
C

E
f

S
J
a

b

c

a

A
R
R
A

K
I
E
M
S
C
U

1

s
m
w
t
a
s
i
c
d
g
i
c

0
d

ARTICLE IN PRESSG Model
MIG-901; No. of Pages 12

Computerized Medical Imaging and Graphics xxx (2009) xxx–xxx

Contents lists available at ScienceDirect

Computerized Medical Imaging and Graphics

journa l homepage: www.e lsev ier .com/ locate /compmedimag

valuation of uterine cervix segmentations using ground truth
rom multiple experts

hiri Gordona, Shelly Lotenberga, Rodney Longb, Sameer Antanib,
ose Jeronimoc, Hayit Greenspana,∗

Tel Aviv University, Tel-Aviv 69978, Israel
National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA

r t i c l e i n f o

rticle history:
eceived 29 January 2008
eceived in revised form 8 November 2008
ccepted 2 December 2008

eywords:
mage segmentation
valuation of segmentation
ulti-expert ground truth

egmentation complexity
ervical cancer
terine cervix images

a b s t r a c t

This work is focused on the generation and utilization of a reliable ground truth (GT) segmentation for a
large medical repository of digital cervicographic images (cervigrams) collected by the National Cancer
Institute (NCI). NCI invited twenty experts to manually segment a set of 939 cervigrams into regions of
medical and anatomical interest. Based on this unique data, the objectives of the current work are to:
(1) Automatically generate a multi-expert GT segmentation map; (2) Use the GT map to automatically
assess the complexity of a given segmentation task; (3) Use the GT map to evaluate the performance of
an automated segmentation algorithm.

The multi-expert GT map is generated via the STAPLE (Simultaneous Truth and Performance Level
Estimation) algorithm, which is a well-known method to generate a GT segmentation from mul-
tiple observations. A new measure of segmentation complexity, which relies on the inter-observer
variability within the GT map, is defined. This measure is used to identify images that were found dif-
ficult to segment by the experts and to compare the complexity of different segmentation tasks. An

accuracy measure, which evaluates the performance of automated segmentation algorithms is pre-
sented. Two algorithms for cervix boundary detection are compared using the proposed accuracy
measure. The measure is shown to reflect the actual segmentation quality achieved by the algo-
rithms.

The methods and conclusions presented in this work are general and can be applied to different images
Here
and segmentation tasks.

of the available data.

. Introduction

Cervicography is a photographic method for cervical cancer
creening that permits archive and study of cervical cancer. The
ethod uses visual testing based on color change of cervix tissues
hen exposed to 5% acetic acid. This helps to detect abnormal cells

hat turn white (acetowhite) following the application of 5% acetic
cid [9]. In this method the uterine cervix is photographed with a
pecial 35 mm camera with a ring flash, used to provide enhanced
llumination of the target region. The resulting image is termed a
ervigram. The National Cancer Institute (NCI) has collected a large
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

atabase of cervigrams as part of an ongoing effort for investi-
ating the role of HPV in the development of cervical cancer and
ts intraepithelial precursor lesions in women [20]. This database
ontains a subset of 939 cervigrams that were each segmented

∗ Corresponding author. Tel.: +972 3 6405839; fax: +972 3 6407939.
E-mail address: hayit@eng.tau.ac.il (H. Greenspan).

895-6111/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compmedimag.2008.12.002
they are applied to the cervigram database including a thorough analysis

© 2008 Elsevier Ltd. All rights reserved.

by up to twenty medical experts [11]. The segmentation was per-
formed using the Boundary Marking Tool software, developed by
the National Library of Medicine (NLM) and NCI [10].

Two clinically important regions were marked by the experts
within each image: the cervix boundary and the acetowhite region.
The cervix boundary defines the region of medical and anatomical
interest within the cervigram. The acetowhite region is the white-
appearing epithelium, following the application of 5% acetic acid.
The experts were blinded to clinical patient information, such as
cytology and HPV status. Examples of manual markings, varying
per image from one to twenty, can be seen in Fig. 1. As we consider
the segmented images it is evident that several key issues need
to be addressed in multiple-expert scenarios: What is the ground
truth? Is it the intersection of the markings or their union? Is one
cervix segmentations using ground truth from multiple experts.
8.12.002

expert better than the other? Was the segmentation task a diffi-
cult one? As Fig. 1 illustrates, there are “simple” cases, in which
most of the experts agree on the tissue boundaries (Fig. 1(c and
g)) and more “complex” cases, where the experts have substan-
tially differing markings which vary in size and location (Fig. 1(a

dx.doi.org/10.1016/j.compmedimag.2008.12.002
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:hayit@eng.tau.ac.il
dx.doi.org/10.1016/j.compmedimag.2008.12.002
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ig. 1. (a, c, e and g) Examples of manually segmented cervigrams (a different co
orresponding multi-expert ground truth, generated by STAPLE. Pixel probabilities

nd e)). How can this level of agreement between the experts be
uantified? When building an automated system for cervigram seg-
entation and analysis, how should we quantify the performance

f an automated segmentation algorithm as compared to the mark-
ngs of multiple experts? And what are the assessment measures
hat should be used?

