Skip directly to: content | left navigation | search

Asbestos Expert Panel Report

3.0 Comments on Topic 2: Health Effects of Asbestos and SVF Less Than 5 Micrometers in Length

This section summarizes the panelists' discussions on the role of fiber length in health effects from asbestos and SVF fibers. The meeting agenda (see Appendix D) lists the specific topics that the panelists addressed and identifies the discussion leaders for these topics. This section organizes the panelists' comments as follows: cancer effects (Section 3.1), noncancer effects (Section 3.2), mechanisms of toxicity (Section 3.3), general comments and interpretations (Section 3.4), and recommended research (Section 3.5). Section 3.6 summarizes observer comments made after the panelists completed their discussions. Some panelists submitted post-meeting comments to summarize their findings. These are included in Appendix E for the following topics: review of epidemiologic data (see Dr. Lockey's comments), review of laboratory animal studies (see Dr. McConnell's comments), and review of mechanistic studies (see Dr. Mossman's and Dr. Wallace's comments).

When evaluating health effects, panelists were asked to review findings from key studies that examined the role of fiber length on toxicity, whether in vivo or in vitro. Accordingly, this section should not be viewed as a literature review of all toxicity studies for asbestos and SVF; rather, it documents results from key studies that examined impacts of fiber length.

Although the panelists focused their initial discussions on fiber length, several panelists stressed that length is not the only factor affecting fiber toxicity. These panelists noted that toxicity is rather a complex function of the fiber dose, dimensions, and durability, as has been widely documented in the scientific literature.

3.1 Cancer Effects

This section summarizes the panelists' comments on the role of fiber length on cancer effects. The section is organized into three different types of studies: human cancer mortality studies (Section 3.1.1), studies of lung-retained fibers in humans (Section 3.1.2), and laboratory animal studies (Section 3.1.3). Within each section, comments are organized by type of fiber (asbestos or SVF) and type of cancer (lung cancer and mesothelioma).

3.1.1 Data from Cancer Mortality Studies

The panelists' comments on cancer mortality studies from occupational cohorts follow:

3.1.2 Data from Human Studies of Lung-Retained Fibers (Cancer)

Additional insights on the influence of fiber length on cancer outcomes was presented for studies that analyzed the amounts and sizes of fibers retained in the human lung. In these studies, lung-retained fiber is used to characterize exposure. The panelists identified limitations associated with such studies, most notably that the measurements of lung-retained fibers (typically at autopsy) are static and do not characterize when exposure occurred or temporal variations in exposure. Moreover, because lung-retained fibers can break or partially dissolve after exposure, it is possible that the length distribution of fibers observed after death is different from the length distribution of fibers in the original exposures. The panelists provided the following comments on available studies of lung-retained fibers:

3.1.3 Data from Laboratory Animal Studies (Cancer)

The panelists identified several laboratory animal studies that illustrate the influence of fiber length on carcinogenicity, and made general comments about the relevance of these studies to humans. Panelists specifically referred to the following three studies when discussing how fiber length has been shown to relate to lung cancer and mesothelioma in laboratory animals:

General strengths and weaknesses of laboratory animal studies

The panelists provided several general comments on the utility of laboratory animal studies for understanding toxicity of asbestos and SVFs. Benefits of animal studies include the ability to (1) conduct highly controlled experiments using well-defined exposure levels and (2) evaluate health outcomes and lung-retention levels at many different time frames following exposure. Extensive lung tissue sampling and other highly invasive tests in humans, on the other hand, are only feasible at autopsy. However, panelists identified key factors that must be considered when interpreting laboratory animal studies. These factors include differences in life span, macrophage size, and airway branching patterns; relevancy of high dose and administration methods (e.g., peritoneal injection); and failure to address certain human exposure conditions (e.g., smoking). Overall, the panelists generally agreed that laboratory animal studies can provide useful insights into toxicity to humans, provided the studies are interpreted in the proper context regarding their relevancy to humans.

