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Mercury transforms into 
methylmercury in soils

and water, then can
bioaccumulate in fish

Humans and 
wildlife affected 
primarily by
eating fish 
containing 
mercury

Best documented 
impacts are on 
the developing 
fetus:  impaired 
motor and 
cognitive skills

There are many ways in which mercury is introduced into a given aquatic 
ecosystem... atmospheric deposition can be a very significant pathway

atmospheric 
deposition to 
the watershed

atmospheric deposition 
directly to the water surface
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Three “forms” of atmospheric mercury
Elemental Mercury: Hg(0)

• ~ 95% of total Hg in atmosphere
• not very water soluble
• long atmospheric lifetime (~ 0.5 - 1 yr);  globally distributed

Reactive Gaseous Mercury (“RGM”)
• a few percent of total Hg in atmosphere
• oxidized mercury: Hg(II)
• HgCl2, others species?
• somewhat operationally defined by measurement method
• very water soluble
• short atmospheric lifetime (~ 1 week or less);
• more local and regional effects

Particulate Mercury (Hg(p)
• a few percent of total Hg in atmosphere
• not pure particles of mercury…

(Hg compounds associated with atmospheric particulate)
• species largely unknown (in some cases, may be HgO?)
• moderate atmospheric lifetime (perhaps 1~ 2 weeks)
• local and regional effects
• bioavailability?
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CLOUD DROPLET

cloud

Primary
Anthropogenic

Emissions

Hg(II), ionic mercury, RGM
Elemental Mercury [Hg(0)]

Particulate Mercury [Hg(p)]

Re-emission of  previously 
deposited anthropogenic 

and natural mercury

Hg(II) reduced to Hg(0) 
by SO2 and sunlight

Hg(0) oxidized to dissolved 
Hg(II) species by O3, OH,

HOCl, OCl-

Adsorption/
desorption
of Hg(II) to
/from soot

Natural
emissions

Upper atmospheric
halogen-mediated
heterogeneous oxidation?

Polar sunrise
“mercury depletion events”

Br

Dry deposition

Wet deposition

Hg(p)

Vapor phase:

Hg(0) oxidized to RGM 
and Hg(p) by O3, H202, 
Cl2, OH, HCl

Multi-media interface

Atmospheric Mercury Fate Processes
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GAS PHASE REACTIONS

AQUEOUS PHASE REACTIONS

ReferenceUnitsRateReaction

Xiao et al. (1994); 
Bullock and Brehme (2002)

(sec)-1 (maximum)6.0E-7Hg+2 + h< → Hg0

eqlbrm: Seigneur et al. (1998)

rate: Bullock & Brehme (2002).

liters/gram;
t = 1/hour

9.0E+2Hg(II)   ↔ Hg(II) (soot)

Lin and Pehkonen(1998)(molar-sec)-12.0E+6Hg0 + OCl-1 → Hg+2

Lin and Pehkonen(1998)(molar-sec)-12.1E+6Hg0 + HOCl → Hg+2

Gardfeldt & Jonnson (2003)(molar-sec)-1~ 0Hg(II)  + HO2C → Hg0

Van Loon et al. (2002)T*e((31.971*T)-12595.0)/T)    sec-1

[T = temperature (K)]
HgSO3 → Hg0

Lin and Pehkonen(1997)(molar-sec)-12.0E+9Hg0 + OHC → Hg+2

Munthe (1992)(molar-sec)-14.7E+7Hg0 + O3 → Hg+2

Sommar et al. (2001)cm3/molec-sec8.7E-14Hg0 +OHC → Hg(p)
Calhoun and Prestbo (2001)cm3/molec-sec4.0E-18Hg0 + Cl2 → HgCl2

Tokos et al. (1998) (upper limit 
based on experiments)

cm3/molec-sec8.5E-19Hg0 + H2O2 → Hg(p) 
Hall and Bloom (1993)cm3/molec-sec1.0E-19Hg0 + HCl → HgCl2

Hall (1995)cm3/molec-sec3.0E-20Hg0 + O3 → Hg(p)

Atmospheric Chemical Reaction Scheme for Mercury
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NOAA HYSPLIT MODEL
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Geographic Distribution of Largest Anthropogenic Mercury 
Emissions Sources in the U.S. (1999) and Canada (2000)
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• In principle, we need do this for each source 
in the inventory

• But, since there are more than 100,000 
sources in the U.S. and Canadian inventory, 
we need shortcuts…

• Shortcuts described in Cohen et al 
Environmental Research 95(3), 247-265, 2004
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Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, 
L., Niemi, D., Ratte, D., Deslauriers, M., Duval, R., 
Laurin, R., Slotnick, J., Nettesheim, T., McDonald, J.
“Modeling the Atmospheric Transport and Deposition of 
Mercury to the Great Lakes.” Environmental Research
95(3), 247-265, 2004.