Quantitative evaluation and validation of medical image analy-
is is a well-known challenge. Several measures for the comparison
f automated segmentation results to manual segmentation of a
ingle expert have become a standard in the field [6,7,21]. Several
orks attempt to handle the above-listed questions for the case

f multiple expert data [2,14,17,23–25]. These works focus on gen-
rating an average segmentation map using contour-based or area
volume)-based metrics. For example, a simple majority voting rule
o generate the multi-expert ground truth map is presented in [25]
nd others. A shortcoming of this method is that it lacks a strategy
or determining the number of experts that should agree before the
tructure is considered to be present. It treats each expert equally
ithout regard to potential variability in quality of segmentation

nd does not admit use of a priori information about the struc-
ure being segmented. A well-known algorithm, that copes with
hese issues is the STAPLE (Simultaneous Truth and Performance
evel Estimation) algorithm [23], which takes a collection of binary
egmentations and computes simultaneously a probabilistic esti-
ate of the true segmentation and the performance levels of each

nput segmentation. The performance parameters are computed
sing the area-based metrics of sensitivity and specificity. When
o “multi-expert ground truth” is necessary, an additional solu-
ion is to use the Williams index [26] in order to evaluate a given
egmentation against the joint agreement among several experts.
his method has been shown to give similar results to the STAPLE-
ased analysis [17]. STAPLE has been used in the literature in varying
pplication domains, such as generating ground truth maps for
agnetic Resonance Images (MRI) of the brain [3,19], 3D medical

tructures [1] and open curves of vascular structures [12]. It was
sed for constructing a brain MRI atlas for two-year-old children
13], and in combining two-class maps to obtain a complete seg-

entation of a brain tissue [15]. It has also been used for object
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

ecognition [18].
In the current work the STAPLE algorithm is applied to the cervi-

ram images for the first time. It is used in order to combine the
ifferent expert markings and to generate a single ground truth
ap. A new segmentation-complexity measure is defined based
r expert). (a and c) Acetowhite region; (e and g) cervix boundary. (b, d, f and h)
lor-coded from blue (low) to red (high).

on the multi-expert ground truth map. The performance param-
eters of sensitivity and specificity are the common assessment
measures used to evaluate segmentation quality in the STAPLE lit-
erature (some additional methods are presented and discussed in
[28]). These measures are known to possess incommensurate mag-
nitudes, as they represent percentages from different populations
of pixels [1]. The current work addresses this difficulty and demon-
strates its effect on the STAPLE performance. It then defines an
accuracy measure (similar to ref. [1]) to evaluate the results of auto-
matic segmentation algorithms as compared to the multi-expert
ground truth map. The accuracy measure is used for the evaluation
of two automated algorithms for cervix boundary detection. The
focus of the work is on the cervigram database, but the methods
proposed are general.

The paper is organized as follows: The STAPLE algorithm is
described in Section 2. Its sensitivity to the size of different pop-
ulations is also discussed. Methods for performance analysis based
on the STAPLE output are presented in Section 3. Experimental
results on the cervigram database are described in Section 4. A
discussion concludes the work in Section 5. This work extends
and elaborates on an earlier work presented by the authors
[16].

2. The STAPLE algorithm

The STAPLE algorithm [23] takes a collection of binary image
segmentations as an input. The object pixels within these segmen-
tations are marked as one and the background pixels as zero. The
algorithm simultaneously computes: (1) a probabilistic estimate of
the true segmentation and (2) a measure of the performance level
represented by each input segmentation (expert). The algorithm is
formulated as an instance of the expectation-maximization (EM)
algorithm [4]. The performance levels, or quality achieved by each
expert, are represented by the sensitivity and specificity param-
eters. The sensitivity (pj) of expert j represents the “true positive
fraction”: pj = Pr(Dij = 1|Ti = 1). The specificity (qj) of expert j rep-
resents the “true negative fraction”: qj = Pr(Dij = 0|Ti = 0), where
Dij is the decision made by expert j for pixel i (1 meaning: present
cervix segmentations using ground truth from multiple experts.
8.12.002

in the expert’s segmentation and 0, absent) and Ti is the hidden true
segmentation for pixel i.