One panelist synthesized the findings from these and other relevant laboratory animal studies. This panelist first noted that the rat is an adequate model for cancers in humans9, because the rat has been shown to develop both mesothelioma and lung cancer, though he acknowledged that these cancers are not as aggressive in the rat as in humans. He added that the laboratory animal studies have allowed researchers to observe the progression of disease for both lung cancer and mesothelioma. Regarding the administration method, this panelist indicated that the inhalation studies were more relevant to human exposures. He noted that fiber administration by intrapleural implantation and intraperitoneal injection does not represent human exposures for several reasons (e.g., extremely large doses are administered in very short time frames, alveolar macrophage and mucociliary transport clearance mechanisms are bypassed, and the fibers inserted into the pleura might not be capable of reaching these tissues following inhalation exposure).

Overall, this panelist believed that laboratory animal data using all administration routes have shown that short fibers of any type are less potent than long fibers, both for mesothelioma and cancer, but the relative potency has not been quantified.

3.2 Noncancer Effects

This section summarizes the panelists' comments on the role of fiber length on noncancer effects and is also organized according to the different types of studies: occupational studies (Section 3.2.1), studies of lung-retained fibers in humans (Section 3.2.2), and laboratory animal studies (Section 3.2.3). Each section is further organized by noncancer endpoint. Although many different endpoints were discussed (e.g., irritation, nephrosis), the majority of discussions focused on pulmonary interstitial fibrosis and pleural abnormalities (e.g., pleural plaques, pleural thickening, and calcification).

3.2.1 Data from Occupational Studies

Overall, the discussion leader for this topic area indicated, there is limited evidence of noncancer toxicity being associated with fibers less than 5 µm in length, with two exceptions. First, he indicated that very high doses to short fibers, especially those that are durable in intracellular fluids, may have the propensity to cause interstitial fibrosis. Second, he noted that exposure to short, thin durable fibers may play a role in development of pleural plaques or diffuse pleural fibrosis if the dose is high enough. The following paragraphs review the discussion that led to these summary statements

Overall, the relevance of short asbestos and SVFs to noncancer disease in humans was not entirely known. For the SVFs, only the durable RCF was found to be associated with pleural plaques; exposures to RCFs were not associated with pulmonary fibrosis, and exposures to fiber glass and mineral wools had no indication of chest radiographic, interstitial, or pleural changes. For asbestos fibers, no studies have examined the effects of exposures exclusively to short fibers. Given data collected in Libby, Montana, however, some panelists questioned whether short fibers might play a role in the observed cases of pleural plaques and diffuse pleural fibrosis; but others cautioned against inferring that the risk results from exposure to short fibers, given that the Libby samples contained significant numbers of long fibers as well.

3.2.2 Data from Human Studies of Lung-Retained Fibers (Noncancer)

Two panelists reviewed publications (case-control studies, a study recently submitted for publication, and a case report) that examine the influence of fiber length retained in the lung on the grade of pulmonary interstitial fibrosis, which is reported on a scale from 0 to 12. A summary of these studies, organized by fiber type, follows:

Several panelists commented on the trends among the aforementioned studies. Two panelists, for instance, noted that the trend of shorter fibers possibly being more toxic, at least in terms of interstitial fibrous, is counterintuitive. Two other panelists, on the other hand, noted that these findings suggest that, for interstitial fibrosis, the surface area of retained fibers may be more important than the fiber length, because larger amounts of short fibers would have considerably greater surface area than smaller amounts of long fibers. Finally, some panelists wondered if the apparent inverse relationship between fiber length and fibrosis score might be explained by long fibers breaking down into shorter fibers between exposure and the time that lung samples were collected.

