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Outline of Presentation

1 brief overview of Air Resources Laboratory
d mercury problem / role of atmospheric Hg
d ARL mercury programs and collaborations

d opportunities for collaboration within ERP
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the mercury problem
and the role of

atmospheric mercury




The Mercury Problem

1 EPA has estimated that 1 out of every 6 children born in the U.S.
have already been exposed in-utero to levels of mercury that
may cause problems with neurological development

 There are additional potential mercury-related health hazards to
children, adults, and to wildlife

 Fish-consumption advisories due to mercury contamination are
widespread throughout U.S. rivers, lakes, and coastal areas

 The primary exposure route is through fish consumption

d Atmospheric deposition is a significant — often the most
significant — pathway for mercury loading to aquatic ecosystems
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Three “forms” of atmospheric mercury

Elemental Mercury: Hg(0)
» ~ 9500 of total Hg in atmosphere

* long atmospheric lifetime (~ 0.5 - 1 yr); globally distributed

Reactive Gaseous Mercury (“RGM”)
« a few percent of total Hg in atmosphere
« oxidized mercury: Hg(ll)
» HgCI2, others species?
» somewhat operationally defined by measurement method
* very water soluble
« short atmospheric lifetime (~ 1 week or less);
» more local and regional effects

* not very water soluble

Particulate Mercury (Hg(p)
» a few percent of total Hg in atmosphere
* not pure particles of mercury...
(Hg compounds associated with atmospheric particulate)
* species largely unknown (in some cases, may be HgO?)
» moderate atmospheric lifetime (perhaps 1~ 2 weeks)
* local and regional effects
* bioavailability?
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Atmospheric Chemical Reaction Scheme for Mercury

Reaction Rate Units Reference
GAS PHASE REACTIONS
Hg® + O; — Hg(p) 3.0E-20 cm3/molec-sec Hall (1995)
Hg? + HCI —» HgCl, 1.0E-19 cm3/molec-sec Hall and Bloom (1993)
Hg° + H,0, - Hg(p) 8.5E-19 cm3/molec-sec Tokos et al. (1998) (upper limit based
on experiments)
Hg° + Cl, - HgCl, 4.0E-18 cm3/molec-sec Calhoun and Prestbo (2001)
Hg? +OHC — Hg(p) 8.7E-14 cm3/molec-sec Sommar et al. (2001)
AQUEOUS PHASE REACTIONS
Hg® + O, > Hg*? 4.7E+7 (molar-sec)? Munthe (1992)
Hg® + OHC —» Hg*? 2.0E+9 (molar-sec)! Lin and Pehkonen(1997)
HgSO, - Hg° T*e((L971*T)-12595.0)T) gec-1 Van Loon et al. (2002)
[T = temperature (K)]

Hg(ll) + HO,C — Hg° ~0 (molar-sec)? Gardfeldt & Jonnson (2003)
Hg® + HOCI — Hg*? 2.1E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg? + OCIt —» Hg*? 2.0E+6 (molar-sec)? Lin and Pehkonen(1998)
Hg(I1) <> Hg(I1) g0y 9.0E+2 liters/gram; eqlbrm: Seigneur et al. (1998)

t = 1/hour rate: Bullock & Brehme (2002).
Hg* + h<— Hg° 6.0E-7 (sec)* (maximum) Xiao et al. (1994);

Bullock and Brehme (2002)




Geographic Distribution of Largest Anthropogenic Mercury
Emissions Sources in the U.S. (1999) and Canada (2000)
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Estimated 1999 U.S. Atmospheric Anthropogenic Mercury Emissions
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estimated natural emissions (1999)
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per 1x1 degree

5000 0 5000 Kilometers grid cell per year
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estimated anthropogenic emissions (1995)
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Natural vs.
anthropogenic
mercury?