The EM algorithm estimates the performance level parameters
(p, q) while maximizing the complete data log likelihood function. It
iterates as follows: In the E-step the unobserved true segmentation

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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bility values and reflects the overlap between the different expert
markings more accurately.

Table 1 presents the sensitivity and specificity values computed
for each of the masks for the original background case (p, q) and for

Table 1
STAPLE simulation: sensitivity and specificity values computed for each of the seg-
mentation masks of Fig. 2 using the original background (p, q) and the modified
ARTICLEG Model
MIG-901; No. of Pages 12
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s computed as:

(Ti|Di, p(k−1), q(k−1)) =

∏
j

f (Dij|Ti, p(k−1)
j

, q(k−1)
j

)f (Ti)

∑
T

′
i

∏
j

f (Dij|T ′
i
, p(k−1)

j
, q(k−1)

j
)f (T ′

i
)
, (1)

here f (Ti) is the prior probability for pixel i and k is the iter-
tion step. Considering a binary segmentation, factoring over all
he experts and using the definitions for pj and qj , the following
ormulas are derived:

a(k)
i

≡ f (Ti = 1)
∏

j

f (Dij|Ti = 1, p(k)
j

, q(k)
j

)

= f (Ti = 1)
∏

j:Dij=1

p(k)
j

∏
j:Dij=0

(1 − pj)
(k), (2)

b(k)
i

≡ f (Ti = 0)
∏

j

f (Dij|Ti = 0, p(k)
j

, q(k)
j

)

= f (Ti = 0)
∏

j:Dij=0

q(k)
j

∏
j:Dij=1

(1 − qj)
(k), (3)

here j : Dij = 1 denotes the set of indexes for which the decision of
he rater at pixel i has the value 1. Using these formulas, a compact
xpression for the conditional probability of the true segmentation
t each pixel, Wi, is defined:

(k−1)
i

≡ f (Ti = 1|Di, p(k−1), q(k−1)) = a(k−1)
i

a(k−1)
i

+ b(k−1)
i

. (4)

he experts performance level parameters are estimated in the M-
tep using the following equations:

(k)
j

=

∑
i:Dij=1

W (k−1)
i

∑
i

W (k−1)
i

; q(k)
j

=

∑
i:Dij=0

(1 − W (k−1)
i

)

∑
i

(1 − W (k−1)
i

)
. (5)

he sensitivity estimator, pj , can be interpreted as the ratio of the
th expert true positive detections to the total amount of the struc-
ure Ti = 1, where in both cases each pixel is weighted by Wi: the
trength of belief in Ti = 1. Similarly, the specificity estimator, qj , can
e interpreted as an estimator for the specificity given a degree of
elief in the underlying Ti = 0 state.

The unobserved true segmentation computed in the E-step is
probability map where each pixel is assigned the probability of
eing part of the segmented object according to (1) the amount
f agreement among the experts and (2) the performance levels
f the experts. This map is regarded as the “multi-expert ground
ruth segmentation” generated by STAPLE. Fig. 1 shows examples
f multi-expert ground truth maps that correspond to the expert
arkings for both the acetowhite region (b and d) and the cervix

oundary (f and h). Pixel probabilities are color-coded from blue
low probability—zero) to red (high probability—one). The inter-
ection of all experts’ markings is colored red (with the highest
robability value) as expected.1

In the current task of cervigram segmentation, the object area,
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

hich is the cervigram region, is relatively small as compared to the
rea of the background. The amount of pixels for which the experts
isagree when marking the object, is even smaller as compared to

1 A colored version of this paper is available online.
 PRESS
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the background (i.e. Fig. 1(f and h)). In such cases the range of sensi-
tivity values and the range of specificity values, computed per image
for the different expert markings, are incommensurate. The speci-
ficity values that are computed with respect to the background area
(Eq. (5)) obtain much higher values with a much narrower range.
This is due to the fact that most of the background pixels are marked
correctly by the experts, while the differences between their mark-
ings are very small with respect to the overall background area.
This behavior has a major influence on the estimated ground truth
segmentation: The bi values (Eq. (3)) are small compared to the ai

values and the resulting Wi (Eq. (4)) values are higher than expected.
A similar range for the two performance measures (sensitivity and
specificity) can be obtained only when the object and the defined
background are of the same size. Such a case seldom happens in
real-life segmentations.