3.2.3 Data from Laboratory Animal Studies (Noncancer)

This section reviews the panelists' discussions on noncancer outcomes from asbestos and SVF exposure identified in laboratory animal studies. Before addressing this topic, one panelist summarized how the mammalian lung responds to exposures to inert materials, whether fibrous or particulate: once an inert material deposits in the lung beyond the conductive airways, it will either dissolve or be engulfed and cleared by alveolar macrophages; if the dose exceeds the lungs' capacity to clear the material, natural defense mechanisms may act, leading to fibrosis. Section 3.3 presents more details on the mechanisms involved in these steps. Specific comments on noncancer effects in laboratory animals, organized by endpoint, follow:

3.3 Mechanisms of Toxicity

This section reviews the panelists' comments on mechanisms of toxicity, primarily as presented by the two designated discussion leaders, Dr. Mossman and Dr. Wallace. After identifying several general advantages and disadvantages of in vitro studies, the discussion leaders reviewed current theories on mechanisms of toxicity for a wide range of fibers and analogous non-fibrous particles. This section reviews key points from those presentations. Emphasis is placed on what has been established or hypothesized regarding the relative toxicities of short and long fibers. For more detailed information on mechanisms of toxicity, refer to Dr. Mossman's and Dr. Wallace's post-meeting comments in Appendix E.

Cut
Fiber Length
Fiber Diameter
Average (µm) Standard Deviation (µm) Average (µm) Standard Deviation (µm)
1
32.7
23.5
0.75
0.50
2
16.7
10.6
0.49
0.27
3
6.5
2.7
0.44
0.22
4
4.3
1.0
0.40
0.15
5
3.0
1.0
0.35
0.14

This panelist noted that the preparation technique may now allow researchers to investigate the influences of fiber length more rigorously. Some panelists noted that the distribution of fiber lengths in the first "cut" is quite broad, but other panelists indicated that the subsequent "cuts" were more narrowly distributed.

One panelist illustrated the utility of the fiber preparation technique by reviewing findings from a recent publication. In initial studies with these size-classified materials, NIOSH research compared fibers from "Cut 2" and "Cut 3" (see table above) for their induction of the cytokine cascade cellular responses (Ye et al. 1999). The longer fiber sample was more active when dose was measured as fibers per cell, but the shorter fiber sample was equally or more active when dose was characterized on a surface area or mass basis. One panel member noted that this was of interest in the context of the previously presented "counter-intuitive" histopathology reports (see Section 3.2.2) associating fibrosis with short fiber exposures.

3.4 General Comments and Interpretations

While discussing the influence of fiber length on asbestos and SVF toxicity, the panelists made several general comments and interpreted observations from the laboratory animal, human, and in vitro studies. This section summarizes these general comments and interpretations, while Section 4.1 reviews the panelists' individual summary statements provided at the end of the meeting.

3.5 Research Needs

The panelists identified several research needs when discussing the influence of fiber length on health effects. In general, the panelists encouraged thorough planning of any future study, emphasized the need for having well characterized exposures, and advocated involving researchers from multiple disciplines (e.g., epidemiologists, physicians, toxicologists, mineralogists). All research needs mentioned during this session of the meeting are documented here:

3.6 Observer Comments and Ensuing Discussions

Observers were given two opportunities to provide comments on the second day of the meeting. The panelists were not required to respond to the observer comments. However, some comments led to further discussion among the panelists, as documented here. The observer comments are summarized in the order they were presented:

Comment 1: John Hadley, representing the North American Industrial Manufacturers

Mr. Hadley summarized selected IARC publications regarding the toxicity of SVFs. First, he noted that IARC has accounted for the influence of fiber length in one of its 1997 monographs (IARC 1997). Specifically, IARC classified palygorskite (attapulgite) fibers longer than 5 µm in "Group 2B," or "possibly carcinogenic to humans (limited human evidence; less than sufficient evidence in animals)." On the other hand, IARC classified palygorskite (attapulgite) fibers less than 5 µm in "Group 3," or "not classifiable." Mr. Hadley added that IARC researchers recently published an article on rock and slag wool production workers (Kjaerheim et al. 2002) indicating "no evidence of carcinogenic effect on the lung of rock and slag wool under exposure circumstances in the production industry during the last four to five decades."

Panelists' Discussions: No panelists addressed this comment.