Studies show that
anthropogenic
activities have
typically increased
bioavailable Hg
concentrations in
ecosystems by a
factor of 3-10
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AIlr Resources Laboratory:
Atmospheric Mercury

Research and
Collaborations




ARL Mercury Research

Atmospheric measurements Atmospheric modeling
- process understanding, - to Interpret measurements,
- study spatial/temporal trends - to get source-receptor data,
- develop & evaluate models - to predict future impacts
= ground-level speciated ﬁ = back-trajectory modeling
alr concentrations using HYSPLIT
= Upper-air speciated air = HYSPLIT-Hg atmos. fate
conc. using aircraft and transport model
= wet and dry deposition = CMAQ-Hg atmospheric
= surface exchange fate and transport model




ARL Mercury Collaborations

d Within NOAA

1 External to NOAA



Examples of Mercury Collaborations within NOAA

d NOAA Chesapeake Bay Office
= Maggie Kerchner, Bob Wood
= ongoing measurement and modeling study FY 2004-2005
= proposal in the works for continued collaboration

d NOAA Arctic Program Office
= with CMDL, ORNL, EPA, others
= measurements and modeling at Barrow Alaska

L and discussions for potential projects with:
= ake Champlain Sea Grant
= MS/AL Sea Grant (Gulf of Mexico)
» NCCOS (Jawed Hameedi, David Whitall)



Examples of Mercury Collaborations within NOAA

d NOAA Chesapeake Bay Office

= Maggie Kerchner, Bob Wood
= ongoing measurement and modeling study FY 2004-2005
= proposal in the works for continued collaboration



Summer 2004 Chesapeake Bay
Atmospheric Mercury Measurement Sites
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regional emissions (1999) and sampling sites
for summer 2004 Ches Bay Hg study
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Summer 2004 Chesapeake Bay Atmospheric Hg Study

(June — August 2004)

Oxford Wye
Event-based precipitation Ve v
samples analyzed for Hg
Speciated Hg concentrations in V4 V4
ambient air (RGM, Hg(p), Hg®)
Ambient concentration of ozone v v
and sulfur dioxide (continuous) (weekly via AirMON Dry)
Ambient concentration of carbon v
monoxide
Meteorology v v

(via NADP/NTN site)

Major ions in precipitation v

(via NADP/NTN site)




Geographical Distribution of 1999 Direct Deposition
Contributions to the Chesapeake Bay (regional close-up)
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F Largest Regional Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Largest Local Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Emissions and Direct Deposition Contributions from Different
Distance Ranges Away From the Chesapeake Bay

80 - — 8

B Emissions
60 | Deposition Flux - 6

40 —4

20— — 2

o LI i[[}L!ﬁ! 6

0-100 200 - 400 700 - 1000 1500 - 2000 > 2500
100 - 200 400 - 700 1000 - 1500 2000 - 2500

Emissions (metric tons/year)

Distance Range from Chesapeake Bay (km)

Deposition Flux (ug/m2-year)



Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake Bay
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Modeled vs. Measured Wet Deposition at Mercury Deposition

Network Site MD_13 (WYye) during 1996
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Examples of Mercury Collaborations within NOAA

d NOAA Arctic Program Office
= with CMDL, ORNL, EPA, others
= measurements and modeling at Barrow Alaska






Steve Brooks,
NOAA ATDD,
at Barrow Alaska

Y



In very simplified terms:

BrO :

= Hg(ll) (“RGM”) §

Fig. 1. First Confirmation of Mercury Depletion Events in the U. 8. Arctic,
Barrow, AK (January, 1999).
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Examples of External Mercury Collaborations -- Modeling

d Environmental Protection Agency
= National Exposure Research Laboratory
= Clean Air Markets Division
» Great Lakes National Program Office

d International Joint Commission (Great Lakes)
= Int’l Air Quality Advisory Board

1 Commission for Environmental Cooperation (NAFTA)
= Atmospheric Hg deposition to the Gulf of Maine
» Hg deposition impacts of future energy generation scenarios

d EMEP LRTAP Protocol (Europe)
= Mercury model intercomparison (HYSPLIT-Hg, CMAQ-HQ)

d Environment Canada
= Emissions inventories



External Mercury Collaborations -- Modeling

- 1 Environmental Protection Agency
: = National Exposure Research Laboratory



MULTI-MEDIA
MERCURY
MODELING
PROJECT

Update for the International
Air Quality Planning Board

January 26, 2005

Principal Investigators:

Dr. Mark Cohen, NOAA

Dr. Panos Georgopoulos, EOHSI
Dr. John Johnston, USEPA

Dr. Elsie Sunderland, USEPA




Multi-Media Hg Modeling System
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External Mercury Collaborations -- Modeling

d Environmental Protection Agency

= Great Lakes National Program Office

d International Joint Commission (Great Lakes)
= [nt’l Air Quality Advisory Board

d Environment Canada
= Emissions inventories



Figure 35-A. Geographical

Distribution of 1999 Direct

Deposition Contributions to
Lake Michigan (entire domain)
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Figure 35-B. Geographical Distribution of 1999 Direct
Deposition Contributions to Lake Michigan (regional view)
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Figure 35-C. Geographical Distribution of 1999 Direct
Deposition Contributions to Lake Michigan (more local view)
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Top 25 Contributors to 1999 Hg Deposition Directly to Lake Michigan
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Available online at www.sciencedirect.com
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Examples of External Mercury Collaborations -- Monitoring

O Environmental Protection Agency
= National Exposure Research Laboratory — aircraft Hg measurements

 International Measurement Intercomparison Campaigns
= Arctic (polar sunrise phenomena)
= Antarctic

O University of Alabama (Sea Grant)
= measurements in the Gulf of Mexico region — ship-based and land-
based measurements.



Examples of External Mercury Collaborations -- Monitoring

: O Environmental Protection Agency
i = National Exposure Research Laboratory — aircraft Hg measurements



DeHavilland DHC-6 Twin Otter g

w s

measurements include:

« atmospheric parameters
e trace gases (O, SO,, NO,, etc.)
e speciated mercury




Unexpectedly high concentrations of Reactive Gaseous
Mercury (RGM) were found in the upper atmosphere!

RGM Concentrations
Altitude Profile
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Collaboration

Possibilities
within ERP




Haq research goals and questions for any given ecosystem or reqgion:

O Establish and update status of mercury contamination in NOAA trust resources
...Gulf of Mexico, Chesapeake Bay, Upper Atlantic, Great Lakes, Lake Champlain...

1 Characterize and understand reasons for spatial and temporal trends

1 Construct mass balance of mercury (relative loading from air, tributaries, etc.)
U Quantify past, present, and future sources of mercury contamination

U Understand fate and cycling of mercury, e.g., sedimentation, methylation

L Understand watershed processing

U Understand the food web and mercury bioaccumulation

U Understand effects on wildlife (e.g., fish-eating birds)

L What are the major uncertainties? How can we reduce these uncertainties?

O With the above, provide information for risk communication and sound science
to support decision-making at the local, regional, national, and international level



Haq research goals and questions for any given ecosystem or reqgion:




& FOA =eafoed surveillance program
& FOA Total Dist Study

& MO AL Gulfchem relational database

Distribution of methyl-mercury
concentrations in different fish species

& EFA Erwironmental Monitoring and Asses=sment Program
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Fish sticks

Blue crab - Atlantic

Cod

Canned tuna

Blue mussel

Atlantic croaker

Flounder

White croaker

number Methylmercury concentration (ppm)
of samples  average  median range
18 0.164 0.18 0-0.245
31 0.273 0214 0-1.52
9 0.062 0 0-0.48
23 0.056 0.053 0-0.14
16 0.008 0.008 0-.03
20 0.021 0.018 0.0086 - 0.059
17 0.009 01 0-0.17
361 0.166 0.13 0-0852
269 0.144 0108 0-0.909
202 0.044 0.015 0-0529
39 0.047 0.029 0-0.43
15 0.258 0252 0.162 - 0.369




& FOA =eafoed surveillance program

& FOA Total Dist Study

& NG AA Gulfchem relational database

& EFA Erwironmental Monitoring and Asses=sment Program
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number Methylmercury concentration (ppm)
of samples  average  median range

