
scientists and other agencies, additional sites will be added and this network
will be successfully implemented.

12
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Figure 12. Largest sources of total mercury emissions to the air in the U.S. and Canada.
As discussed in the text, the data generally represent emissions for 1999-2000. 14



Largest sources of total mercury emissions to the air in the U.S. and Canada,
based on the U.S. EPA 1999 National Emissions Inventory
and 1995-2000 data from Environment Canada
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Location of the new NOAA Grand Bay NERR Atmospheric Mercury monitoring site,
other atmospheric Hg monitoring sites, and major Hg point sources in the region
(according to the EPA 1999 NEI emissions inventory)
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> Emissions inventories are fundamental inputs for atmospheric mercury models.

» Accurate inventories are required for model evaluation and improvement, as well as for
accurate simulations once the models are “perfected”

Inventories need to be improved
|

Inventories need to be more complete; more accurate; more transparent; uncertainties estimated.
® Emissions estimates needed for all forms of mercury [RGM, Hg(p), Hg(0)].

Long delay before inventories released
® 2002 U.S. inventory released in 2007; till now, latest available inventory was for 1999.
B Can’t use new measurement data to evaluate models if the inventories aren’t available.

Inventories must be prepared more frequently
®  Currently, the only available source-by-source inventories for the U.S. are for 1999 and for 2002.

® Large emissions reduction between ~1990 and ~2000, but not known when reductions occurred
at individual facilities. Thus, very difficult to interpret trends in monitoring data.

Inventories need to include information about major “step-change” events

® There can be abrupt “step-changes” in emissions due to shutdowns, maintenance, closures,
installation of new pollution control devices, feedstock changes, and process changes, etc.

®  Currently, the only data available in emissions inventories is an annual average. Therefore, it is
difficult to interpret variations/trends in ambient measurements.

Data are needed on short-term variations on time scales of minutes to hours

® There are short-term variations in emissions, on scales of minutes to hours. We need to know about these
short term variations to correlate emissions with measurements.

®  Clean Air Mercury Rule requires ~weekly total-Hg measurements for coal-fired power plants. Continuous
Emissions Monitors (CEM’s) needed — and not just on coal-fired power plants.

® CEM’'s must measure different forms of mercury or will not be useful in developing source-receptor info.

18
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Importance of time-resolved, speciated emissions measurements

Q

Based on CEM data collected at coal-fired power plants, it appears that there can be
significant variations in emissions of Hg(2), Hg(0) and Hg(p) over time scales of
minutes to hours

Meteorological conditions — and hence source-receptor relations — can vary
significantly over time scales of minutes to hours.

If we are collecting speciated ambient concentration data downwind of sources on

time scales of minutes to hours, and the source emissions are varying on the same
time scales, it is critical to have data regarding the emissions variations. Without it,
severe limitations on what can be learned from the ambient concentration data.

Speciated Continuous Emissions Monitors (CEM’s) are commercially available.

CAMR does not appear to require speciated emissions data, and does not appear to
require time-resolved data on the order of minutes to hours (i.e., longer term data are
all that is required, e.g., on the order of ~1 week). So, we have a problem.

For the purposes of model evaluation and improvement, and to the extent possible, it
would be helpful if speciated, time-resolved CEM'’s could be installed at large Hg
sources significantly impacting critical model-evaluation monitoring sites.

20
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Figure 44. Largest modeled contributors to Lake Michigan (close-up).

(same legend as previous slide)
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Atmospheric Deposition Flux to Lake Michigan from Anthropogenic
Mercury Emissions Sources in the U.S. and Canada
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Top 25 modeled sources of atmospheric mercury to Lake Michigan
(based on 1999 anthropogenic emissions in the U.S. and Canada)
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Emissions and deposition to Lake Michigan

arising from different distance ranges
(based on 1999 anthropogenic emissions in the U.S. and Canada)
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Next Steps: As resources permit, steps could be taken to refine/extend mercury modeling, e.g.:

1
2
3.
4
5

9.

10.

11.
12.

Extension of the model from North American domain to simulate impacts of global sources
Inclusion of the impact of natural emissions and re-emissions of anthropogenic mercury.
The use of more detailed meteorological data (e.g., described on finer spatial scales).
Development of a system for incorporating observed precipitation data into the model.