We propose the following procedure to obtain more comparable
performance measures: The union of the different expert mark-
ings is considered to be the object area. The background area is
modified to include the same amount of pixels as in the defined
object. These pixels are equally distributed around the object. The
idea of modifying the background area prior to the manual or auto-
matic segmentation process, was previously suggested in order to
improve the segmentation results and the STAPLE-based validation
[28]. Fig. 2 illustrates the influence of the background modification
on the output of the STAPLE algorithm. Fig. 2(a) presents five over-
lapping segmentation masks of ellipses with different orientations
and sizes (each mask is color coded differently and marked by a
different number), the rest of the image is considered to be the orig-
inal background area. Fig. 2(d) presents the suggested background
modification. The union of the masks is colored red. The modified
background, colored green, is equally distributed around this region
with the same amount of pixels. The rest of the pixels within the
image, colored blue, are masked out and ignored throughout the
rest of the computations. Fig. 2(b and c) are the ground truth seg-
mentation maps generated by the STAPLE algorithm when using
the original background area and the modified background, respec-
tively. Fig. 2(e and f) are corresponding histograms, reflecting the
distribution of the probability values within each map. Note that the
y axis is truncated at the value of 0.1, to allow for a better observation
of the distribution values within the object area. The original ground
truth map, (b), generated by applying the STAPLE algorithm to the
entire image, possesses higher probability values as compared to
the map generated with the modified background (c). As a result, a
larger area is considered to be an object with high probability. This
result does not reflect the actual overlap that exists between the
experts. It is expected for example, that the region with the high-
est probability will be the region marked by the largest amount
of experts: the intersection of masks 1, 2, 4, 5. This is not the case
in map (b), where an additional region, the intersection of masks
1, 2, 3, possesses the same value. The ground truth map generated
with the modified background, (c), has a broader range of proba-
cervix segmentations using ground truth from multiple experts.
8.12.002

background (pm, qm).

I1 I2 I3 I4 I5

p 1.00 0.48 0.44 0.31 0.24
q 0.94 0.99 0.98 1.00 1.00

pm 1.00 0.67 0.26 0.46 0.36
qm 0.68 0.97 0.86 1.00 1.00

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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ig. 2. STAPLE simulation. (a) Input segmentation masks imposed on the same ima
y STAPLE using the original background; (c) multi-expert ground truth generated
rea (red), modified background area (green) the rest of the pixels (blue) are ignore

he modified background case (pm, qm). Without the background
odification the specificity values are higher and with a narrower

ange (0.94:1 as compared to 0.68:1). Note the significant change
n the specificity value of expert 1 (who has the lowest specificity).
n addition, the sensitivity values do not accurately reflect the level
f agreement between the experts. For example, with the original
ackground, the sensitivity of expert 3 is higher than the sensi-
ivity of experts 4 and 5. This is in contradiction to the fact that
he markings of experts 4 and 5 possess a better overlap with the
igh-probability region of the multi-expert ground truth. When the
odified background is used, expert 3 attains the lowest sensitivity

alue, as expected.

. Performance analysis based on multi-expert ground
ruth maps

The multi-expert ground truth (GT) map generated by STAPLE is
fuzzy probability map, that includes the probability per pixel to
elong to the object region within the image. In this section we
ropose to use the map for quantifying segmentation complex-

ty (Section 3.1) and for quantitatively evaluating the results of an
utomated segmentation algorithm (Section 3.2).

.1. Measuring segmentation complexity

We propose to compute a set of measures, or “descriptors”, to
epresent the complexity of a given segmentation task. The under-
ying assumption is that the variability of pixel probabilities within
he GT map indicates the level of disagreement between the human
xperts. This, in turn, is an indication for the increased complexity of
he segmentation task. The probability values within the GT map are
inearly stretched prior to the descriptors computation, to enable
comparison of the values across the images. Highest probability
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

alue is set to one and lowest value to zero. The probability value of
pixel i within the GT map, I, is denoted by Wi. The descriptors are

omputed only for the object area, as defined by the STAPLE output
Wi > 0).

We propose the following descriptors:
ch binary mask is color coded differently); (b) multi-expert ground truth generated
APLE using the modified background. (d) background modification process: object
nd f) histograms of the ground truth maps, presented under corresponding results.

1. Entropy:
Entropy is a well known measure of distribution homogeneity.

It is computed here using the histogram representation of the
distribution within the GT map:

entropy(I) = −
N∑

i=1

hi × log(hi) (6)

where hi is the value of bin i of the histogram (
∑

hi = 1) and
N = 100. An intuitive understanding of entropy relates to the
amount of uncertainty in the segmentation: A GT map that con-
tains a single probability value, as is the case in complete overlap
of the expert segmentations, has entropy value of zero (no uncer-
tainty). Disagreement between the experts generates additional
probability values within the GT map, which leads to a broader
distribution and to a higher entropy value.