Lake Whitefish 88 0.051 0.045 018 - 126
Gulf Coast Oysters 396 0.123 0.09 0-1.58
Gulf Coast Crabs 47 0.228 0.047 1-2.18
Great Lakes Salmon 83 0173 0.09 0,05 -0.43
Tuna steaks 122 0.417 0.34 0-1.46
smelt 16 0.097 0,054 0.036-0.45
shrimp 59 0.033 0025 1-0177
Sea bass 10 0.606 0529 0.1 -1.27
Salmaon 51 0.008 0 0-0.18
Pallock 3z 0.063 0 0-0.78
Cryster 396 0.111 0083 0-1.392




Haq research goals and questions for any given ecosystem or reqgion:
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Haq research goals and questions for any given ecosystem or reqgion:




Total Mercury Fluxes Lake Ontario
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Haq research goals and questions for any given ecosystem or reqgion:
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Conceptualization:
How Mercury Reaches Fish
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slide courtesy of Elsie Sunderland, USEPA



summary:
Factors Affecting Methylation

« Hg Bioavailability in Different Ecosystems
— Sulfide
— Chemistry (dissolved organic carbon, pH)
— Amount and types of solids in water and sediments

o Microbial Activity Producing Methylmercury
— Temperature
— Suitable environments (oxygen, resuspension)
— Sulfate
— Organic matter
— Other biological processes that affect chemistry
(sulfide oxidizers; iron reducers)

slide courtesy of Elsie Sunderland, USEPA



Haq research goals and questions for any given ecosystem or reqgion:
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Haq research goals and questions for any given ecosystem or reqgion:

EI What are the major uncertainties? How can we reduce these uncertainties?

EI With the above, provide information for risk communication and sound science
to support decision-making at the local, regional, national, and international Ievel



potential Air Resources Laboratory contributions
to collaborative mercury work within NOAA:

Further process-related monitoring and model development to increase
understanding of atmospheric transport and deposition of mercury

Monitoring and modeling used together to estimate the atmospheric
deposition of different forms of mercury to a give waterbody or watershed

Monitoring and modeling used together to estimate the relative contributions
of different source regions and source types to the atmospheric deposition of
mercury to a given waterbody or watershed

Modeling to estimate past and possible future atmospheric loadings to a
given waterbody or watershed.

Monitoring and modeling to help understand and characterize re-emissions
processes at the air-water interface and the air-watershed interface
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We need to understand Hg
in the environment enough
to be able to fix the problem

Many scientific disciplines
need to work in collaboration to
achieve this understanding

NOAA appears uniquely
gualified to tackle Hg problems;
ARL would like to help
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esources Laboratory

HQ Headquarters Division -- HQ (Silver Spring, MD)
development of improved transport and dispersion models;
making ARL products operational through direct interaction with NCEP.

Hg Atmospheric Sciences Modeling Division — ASMD (Research Triangle Park, NC)
development of improved air quality models, for both assessment and forecasting,
through direct interaction with the EPA and other federal partners.

Hg Atmospheric Turbulence and Diffusion Division — ATDD (Oak Ridge, TN)
improving descriptions of atmospheric dispersion and deposition in models,
emphasizing complex situations, and on developing improved instrumentation.

Field Research Division — FRD (ldaho Falls, ID)
field atmospheric tracer testing facility, for developing transport and diffusion models;
FRD’s mesonet and modeling expertise supports the Idaho National Laboratory.

Special Operations and Research Division — SORD (Las Vegas, NV)
models atmospheric transport, dispersion, and deposition over complex terrain;
studies the effects of airborne particles on atmospheric radiation and opacity;
and provides dispersion guidance to DOE managers of the Nevada Test Site.

Surface Radiation Research Branch — SRRB (Boulder, CO)
provides basic data on radiation fields, for the next generation of atmospheric transport
and dispersion models, by climate assessments, and by evaluations of climate models.