Further evaluation of the model against wet deposition data and ambient concentration data for elemental,
ionic, and particulate mercury.

Process-related measurements of atmospheric chemistry, phase-partitioning behavior, and atmospheric
deposition to evaluate and refine model algorithms.

Sensitivity tests -- investigating the influence of uncertainties in model inputs and model algorithms -- to
help determine which uncertainties are the most critical for model improvement.

Linkage of the atmospheric model to other models to form a multi-media mercury modeling system to track
mercury from emissions to ecosystem loading to food chain bioaccumulation to human exposure.

Use of updated emissions inventories as inputs to the model.

Estimation of the time-course of atmospheric loading to the Great Lakes by running the model over long
periods using a continuous record of historical emissions.

Estimation of the impacts of potential future emissions scenarios.

Participation in additional model comparison studies.
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Relative Importance of Anthropogenic vs. Natural Sources?

® Many studies have shown increased amounts of bio-available mercury in ecosystems due to
anthropogenic activities (~2x — 5x, sometimes more), but a large number of factors influence
the relative increases, e.g., proximity to sources, relative proportions of different forms of
mercury emitted from sources, particular biogeochemistry of the ecosystem, etc.

Relative Importance of Global vs. Domestic Sources?
" NOAA HYSPLIT-Hg work to date has not yet attempted to explicitly answer this question.

®* New work could be done to address this issue.

® Itis noted, however, that in many cases, much of the deposition in U.S. regions with significant
sources appears like it can be accounted for by consideration of U.S sources alone.

= A few estimates have been made using other models. Results to date suggest that:
® There is no “one” answer — the relative importance varies from location to location.
® In regions with significant sources, the relative importance of global sources appears to be diminished
® The answer also obviously varies depending on the time period

* Like with analysis of national sources, the global modeling to date is limited by a number of
uncertainties (emissions inventories, atmospheric chemistry, deposition processes) and the evaluation
of the models is significantly limited by a lack of observations. Thus, the significance of the
uncertainties is not well known.
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Summary of Great Lakes Region Trend Information for Atmospheric Mercury Emissions and Deposition

Trends in Great Lakes region atmospheric mercury emissions:
» Data are scarce and uncertain, but it appears that they rose significantly from ~1880 until ~1945, were
approximately level from 1945-1970, and decreased between 1970-1980.

Trends in U.S. atmospheric mercury emissions from the early 1990°s to ~2001:
« Significant decrease in emissions from municipal and medical waste incinerators, but exact timing of
changes at individual facilities poorly characterized.
» Emissions from coal-fired electricity generation and other source categories were relatively constant.

Trends in Canadian atmospheric mercury emissions:
* From 1990-2000, Canadian emissions are reported to have decreased by ~75 percent, largely due to process
changes at metal smelting facilities.

Trends in mercury wet deposition at monitoring sites in the Great Lakes region:

» Five long-term Mercury Deposition Network sites, with data beginning in 1996.

» For this report, data for 1996-2003 examined.

» Possible decrease between 2000 and 2001, and this may have been related to decreases in regional mercury
emissions from waste incinerators.

» There were only moderate changes in estimated ionic mercury emissions in the vicinity of these sites
between 1995-1996 and 1999-2001, but the precise timing of these changes is not known. Thus, it is difficult
to determine if the trends in precipitation mercury concentrations are related to these reductions.

Trends in mercury deposition to the Great Lakes:
* Trends in model-estimated deposition to the Great Lakes decreased significantly between 1995-1996 and
1999-2001, primarily due to decreases in emissions from U.S. municipal and medical waste incinerators.
 In both periods, the model results suggest that U.S. sources contributed much more to Great Lakes

atmospheric mercury deposition than Canadian sources. 30
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Figure 75. Mercury emissions in North
America and the Great Lakes region
(1800-1990).

Atmospheric mercury emissions from
(a) gold and silver mining in North
America; (b) modern anthropogenic
sources in North America; and (c)
modern anthropogenic sources in the
Great Lakes region (including the 8
Great Lakes U.S. states and the
province of Ontario). [a reproduction
of Figure 2 from Pirrone et al. (1998).]

