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e Fish consumption is the most important exposure
pathway for most humans and wildlife

* For many (but not all) aquatic ecosystems,
much of the loading comes directly or indirectly
through the atmospheric pathway...

For the atmospheric pathway:

1 How much of the mercury in atmospheric
mercury deposition comes from local, regional,
national, continental, and global sources?

J How important are different source types?



We currently face key policy decisions
regarding regulation of Hg emissions:

d what difference will regulating U.S.
coal-fired power plants make?

 Is emissions trading workable (and ethical)?

d how deep should emissions reductions be?



Three “forms” of atmospheric mercury

Elemental Mercury: Hg(0)
» ~ 9500 of total Hg in atmosphere

* long atmospheric lifetime (~ 0.5 - 1 yr); globally distributed

Reactive Gaseous Mercury (“RGM”)
« a few percent of total Hg in atmosphere
« oxidized mercury: Hg(ll)
» HgClI2, others species?
« somewhat operationally defined by measurement method
* very water soluble
« short atmospheric lifetime (~ 1 week or less);
» more local and regional effects

* not very water soluble

Particulate Mercury (Hg(p)
« a few percent of total Hg in atmosphere
* not pure particles of mercury...
(Hg compounds associated with atmospheric particulate)
* species largely unknown (in some cases, may be HgO?)
» moderate atmospheric lifetime (perhaps 1~ 2 weeks)
e local and regional effects
* bioavailability?
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Atmospheric Chemical Reaction Scheme for Mercury

Reaction Rate Units Reference
GAS PHASE REACTIONS
Hg® + O; — Hg(p) 3.0E-20 cm3/molec-sec Hall (1995)
Hg? + HCI —» HgCl, 1.0E-19 cm3/molec-sec Hall and Bloom (1993)
Hg° + H,0, - Hg(p) 8.5E-19 cm3/molec-sec Tokos et al. (1998) (upper limit based
on experiments)
Hg° + Cl, - HgCl, 4.0E-18 cm3/molec-sec Calhoun and Prestbo (2001)
Hg? +OHC — Hg(p) 8.7E-14 cm3/molec-sec Sommar et al. (2001)
AQUEOUS PHASE REACTIONS
Hg® + O, > Hg*? 4.7E+7 (molar-sec)? Munthe (1992)
Hg® + OHC —» Hg*? 2.0E+9 (molar-sec)! Lin and Pehkonen(1997)
HgSO, - Hg° T*e((L971*T)-12595.0)T) gec-1 Van Loon et al. (2002)
[T = temperature (K)]

Hg(ll) + HO,C — Hg° ~0 (molar-sec)? Gardfeldt & Jonnson (2003)
Hg® + HOCI — Hg*? 2.1E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg? + OCIt —» Hg*? 2.0E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg(I1) <> Hg(I1) g0y 9.0E+2 liters/gram; eqlbrm: Seigneur et al. (1998)

t = 1/hour rate: Bullock & Brehme (2002).
Hg* + h<— Hg° 6.0E-7 (sec)* (maximum) Xiao et al. (1994);

Bullock and Brehme (2002)




Figure 1. Lagrangian Puff Air Transport and Deposition Model
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Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
(e.d., once every 7 hours).
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Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.
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1. The impact of any given mercury emissions
source on any receptor iIs highly variable

1 extreme spatial and temporal variations

 Think about the weather and then add all
the chemistry and physics of mercury’s
Interactions with the “weather”
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2. The impact of any given mercury emissions
source on any receptor is highly dependent on
the “type” of mercury emitted

d Elemental mercury - Hg® - is not readily dry or
wet deposited, and its conversion to ionic Hg or

Hg(p) Is relatively slow

 Particulate mercury — Hg(p) - is moderately
susceptible to dry and wet deposition

 lonic mercury — also called Reactive Gaseous
Mercury or RGM - is easily dry & wet deposited

d Current questions regarding conversion of
RGM to Hg? in plumes...




Example simulation of the atmospheric fate
and transport of mercury emissions:

 hypothetical 1 kg/day source of
RGM, Hg(p) or Hg(0)

1 source height 250 meters
 results tabulated on a 1° x 1° receptor grid

 annual results (1996)
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For emissions of Hg(p)
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For emissions of Hg(l1)
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Estimated Speciation Profile for 1999 U.S.
Atmospheric Anthropogenic Mercury Emissions

Very uncertain for most sources
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Estimated 1999 U.S. Atmospheric Anthropogenic Mercury Emissions
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 Each type of source has a very different
emissions speciation profile

d Even within a given source type, there can
be big differences — depending on process
type, fuels and raw materials, pollution
control equipment, etc.



3. There can be large local and regional
Impacts from any given source

[ same hypothetical 1 kg/day source of RGM
 source height 250 meters

1 exactly the same simulation, but results
tabulated on a 0.1° x 0.1° receptor grid

 overall results for an entire year (1996)
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Annual deposition summary for emissions of
elemental Hg from a 250 meter high source
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simulation for entire year 1996 using archived NGM meteorology (180 km resolution)



Annual deposition summary for emissions of
particulate Hg from a 250 meter high source
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Annual deposition summary for emissions of
ionic Hg from a 250 meter high source
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Hypothetical emissions source at lat = 42.5, long = -97.5;
simulation for entire year 1996 using archived NGM meteorology (180 km resolution)



Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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Source at Lat = 42.5, Long = -97.5; simulation for entire year 1996 using archived NGM meteorological data




Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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same graph, but with logarithmic scale

Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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Deposition flux within different distance ranges from a hypothetical 1 kg/day source
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4. At the same time, medium to long range
transport can’t be ignored




Fraction deposited within concentric regions away from a hypothetical source
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Cumulative fraction deposited within different distances from a hypothetical source
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Cumulative fraction deposited out to different distance ranges from a hypothetical source
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lonic Hg emitted from different source heights

Cumulative fraction deposited out to different distance ranges from a hypothetical source
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Hg(p) emitted from different source heights

Cumulative fraction deposited out to different distance ranges from a hypothetical source
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Hg(0) emitted from different source heights

Cumulative fraction deposited out to different distance ranges from a hypothetical source
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5. There are a lot of sources...