NOAA Air Resources Laboratory Research and
Monitoring Sites
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Aircraft Chemical Instrumentation (in addition to mercury)

Species
O,

CO

SO,

NO

NO,

NO,

CN

HNO,
Major lons
Aerosol size
CH,0O
H,O,

PAN
NMHCs

Method LOD (ppbv)
UV Absorption 2
NDIR/GFC 30
Pulsed Fluorescence 0.4
Ozone CL 0.02
Photolysis/CL 0.06
Molybdenum/CL 0.06
Optical Counts <100 cm
Converter Difference 0.25
Filter Pack N/A
Optical Counts 0.3t0 10 um

Liquid Phase Fluorescence 0.1
Liquid Phase Fluorescence 0.02
Fast GC/Luminol 0.01
Grab Samples/GCFID varies

r'esSponse

10 s
15s
15s
1s
2S
1s
0.25s
58S
N/A
1s
90 s
90 s
30s
30s
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Nevertheless,
many models
seem to be
performing
reasonably well,
l.e., are able to
explain a lot of
what we see

Intercomparison Study of Numerical
Models for Long-Range Atmospheric
Transport of Mercury

Stoge I, Comparnson of modaling rasults with obsen/alions
civfained during shoi-femm measunng carmpaigns

lechnical Report 11,2003
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Estimated Number of Newborns with
In Utero Methylmercury Exposures >/= RfD

e Number of US births in 2000: 4,058,814 (National Vital
Statistics Reports).

e 1:1 ratio of cord to maternal blood [Hg], i.e., 5.8 cord to
5.8 maternal, 7.8% of women had total blood [Hg] >/= 5.8,
~ 300,000 newborns each year > 5.8 ug/L (Mahaffey et al.,
2003).

« 1.7 :1ratio of cord to maternal blood [Hg], i.e. 5.8 cord to
~ 3.5 maternal, 15.7% of women had total blood [Hg] >/=
3.5 ug/L, ~ 630,000 newborns each years >/= 5.8 ug/L
cord blood.

source: Kate Mahaffey, USEPA



Total Mercury Levels in Women, Aged 16-49
by Weekly Fish Consumption Levels
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Annual deposition flux arising from a hypothetical 1 kg/day
250 meter high source of different forms of mercury

Ho(1l) Ho() . . Hg(0)
oc:a.tion| amsisis }I;fource Location | J }I;fource Location
:,//: il e ,ﬁ @ - “
ug/mlz-yrl _ o e e
[ 10-0.01
% 33; i 3;23 e Simulation for the entire year 1996;
| 101-0.3  NGM meteorological data (180 km resolution);
] 0.3-1 :
- 1-3 * 0.1 x 0.1 degree receptor grid;
3-10 ° on: = = -
g 2 % Source location: lat = 42.5, long = -97.5

B 30 - 100



Deposition flux within different distance ranges from a hypothetical 1 kg/day source

100

> 10 —
=
S': 1 B Hg(ll) emit, 50 m
< 1 Hg(Il) emit, 250 m
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= ' B Hg(0) emit, 250 m
3
o 0.01
Q@ .

0.001

0-15 15 - 30 30 - 60 60-120 120-250
distance range from source (km)

Source at Lat = 42.5, Long = -97.5; simulation for entire year 1996 using archived NGM meteorological data




Methodological Approaches for Analysis
of the Atmospheric Deposition Pathway

1.
Semi
Empirical
Loading
Estimates

2.
Receptor-
Based
Amnalysis

3.
Comprehensive
Atmospheric
Fate and
Transport
Modeling

-
(=]
—]
-
p—.
i--l
—]
p—
on
=
—
—n
(4]
=
z

JO suoissfuy

=771

e pue
yodsuea],
adydsounyy

L

4

> s =
= I = 5
= QS
= a =
—_ ”="
= | 2B
= e

S £2
5 =5
=4 I =
=l (3
os =
=

| =

_l_

— — —

| lModeIl

ealuatlo » .
(—




Figure 1. Lagrangian Puff Air Transport and Deposition Modal
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Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
(e.g., once every 7 hours).
o el T
de o 8T
e 3
ol

Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.
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