Pirrone, N., Allegrini, I., Keeler, G., Nriagu,
J., Rossman, R., Robbins, J. (1998).
Historical atmospheric mercury emissions
and depositions in North America compared
to mercury accumulations in sedimentary
records. Atmos. Environ. 32(5): 929-940.
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il MDN sites in the Great Lakes region
with the longest data record
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Figure 77. Great Lakes MDN sites with the longest measurement record.




Figures 78-83. Mercury concentration in precipitation at long-term MDN sites in the Great Lakes region.
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Summary of Great Lakes Region Trend Information for Sediments and Biota

Trends in mercury in Great Lakes sediments:

« Examples of sediment mercury trend data were found for each of the Great Lakes except for
Lake Huron.

» The data typically show a 1940-1960 peak in sediment mercury, and in some cases there are
also secondary peaks in the 1970’s.

 Since the 1970’s sediment mercury concentrations appear to have generally been decreasing
in the Great Lakes.

Trends in mercury levels in Great Lakes biota:

» Data on mercury levels in Great Lakes fish and Herring Gull eggs are generally available
starting in the 1970’s, while data on levels in mussels are available beginning in 1992,

» While there are variations among species and among lakes, the data generally seem to show
a reduction from 1970 to the mid-1980’s, with little change since the mid-1980’s.

» This is most likely due to the significant reduction that occurred in the 1970’s in effluent
discharges to the Great Lakes (and their tributaries) from a number of sources (e.g., chlor-
alkali plants).
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Figure 95. Trend in sediment
mercury in Lake Michigan.
Profile of total mercury (ug/g
dry weight) levels in a core
sample from Lake Michigan.

Source: Marvin, C.; Painter, S.,
and Rossmann, R. (2004).
Spatial and temporal patterns in
mercury contamination in
sediments of the Laurentian
Great Lakes. Env. Research
95(3):351-362.
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Figure 106.
Trends in
Herring Gull

Egg Hg
concentrations.

Source of data — Canadian
Wildlife Service. Total
mercury concentrations in
eggs from colonies in the
Great Lakes region
expressed in units of ug Hg/g
(wet weight).

From 1971 — 1985, analysis
was generally conducted on
individual eggs (~10) from a
given colony, and the
standard deviation in
concentrations is shown on
the graphs.

From 1986 to the present,
analysis was generally

conducted on a composite
sample for a given colony.

The trend lines shown are for
illustration purposes only;
they were created by fitting
the data to a function of the
form y = cxP.
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Figure 107. Mercury concentration
in Great Lakes region mussels
(1992-2004). Total mercury in
mussels (ug/g, on a dry weight
basis).

In a few cases (e.g. for several sites
in 2003), mercury concentrations
were below the detection limit. In
these cases the concentrations are
shown with a white cross-hatched
bar at a value of one-half the
detection limit; in reality, the mercury
concentration could have been
anywhere between zero and the
detection limit.

Source of data: NOAA Center for
Coastal Monitoring and Assessment
(CCMA) (2006) and “Monitoring Data
- Mussel Watch” website:
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Figure 101. Mercury
concentration trends
Great Lakes Walleye.
Total mercury
concentrations (ppm

or ug Hg/g).

Sources of data:
Ontario Ministry of the
Environment (2006b),
for 45-cm Walleye
data, and
Environment Canada
(2006), for data on
Lake Erie Walleye
ages 4-6.
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Figure 102. Total
mercury levels in
Great Lakes
Rainbow Smelt,
1977-2004.

Source of data:
Environment
Canada (2006).
Note that the
scales for the lakes
are different.
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B HYSPLIT
| CMAQ

Deposition (ug/m2-year)
S F N W »~ O O N

Erie Ontario Michigan Huron Superior

Model-estimated U.S. utility atmospheric mercury
deposition contribution to the Great Lakes:

HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs.

CMAQ-Hg (2001 meteorology, 2001 emissions).

Note: Uncertainty estimates for these results could be developed in future work
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B HYSPLIT
| | 25% added to CMAQ

] CMAQ

Deposition (ug/m2-year)
O L N W A O O N 00

Erie Ontario Michigan Huron Superior

O Model-estimated U.S. utility atmospheric mercury deposition contribution
to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs.
CMAQ-Hg (2001 meteorology, 2001 emissions).

O This figure also shows an added component of the CMAQ-Hg estimates --
corresponding to 25% of the CMAQ-Hg results — in an attempt to adjust
the CMAQ-Hg results to account for the deposition underprediction found
in the CMAQ-Hg model evaluation.