2. Standard deviation (STD):
The width of a distribution can be measured using its standard

deviation:

STD(I) =
(

1
n − 1

n∑
i=1

(Wi − Wm)2

)1/2

, (7)

where n is the number of pixels considered to be an object and
Wm is the mean of their probability values. A low STD value is
associated with a narrow distribution of probabilities within the
GT map and vise versa.

3. Entropy or Standard Deviation scaled by Mean:
While the entropy and the standard deviation represent the

spread of the distribution well, they do not represent the prob-
ability values themselves. This information is important when
measuring segmentation complexity. A narrow distribution may
be located in the high-probability range, or in a low-probability
cervix segmentations using ground truth from multiple experts.
8.12.002

range. The first case corresponds to GT maps with large areas of
strong agreement and the second case corresponds to GT maps
with large areas of strong disagreement between the experts.
(Examples and discussion will be provided in Section 4). In
order to cope with such cases, we propose a normalized set of

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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observation indicates reduced sensitivity of the accuracy measure to
the relative size of the object and the background; (2) The ranking
of the accuracy measure appears to correspond with our percep-
tual understanding; and, (3) The range of the accuracy values is
increased when using the modified background. This generates a

Table 2
STAPLE simulation.

I1 I2 I3 I4 I5 Rank results

F 0.97 0.65 0.60 0.47 0.39 I1, I2, I3, I4, I5
Fm 0.81 0.79 0.40 0.63 0.53 I1, I2, I4, I5, I3

PV 0.97 0.74 0.71 0.66 0.62 I1, I2, I3, I4, I5
PVm 0.84 0.82 0.56 0.73 0.68 I1, I2, I4, I5, I3

acc 0.945 0.959 0.947 0.954 0.950 I , I , I , I , I
ARTICLEG Model
MIG-901; No. of Pages 12

S. Gordon et al. / Computerized Medica

descriptors. In this set the entropy and the standard deviation are
scaled by the square of the distribution’s mean. These descrip-
tors are termed “entropy scaled by mean” (ESM) and “standard
deviation scaled by mean” (SSM), respectively and are defined
as:

ESM(I) = entropy(I)

mean(I)2
; SSM(I) = std(I)

mean(I)2
. (8)

We now have four types of descriptors. We classify a given seg-
entation task as “simple” or “complex”, relative to a selected set

f these descriptors. We use either a thresholding or a clustering
pproach to carry out this classification. A threshold for the com-
lexity can be learned from a training set of segmentations, for the
SM (SSM) descriptor, following which each new segmentation task
an be categorized using the selected threshold. For the clustering
cheme, we use a 2D feature space of the entropy and the mean
escriptors. Training data is used to cluster the space into varying
omplexity levels. Based on the 2D clustering of the complexity fea-
ure space, each new image input to the system can be categorized
s less or more complex (depending on its own GT map descriptor
et). It is also possible to analyze the variability of the segmenta-
ion complexity across the images within the database. In addition,
he complexity of segmenting different regions within the cervix
an be compared, thus distinguishing between easy and difficult
egmentation tasks.

.2. Evaluating automatic segmentation results

Given a new segmentation map, created independently of STA-
LE, it may be desirable to compare it quantitatively to the STAPLE
ulti-expert ground truth. Such an analysis can be used to assess

he performance of an automated segmentation algorithm and to
ompare the results of different algorithms. This analysis can be
ade using the following methods:

1. Computation of the sensitivity and specificity performance lev-
els of the new segmentation as compared to the multi-expert
ground truth, using Eq. (5)[23].

. Computation of the accuracy [5] of the new segmentation as
compared to the multi-expert ground truth. The accuracy of a
given classifier, defined on a binary set of samples with posi-
tive, P, and negative, N, labels, is computed as the total correct
fraction: ((TP + TN)/(P + N)), where TP and TN are the amount
of true positives and true negatives detected by the classifier. In
the current case, the multi-expert ground truth is a set of real
numbers, W, which define the probability for a positive label;
denote the new segmentation by D. Then we compute accuracy as
[1]:

accuracy =

∑
i:Di=1

Wi +
∑

i:Di=0

(1 − Wi)

N
, (9)

where D and W are treated as vectors, and N is the number of
samples being considered. Higher accuracy values indicate better
correspondence to the ground truth.