1 Large spatial and temporal variations

1 Each source emits mercury forms in
different proportions

A lot of different sources can contribute
significant amounts of mercury through
atmospheric deposition to any given
receptor



Geographic Distribution of Estimated Anthropogenic Mercury
Emissions in the U.S. (1999) and Canada (2000)
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Geographic Distribution of Largest Anthropogenic Mercury
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6. Getting the source-apportionment
Information we all need is difficult

d With measurements alone, generally impossible

d Coupling measurements with back-trajectory analyses
yields only a little information

d Comprehensive fate and transport modeling —
“forward” from emissions to deposition — holds the

promise of generating detailed source-receptor
Information




/. There are a lot of uncertainties in current
comprehensive fate and transport models

 atmospheric chemistry of mercury
[ concentrations of key reactants

d meteorological data (e.g., precipitation)

J mercury emissions (amounts & speciation profile) States
can play

1 data for evaluation are scarce... a key role
In these




8. Nevertheless, many models seem to be
performing reasonably well, i.e., are able to
explain a lot of what we see




Modeled vs. Measured Wet Deposition at Mercury Deposition

Network Site MD_13 during 1996
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Some HYSPLIT Results from MSC-East Hg Model Intercomparison Study
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9. A model does not have to be perfect in order
to be useful

[ Often, most decisions just require qualitatively
reasonable results

d And realistically, most if not all data and information
used In decision-making has uncertainties
(e.g., public health impacts, economic impacts)

d So, we shouldn’t demand perfection of models




10. To get the answers
we need, we need

to use both
monitoring and
modeling --

together

Modeling
needed to help

Interpret
measurements
and estimate
source-
receptor
relationships

Monitoring
needed to
develop

models and to
evaluate their
accuracy



11. MDN is GREAT!...but there are some big
gaps In atmospheric monitoring — making it
very difficult to evaluate and improve models

d We desperately need national MDN-like network to
measure ambient air concentrations of Hg0, Hg(p), and
RGM, with readily available data

d What is RGM? What is Hg(p)?

d Both “background/regional” and near-source
measurements needed...

d Measurements at different heights in the atmosphere




Dry Deposition?

O Dry deposition is important, and difficult — if not
Impossible — to measure reliably with current
techniques...

1 Essentially all dry deposition estimates made
currently are made by applying models

d National ambient network of speciated ambient
measurements will help to evaluate and improve
models of dry deposition



Source-Apportionment
where does the mercury In

mercury deposition come from?




Source-apportionment
answers depend on

- where you are, and

J when you are

(and the effects of deposition
will be different in each ecosystem)



) For areas without large emissions sources

1 the deposition may be relatively low,
J but what deposition there is may largely come from
natural and global sources

) For areas with large emissions sources

1 the deposition will be higher
J and be more strongly influenced by these large
emissions sources...
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Example of

modeling results:
Chesapeake Bay
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Modeling Methodology

Modeling domain: North America

U.S. and Canadian anthropogenic sources

Natural emissions, Re-emissions, & Global sources not included
1996 meterology (180 km horizontal resolution)
Model evaluation: 1996 emissions and 1996 monitoring data

Results: using 1999 emissions



Geographical Distribution
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Bay (entire domain)
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Geographical Distribution of 1999 Direct Deposition
Contributions to the Chesapeake Bay (regional close-up)
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Geographical Distribution of 1999 /
Direct Deposition Contributions to .~

the Chesapeake Bay (local close-up)
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F Largest Regional Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Largest Local Individual Sources Contributing to

1999 Mercury Deposition Directly to the Chesapeake Bay
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Emissions and Direct Deposition Contributions from Different
Distance Ranges Away From the Chesapeake Bay
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Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake Bay
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Summer 2004 Chesapeake Bay Atmospheric Hg Study
(June — August 2004)

NOAA Cooperative Oxford Lab: Bob Wood

NOAA Air Resources Lab Atmospheric Turbulence and Diffusion
Division (ATDD): Steve Brooks

NOAA Air Resources Lab HQ Division: Winston Luke, Paul Kelley,
Mark Cohen, Richard Artz

NOAA Chesapeake Bay Office: Maggie Kerchner
Frontier GeoSciences: Bob Brunette, Gerard van der Jagt, Eric Prestbo

Univ. of MD Wye Res. and Educ. Center: Mike Newall



Measurement Sites

Education Center
(38.9131EN, 76.1525EW)
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regional emissions (1999) and sampling sites
for summer 2004 Ches Bay Hg study
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Summer 2004 Chesapeake Bay Atmospheric Hg Study
(June — August 2004)

Oxford Wye

Event-based precipitation Ve v
samples analyzed for Hg
Speciated Hg concentrations in V4 V4
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Conclusions

Source-attribution information is important

Impacts are episodic & depend on form of mercury emitted
Modeling needed to get source-attribution information

(more!) Monitoring for model evaluation & refinement
Models don’t have to be perfect to give useful information

Many uncertainties but useful model results are emerging

Many opportunities exist for improvements in
modeling/monitoring integrated approaches to develop
source-attribution information (and States can play a key role
In developing critical emissions &monitoring information)
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