Comment 2: David Bernstein, consultant in toxicology

Dr. Bernstein asked the panelists to provide more information on the lung-retention studies (e.g., how much of the lung was sampled, what parts of the lung were sampled, how representative are the samples of fiber loading in the entire lung).

Panelists' Discussions: One panelist summarized details of the lung-retention sampling performed in studies he authored, and he suggested that observers refer to the original publication for additional details. In one study, this panelist indicated, samples from the periphery and the central parenchyma were collected systematically from longitudinal sections of the entire lung. He noted that preferential sampling (e.g., diseased locations) did not occur, and he added that the study addressed concerns about sampling bias by collecting larger amounts of samples from a given lung.

Comment 3: Aubrey Miller, EPA

Dr. Miller asked the panelists to comment on research opportunities to examine why certain health outcomes (e.g., pleural abnormalities) are being observed in Libby, but have not been reported (and perhaps not examined) in other mining communities with generally similar doses as gauged by conventional fiber sampling methods (PCM). He wondered if research should be conducted in other mining communities to search for pleural abnormalities or if it should focus on understanding what makes the Libby experience unique.

Panelists' Discussion: One panelist indicated that extensive research has already been conducted to characterize mining communities in Quebec. He noted that the fibers have been well characterized and health effects thoroughly studied and identified key differences between these sites. For instance, there are far more asbestosis cases in Quebec miners, but the panelist noted that this might result simply from the larger size of the work force in Quebec. The proportional numbers of, and SMR for, lung cancers among workers are in fact twice as high among the vermiculite miners in Libby than among chrysotile miners and millers in Quebec. Additionally, there is more evidence of pleural disease in the Libby cohort.

Comment 4: Mark Maddaloni, EPA Region 2

Mr. Maddaloni asked the panelists to discuss residential cleanup issues associated with WTC dusts in Lower Manhattan, where fibers in dust samples are largely (80% to 90%) shorter than 5 µm and the asbestos fibers found are almost entirely chrysotile. He was specifically interested in dose-response data for short asbestos fibers and whether the panelists could establish a dose level for short fibers that constitute "a reasonable certainty of no harm."

Panelists' Discussion: Several panelists commented on this matter. One panelist, for instance, emphasized that focusing on fibers less than 5 µm is an arbitrary decision. He noted that residents are ultimately exposed to a complex mixture of fibers of many lengths. Further, this panelist indicated that virtually all dust and air samples contain large amounts (perhaps 80% to 90%) of short fibers, and the fact that WTC dust is composed largely of short fibers is not unusual. He indicated that, at most sites, concentrations of long fibers and concentrations of short fibers are correlated. Due to this correlation, this panelist argued, when measurements suggest that low levels of long fibers are present, one can have a "reasonable certainty of no harm" not only from the long fibers but also from the short fibers, because they are found in proportional amounts. Some panelists suggested that EPA consider using threshold limit values to evaluate the exposure levels.

Panelists expressed differing opinions on how to evaluate exposures. One panelist suggested that exposures to WTC have decreased considerably from the large amounts found immediately after September 11, 2001. One panelist, however, noted that the presence of fibers in household dusts presents an opportunity for ongoing exposure; he added that this exposure scenario differs from what has been evaluated in the literature among occupational cohorts of adults.

Comment 5: David Bernstein, consultant in toxicology

Dr. Bernstein commented on laboratory animal studies conducted for the European Commission. In these studies, rats were administered fibers both by inhalation and by interperitoneal injection. Though he agreed with the panelists' comments that inhalation administration is most relevant to human exposure, Dr. Bernstein cautioned against disregarding the data from interperitoneal injection studies, which have addressed the issue of fiber length. For example, he said recent data from the interperitoneal injection studies has shown that fiber length correlates better with cancer risk in rats than does the dose. Dr. Bernstein added that these studies found that the dose for short fibers had to be increased by orders of magnitude to elicit the same carcinogenic responses as observed for long fibers.

Panelists' Discussions: No panelists addressed this comment.