In the first method, the sensitivity and specificity parameters
omputed for a specific image are compared to the parameters
ttained by the human experts for that image. Each of the parame-
ers is evaluated separately. This method has two main drawbacks:
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

irst, as the number of experts increases, it is more complicated
o rank their results and compare them to the results of the algo-
ithm. A single measure is more appropriate in that case. Second,
s demonstrated in Section 2, the range of the sensitivity and the
pecificity values depends on the relative size of the object and
 PRESS
ing and Graphics xxx (2009) xxx–xxx 5

background within the image, thus care should be taken when
combining them into a single measure. In addition, these mea-
sures can be used to compare results within a single image (of the
same data [1]), but not across the images in the database, as the
size of the objects varies considerably. A statistical evaluation of
segmentation algorithm results is applicable only when the com-
parison is performed between different algorithms and on the same
data.

In earlier work [16], the F-measure was suggested in order to
combine the sensitivity, p, and specificity, q, into a single value. The
F-measure is defined as the weighted harmonic mean of the two
parameters [22]:

F = pq

˛p + (1 − ˛)q
, ˛ = 0.5. (10)

Being dependent on sensitivity and specificity, the F-measure is
strongly affected by the relative object/background area. This mea-
sure also assumes a similar range of sensitivity and specificity
values within a single image (by setting ˛ = 0.5), which is seldom
true in the current case. Other measures that combine sensitivity
and specificity into a single measure suffer from the same faults
(including the shortest distance from the (0, 1) corner, used in ROC
analysis [5], and the mean predictive value (PV) [23], that reduces
to ((p + q)/2) in the binary case).

The accuracy, used in the current work, accounts for the amount
of accurately detected labels as compared to the image size and not
the size of the different regions within it. The modification of the
background area, in order to balance the object/background pro-
portions, makes this measure even less sensitive to their relative
size, as compared to the other options.

Table 2 presents the F-measure (F), mean predictive value (PV),
and the accuracy (acc) results computed for the different segmen-
tations, I1, . . . , I5, within the simulation of Fig. 2. These results
illustrate the benefits of using the accuracy measure. The values are
computed using both the original and the modified backgrounds.
A higher value indicates a more accurate segmentation, as com-
pared to the STAPLE-generated, multi-expert ground truth. In order
to identify the segmentation that is most similar to the multi
expert ground truth, the different values are sorted in decreasing
order, and the different segmentations are ranked accordingly. The
desired ranking according to our perceptual understanding may
be: I2, I4, I5, I3, I1, where I2 is the most similar segmentation to the
ground truth.

The following observations can be made: (1) The accuracy mea-
sure obtains a similar ranking of segmentations for the original
background (acc) and for the modified background (accm). This
cervix segmentations using ground truth from multiple experts.
8.12.002

2 4 5 3 1

accm 0.73 0.92 0.77 0.91 0.90 I2, I4, I5, I3, I1

F-measure, mean predictive value and accuracy results computed for each of the
segmentation masks of Fig. 2 with the original background (F, PV, acc) and with the
modified background (Fm, PVm, accm). Corresponding ranking order of segmenta-
tions, from most to least similar, is included (left to right).

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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etter distinction between the quality of the different segmenta-
ions within a single image and provides additional support for the
ackground modification suggested in Section 2.

The above observations are not exhibited in the case of the F-
easure and the PV. The different range of values obtained for

he sensitivity and the specificity measures with the original back-
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

round and with the modified background, affects the values and
orresponding ranking of the F-measure and the PV. This indicates
hat these measures are more sensitive to the relative proportions
f the object and background. An additional observation relates to
he ranking order itself, where I1 is wrongly ranked as most similar

ig. 3. Examples for multi-expert ground truth data for the cervix boundary (top row) an
xperts; (c, d, g and h) examples of disagreement among experts. Corresponding histogra
 PRESS
ing and Graphics xxx (2009) xxx–xxx

to the GT. This misplacement occurs because a similar range of sen-
sitivity and specificity is assumed in the computation. The range
of the specificity values, improved by the modified background
(Table 1), is still narrower than that of the sensitivity.

4. Experiments and Results
cervix segmentations using ground truth from multiple experts.
8.12.002

A set of experiments was conducted in order to evaluate the pro-
posed computational measures and analysis schemes. The database
used contains a set of 932 manually segmented cervigrams out
of the 939 cervigrams of the NCI database [11]. Seven additional

d the acetowhite region (bottom row). (a, b, e and f) Examples of agreement among
ms and complexity descriptors are presented under each example.