Note: Uncertainty estimates for these results could be developed in future work 43
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

Total Particulate Mercury (pg/m?3) at Neuglobsow, Nov 1-14,
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Abstract

Five regional s
and ope global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted
concentrations in ambient air were compared agamst mercury species observed at four monitoring stations in Central and Northem
Europe and a station on the Irish west coast. The modelled concentrations of total particulate mercury (TPM) were generally
consistent with the measurements at all sites. The modeks exhibited significant ability to simulate concentrations of gaseous
elemental mercury (GEM), but some of the short-duration peaks at the Central Furopean stations could not be consistently
reproduced. Possible reasons for these discrepancies include (1) errors in the anthropogenic emissions inventory utilized;
spatial resalution of the models; and (3) uncertainty of natural and re-emitted mercury sources. The largest discrepancies between

and modelled ions were found for reactive gaseous mercury (RGM). For these models, the uncertainty in
predicting short-term (two-week episode) variations of mercury species in air can be characterized by the following overall
statistics: 90% of the results for TGM are within a factor of 1.35 of the measurements; for TPM, 90
for RGM, 90% are within a factor of 10
© 2007 Elsevier B.V. All rights reserved

cale models with a horizontal domain covering the European continent and its surrounding seas, one bemispheric

2) coarse

‘o are within a factor of 2.5; and

vords: Mercury species; A pl 3 Atmosph transport, Numerical modelling; Model infercomparison

L. Introduction

The Cooperative Programme for Monitoring and
Evaluation of the Long-Range Transmission of Air
Pollutants in Europe (EMEP) was blished by the
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Intercomparison study of atmospheric mercury models:
2. Modelling results vs. long-term observations and
comparison of country deposition budgets
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each other and with available measurements from 11 monitoring stations of the EMEP measurement network. Because only o very d e OS I t I O n b u d etS SC I e n Ce
limited mmmber of long-term measurement records of Hg were available, significant attention was given 1o the intercomparison of [

eraged values of Hg concentrations and depositions as well as items of the Hg deposition
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Abstract

madelling results. Monthly and annualk
budgets for individual European countries were compared. The models demonstrated good agreement {within £ 20%) between annual -

modelled and observed values of gaseous elemental Hg. Modelled values of Hg wet deposition in Western and Central Furope agreed O t e Tota E nVI ro n m e nt
with the observations within £45%. The probability to predict wet depositions within a factor of 2 with regard 1o measurements was
50 70% for all the models. The scattering of modelling results for dry depositions of Hg was more significant (up to £ 50% at the

annual scale and even higher for monthly data). Contribution of dry deposition 1o the total Hg deposition was estimated at 20 30% 3 7 7 - 3 1 9 - 333
with elevated dry deposition fluxes during summer time. The participating models agree in their predictions of trunsbour ' - .
t the mothly scale and within = 30% at the annual s

Je. For the cases investigated,

pollution for individual countries within =+ 6{
all the models predict that the major part of national anthropogenic Hg emissions is I 1 outside the country territory
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NOAA Lagrangian Puff Atmospheric Fate and Transport Model

HYSPLIT
MODEL
o) 1 2
TIME (hours) 4 : T — ¢
=] = mass of pollutant The puff's mass, size, V4
(changes due to chemical transformations and and location are »
deposition that occur at each time step) continuously tracked...
Phase partitioning and chemical ™
transformations of pollutants within the .
puff are estimated at each time step - "
> ul
D—
Initial puff location __f"f#
is at source, with ,
mass depending Centerline of Dry and wet
on emissions rate puff motion deposition of
determined by the pollutants
l'.-‘ wind direction in the puff are
Py and velocity estimated at
each time step.
H v v v

[ETEIEm
XD deposition 1 deposition 2 deposition to receptor
1 :
—— O DT e e O
-

i . .
_— —
e

50



Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
(e.g., once every 7 hours).
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Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.
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Cohen et al (2004). “Modeling
the Atmospheric Transport and
Deposition of Mercury to the
Great Lakes.” Environmental
Research 95(3), 247-265.

Note: Volume 95(3) is a Special Issue:
"An Ecosystem Approach to Health
Effects of Mercury in the St. Lawrence
Great Lakes", edited by David
Carpenter.
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