Comment 6: Joel Kupferman, New York Environmental Law Project

Mr. Kupferman urged the panelists, when discussing the WTC site, to not assume that exposures have ceased because much of the dust has settled. He noted that asbestos still remains throughout Lower Manhattan: in homes, in fire trucks, and in ventilation systems. He mentioned that dusts from some fire trucks have contained as much as 5% (by weight) asbestos. Mr. Kupferman asked the panelists to consider the fact that asbestos exposure is still occurring.

Panelists' Discussions: One panelist noted that the observer raised an important point. He added that researchers can investigate the exposure potential of these settled dusts through "comprehensive air sampling," during which time surfaces are disturbed to simulate actual work or home exposure situations. The panelists revisited this issue when making their final recommendations (see Section 4).

Comment 7: Ralph Zumwalde, NIOSH


Dr. Zumwalde suggested that, when recommending research needs, the panelists not only consider long-term projects that would help characterize dose-response, but also projects that might help ATSDR make prudent public health decisions in the short term. Regarding the short fibers, he asked the panelists to discuss research needs to characterize possible links between short fibers and inflammation and fibrosis (e.g., how do fibrosis grades in animals compare to those in humans? are rats an appropriate model for these endpoint?).

Panelists' Discussions: One panelist noted that several human studies have examined relationships between asbestos exposure (as gauged by lung-retained fibers) and fibrosis grade, but two panelists noted that comparable studies in which the length distribution of fibers was known have not been performed in animals.

Comment 8: Suresh Moolgavkar, University of Washington

Regarding the panelists' comments on progression of fibrosis, Dr. Moolgavkar cautioned the panelists about assuming that fibrosis is an intermediate endpoint for lung cancer, because these two endpoints result from very different pathogenic processes. Noting that toxicologists have long assumed linear dose-response relationships for cancer and threshold dose-response behavior for noncancer effects, he argued that low exposures levels might pose a risk (albeit small) for lung cancer and perhaps no risk for fibrosis.

Panelists' Discussions: One panelist agreed that fibrosis and lung cancer develop from different pathogenic processes. He explained that the animal studies he has conducted and reviewed involving fibrous and particulate materials all suggest that lung cancers are not observed in the absence of fibrosis. He emphasized that this does not mean that fibrosis is on a causal pathway for lung cancer, but rather demonstrates different dose-response behavior for the two outcomes, namely that fibrosis outcomes in animals appear to occur at lower doses than do cancer outcomes.

Comment 9: Jay Turim, Sciences International, Inc.

Mr. Turim asked the panelists to clarify comments made on disease progression.

Panelists' Discussions: One panelist responded, explaining that he has not observed overt progression of interstitial fibrosis in animals after asbestos exposures cease. He added that inflammatory response, microgranulomas, and bronchiolization tend to decrease after fiber exposures ceases, even for amosite. He said this has been observed both in rats and hamsters. This panelist acknowledged that these findings from laboratory animal studies may not be relevant to humans. Addressing this final point, two panelists indicated that progression of fibrosis has "absolutely" been observed in humans after cessation of exposure.

7One panelist, when reviewing a draft of this report, indicated that death certificate data typically use a single code for all non-malignant respiratory disease. He added that asbestosis probably accounts for a minority of these deaths when compared to chronic obstructive lung disease.

8When reviewing a draft of this report, another panelist indicated that animal studies have found that animals are also not capable of completely clearing fibers of all lengths to background levels.

9The panelists noted differences in asbestos-related cancers in rats and humans. One panelist said that lung cancer in rats tends to be bronchioalveolar, and develops in the distal lung, while lung cancer in humans largely tends to occur in proximal areas of the lung. He wondered if differences in fiber deposition patterns (due to differing airway sizes and branching patterns) might explain differences in where lung cancers develop in rats and humans. Another panelist cautioned against expecting that lung cancer would develop in the same parts of the lung in rats and humans, primarily because of the confounding factor of cigarette smoking in humans.

Next Section     Table of Contents