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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Fig. 4. Scatter in entropy-mean feature space of 100 images marked by two

ervigrams were discarded since their segmentations exhibited no
verlap whatsoever between the human experts. The NCI database
as divided into two main groups. One group contains 20 cervi-

rams that were marked by twenty medical experts. The second
roup contains the remaining 912 cervigrams, with each marked
y two experts out of the twenty medical experts. The markings
f two regions are examined: the acetowhite region and the cervix
oundaries. A version of the STAPLE algorithm that considers the
odified background (Section 2) was used throughout the analysis

o generate the multi-expert ground truth.2

.1. Evaluation of the segmentation complexity descriptors

We start by examining the correlation between the proposed
egmentation complexity descriptors (Section 3.1) and the level of
greement among the experts, as given by the multi-expert ground
ruth generated by STAPLE. Fig. 3 shows examples of the multi-
xpert ground truth segmentation for both the cervix boundary
nd the acetowhite region. Histograms of the probability values
ithin each map are presented under corresponding examples (for

he object region only). The segmentation complexity descriptors,
omputed for each of these examples, are listed. The following
bservations can be made:

The Entropy measures the distribution of the probability values
within the map, without taking into account their magnitudes.
This results in cases such as the one presented in Fig. 3(g), where
the entropy is very low but the disagreement between the two
experts is clearly visible.
The Standard deviation (STD) has a similar deficiency: it accounts
for the distribution of the probability values around their mean,
but does not consider the mean value itself. Like the entropy, the
standard deviation will fail (i.e., take on low values, even though
the disagreement between the experts is high) in cases such as
the one presented in Fig. 3(g).
The Mean descriptor is the average value of the probabilities
within the ground truth map. A correlation can be detected
between high mean values and strong agreement between the
experts. The mean value, however, lacks the ability to differentiate
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

between cases with similar mean and different distributions.
The Entropy Scaled by Mean (ESM) combines the benefits of both
the entropy and the mean descriptors and successfully differ-
entiates among the different levels of agreement in all of the

2 The original STAPLE algorithm is available via the ITK toolkit (http://www.itk.
rg/).
ts. (a) Cervix boundary segmentation; (b) Acetowhite region segmentation.

presented examples. Low values of ESM are correlated with high
levels of agreement. The STD Scaled by Mean (SSM) attains similar
results.

From these observations it is evident that high level of agree-
ment between the experts is captured well by the ESM or the SSM
descriptors, where both the distribution and the mean of the proba-
bility values within the ground truth segmentation are considered.
It is important to note that the ESM/SSM values are strongly influ-
enced by the number of expert markings, since a larger number
of experts may produce a wider range of probability values within
the multi-expert ground truth. A more reliable comparison would
be between images that were marked by the same number of
experts.

In a second experiment, we evaluate segmentation complex-
ity by clustering in the two-dimensional feature space of entropy
and mean. In this feature space, low entropy and high mean values
are correlated with easier cases, where expert agreement is high.
Fig. 4 presents a scatter plot of the entropy and the mean descrip-
tors computed for 100 expert segmentations. These segmentations
were randomly selected out of the 912 cervigrams that were marked
by two experts. The experiment was conducted for segmentation
of (a) the cervix boundary and (b) the acetowhite region.

The distribution of the cervix boundary segmentations, Fig. 4(a),
is mainly concentrated within the low-entropy-high-mean region
of the feature space. This indicates a strong agreement among
the experts within most of the cervigrams. In the distribution of
the acetowhite segmentations, Fig. 4(b), three main groups can be
detected: Group A includes the low-entropy-low-mean segmenta-
tions. Group B includes the low-entropy-high-mean segmentations
and Group C includes the high-entropy-mid-mean segmentations.
This may be interpreted as follows: Group A corresponds to seg-
mentations with strong disagreement among the experts. Group B
corresponds to segmentations with strong agreement, and Group
C corresponds to segmentations with an intermediate level of
disagreement among the experts. Fig. 5 shows ground truth seg-
mentation examples for each of these groups along with their ESM
values. From top to bottom, each row shows examples for groups
A, B and C, respectively. The distinction between the maps in the
entropy-mean feature space is highly correlated with the level
of agreement between the experts, visually detected in the maps
within each group (where the red color corresponds to regions
cervix segmentations using ground truth from multiple experts.
8.12.002

of strong agreement). The ESM descriptor attains the lowest val-
ues within the images of group B, where the level of agreement
between the experts is high, as expected. The distinction between
groups A and C is less evident when using the ESM descrip-
tor.

dx.doi.org/10.1016/j.compmedimag.2008.12.002
http://www.itk.org/
http://www.itk.org/
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ig. 5. Example segmentations for the three groups observed in the entropy-mean fe
iddle row: group B—low-entropy-high-mean; bottom row: group C—high-entrop

The images within the three groups were presented to a medical
xpert who was asked to describe the visual appearance of the ace-
owhite regions within them. According to the expert most of the
cetowhite regions within group A are not visibly clear (described
s pale, with diffused and weak acetowhitening). This may explain
he poor level of agreement between the experts detected in these
mages. The distinction between the images within groups B and

is less evident, but most of the acetowhite regions within these
roups are described to be very clear and well delimited.