Note: Volume 95(3) is a Special Issue: "An Ecosystem Approach to
Health Effects of Mercury in the St. Lawrence Great Lakes", edited by 
David O. Carpenter.
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• For each run, simulate fate and transport everywhere,
but only keep track of impacts on each selected receptor
(e.g., Great Lakes, Chesapeake Bay, etc.)

• Only run model for a limited number (~100) of hypothetical, 
individual unit-emissions sources throughout the domain

• Use spatial interpolation to estimate impacts from sources at 
locations not explicitly modeled
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0.1o x 0.1o

subgrid
for 
near-field 
analysis

source
location
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Why is emissions speciation information critical?
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Why do we need atmospheric mercury models?

to get comprehensive source attribution information ---
we don’t just want to know how much is depositing at any 
given location, we also want to know where it came 
from…

to estimate deposition over large regions, 
…because deposition fields are highly spatially variable, 
and one can’t measure everywhere all the time…

to estimate dry deposition

to evaluate potential consequences of alternative future 
emissions scenarios 
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Emissions
Inventories

Meteorological
Data

Scientific understanding of
phase partitioning, 
atmospheric chemistry, 
and deposition processes

Ambient data for comprehensive 
model evaluation and improvement

What do atmospheric 
mercury models need?
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• Mercury Deposition Network (MDN) is great, but:
• also need RGM, Hg(p), and Hg(0) concentrations
• also need data above the surface (e.g., from aircraft)
• also need source-impacted sites (not just background)

ambient data for 
model evaluation

• what is RGM? what is Hg(p)?
• accurate info for known reactions? 
• do we know all significant reactions?
• natural emissions, re-emissions?

scientific 
understanding

• precipitation not well characterizedmeteorological 
data

• need all sources
• accurately divided into different Hg forms
• U.S. 1996, 1999, 2003 / CAN 1995, 2000, 2005
• temporal variations (e.g. shut downs)

emissions 
inventories

some challenges facing mercury modeling
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EMEP Model Intercomparison

Phase II – ambient concentrations
Phase III – wet and dry deposition

Chesapeake Bay region
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EMEP Model Intercomparison

Phase II – ambient concentrations
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EMEP Model Intercomparison

Phase II – ambient concentrations
Phase III – wet and dry deposition

Chesapeake Bay region
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Summer 2004 Chesapeake Bay Atmospheric Hg Study
(June – August 2004)

• NOAA Cooperative Oxford Lab: Bob Wood

• NOAA Air Resources Lab Atmospheric Turbulence and Diffusion 
Division (ATDD): Steve Brooks

• NOAA Air Resources Lab HQ Division: Winston Luke, Paul Kelley, 
Mark Cohen,  Richard Artz

• NOAA Chesapeake Bay Office: Maggie Kerchner

• Frontier GeoSciences: Bob Brunette, Gerard van der Jagt, Eric Prestbo

• Univ. of MD Wye Res. and Educ. Center: Mike Newall
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Cooperative Oxford Lab
(38.678EN, 76.173EW)

Wye Research and
Education Center

(38.9131EN, 76.1525EW)

Baltimore, MD

Washington, DC

Summer 2004 Measurement SitesSummer 2004 Measurement Sites
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Ambient concentration of carbon 
monoxide

(via NADP/NTN site)
Major ions in precipitation

(via NADP/NTN site)
Meteorology

(weekly via AirMON Dry)(continuous)
Ambient concentration of ozone 
and sulfur dioxide

Speciated Hg concentrations in 
ambient air (RGM, Hg(p), Hg0)

Event-based precipitation 
samples analyzed for Hg

WyeOxford

Summer 2004 Chesapeake Bay Atmospheric Hg Study
(June – August 2004)
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1. Atmospheric 
mercury 
modeling

3. What do 
atmospheric 
mercury models 
need from us?

2. Why do we 
need 
atmospheric 
mercury 
models?

4. Some 
preliminary 
results:

Model 
evaluation

Source Receptor 
Information
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Example of
Detailed Results:
1999 Results for
Chesapeake Bay
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Geographical Distribution
of 1999 Direct Deposition 

Contributions to the Chesapeake 
Bay (entire domain)
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Geographical Distribution of 1999 Direct Deposition 
Contributions to the Chesapeake Bay (regional close-up)
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Geographical Distribution of 1999 
Direct Deposition Contributions to 

the Chesapeake Bay (local close-up)
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Largest Regional Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Largest Local Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Emissions and Direct Deposition Contributions from Different 
Distance Ranges Away From the Chesapeake Bay
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Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake Bay

Phoenix Services
Brandon Shores

Stericycle Inc.
 Morgantown

Chalk Point
NASA Incinerator

 H.A. Wagner
Norfolk Navy Yard

Hampton/NASA Incin.
Chesapeake Energy Ctr.
Chesterfield
 Yorktown

INDIAN RIVER
 Roxboro

BALTIMORE RESCO
 Mt. Storm
 Homer City
 Keystone
 BMWNC

Possum Point
 Montour

Phoenix Services
Belews Creek
Harrisburg Incin.
Harford Co. Incin.

MD  
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Preliminary Results 
for other Maryland

Receptors
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Maryland Receptors Included in Recent Preliminary HYSPLIT-Hg 
modeling (but modeling was not optimized for these receptors!)

59



Largest Modeled Atmospheric Deposition Contributors Directly to 
Deep Creek Lake based on 1999 USEPA Emissions Inventory 

(national view)
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Largest Modeled Atmospheric Deposition Contributors Directly to 
Deep Creek Lake based on 1999 USEPA Emissions Inventory 

(regional view)
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Largest Modeled Atmospheric Deposition Contributors Directly to 
Deep Creek Lake based on 1999 USEPA Emissions Inventory 

(close-up view)
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Some Next Steps

Expand model domain to include global sources

Additional model evaluation exercises ... more sites, more time periods, 
more variables [Measurements in Chesapeake Bay region] 

Sensitivity analyses and examination of atmospheric Hg chemistry
(e.g. marine boundary layer, upper atmosphere)

Simulate natural emissions and re-emissions of previously deposited Hg   

Use more highly resolved meteorological data grid

Dynamic linkage with ecosystem cycling models
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Conclusions

Impacts are episodic & depend on form of mercury emitted

Source-attribution information is important

Modeling needed to get source-attribution information

Not enough monitoring data to evaluate and improve models

Many uncertainties but useful model results are emerging

Models don’t have to be perfect to give useful information
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EXTRA 
SLIDES
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• Hg is present at extremely trace levels in the atmosphere

• Hg won’t affect meteorology  (can simulate meteorology 
independently, and  provide results to drive model)

• Most species that complex or react with Hg are generally 
present at much higher concentrations than Hg

• Other species (e.g. OH) generally react with many other compounds 
than Hg, so while present in trace quantities, their concentrations cannot 
be strongly influenced by Hg

•The current “consensus” chemical mechanism (equilibrium + 
reactions) does not contain any equations that are not 1st order in Hg

• Wet and dry deposition processes are generally 1st order 
with respect to Hg

Why might the atmospheric fate of mercury 
emissions be essentially linearly independent?
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Spatial interpolation

RECEPTOR

Impacts from
Sources 1-3
are Explicitly
Modeled

2

1

3

Impact of source 4 estimated from
weighted average of 
impacts of nearby
explicitly modeled sources

4
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• Perform separate simulations at each location for emissions 
of pure Hg(0), Hg(II) and Hg(p) 

[after emission, simulate transformations between Hg forms]

• Impact of emissions mixture taken as a linear combination 
of impacts of pure component runs on any given receptor 
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“Chemical Interpolation”

Source

RECEPTOR

Impact of Source
Emitting
30% Hg(0)
50% Hg(II)
20% Hg(p)

=

Impact of Source Emitting Pure Hg(0)0.3 x

Impact of Source Emitting Pure Hg(II)0.5 x

Impact of Source Emitting Pure Hg(p)0.2 x

+
+
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Standard Source Locations in Maryland region during recent simulation
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