.2. A comparison between the complexity of the acetowhite and
ervix boundary segmentation tasks

The complexity descriptors can be used to assess the seg-
entation complexity of different images as well as of different

egmentation tasks. In the following experiment, the complexity of
egmenting the acetowhite region is compared to the complexity of
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

egmenting the cervix boundary. Fig. 6 presents the distributions
f the ESM descriptor for the cervix boundary segmentation (a),
nd for the acetowhite segmentation (b). The distributions were
omputed for images that were marked by two experts. The cervix
oundary segmentation has a narrower distribution with a lower
pace of the acetowhite region (Fig. 4(b)). Top row: group A—low-entropy-low-mean;
-mean.

mean value. This indicates strong agreement among the experts
in most of the cases, and suggests that the cervix boundary seg-
mentation task is the easier task. Fig. 6(c and d) show scatter plots
in entropy-mean feature space for images that were segmented
by more than ten observers. The cervix boundary segmentation
results, (c), are concentrated in the low-entropy-high-mean region.
This reflects the strong agreement between the experts in all
cases. The scatter of the acetowhite segmentation results in (d)
is more spread out, thus indicating a larger disagreement across
the different cases and, correspondingly, a more complex seg-
mentation task. Similar results can be detected in the scatters
presented in Fig. 4, in which the results of 100 cervigrams are pre-
sented.

4.3. Evaluation of automatic cervix boundary segmentation

We compared two algorithms for cervix boundary detection,
cervix segmentations using ground truth from multiple experts.
8.12.002

using the accuracy measure defined in Section 3.2. The first algo-
rithm (algorithm I) detects an initial coarse region of interest
(ROI) located around the cervix region [8]. The second algorithm
(algorithm II) is based on a new active contour functional that incor-
porates a local convexity feature and was devised especially for

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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ig. 6. Distribution of images that were marked by two experts: (a) cervix boundar
n the entropy-mean feature space for images with more than ten experts markings

he purpose of cervix boundary detection [27]. Algorithm I is used
o initialize algorithm II and is therefore expected to have inferior
esults.

A comparison was conducted among the following assessment
easures: sensitivity (p), specificity (q) and accuracy. All measures
ere computed using the multi-expert ground truth generated by

TAPLE. The experiment was conducted on 636 images in which the
ervix boundary was marked by two experts. Table 3 presents the
ean and the standard deviation values attained for each of these
easures for the two segmentation algorithms tested. Algorithm

attains very high sensitivity values but they are correlated with
ery low specificity values. These results indicate that the cervix
egion is always located within the detected ROI but that large por-
ions of the background are also included. Algorithm II, which was
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

esigned with the goal of obtaining a more accurate delineation
f the cervix boundary, significantly reduces the amount of falsely
etected regions. This comes at the expense of missing some of the
ervix region pixels. The accuracy measure, which combines the

able 3
valuation of two algorithms for cervix boundary detection using different perfor-
ance measures.

Algorithm I Algorithm II

0.98 (0.03) 0.87 (0.1)
0.38 (0.22) 0.75 (0.19)

ccuracy 0.65 (0.12) 0.8 (0.09)

ean and standard deviation results for 636 images are presented (mean(std)).
n = 0.93 (636 images); (b) acetowhite region, mean = 1.93 (602 images). Scatters
ervix boundary (20 images); (d) acetowhite region (16 images).

detection quality of the cervix region and the background into a
single measure, favors algorithm II as expected.

Fig. 7 demonstrates the benefits of the accuracy over the F-
measure, and the mean predictive value (PV), when more than two
expert segmentations are available. In this example the three qual-
ity measures are used to assess the performance of the experts
themselves, as compared to the STAPLE-generated, multi-expert
ground truth. 10 expert segmentations are used in the comparison.
The original cervigram with the different markings is presented in
(a), and the ground truth segmentation generated by STAPLE is pre-
sented in (b). The F-measure, PV and accuracy, computed for each
of the available expert segmentations, are listed on top of corre-
sponding maps in (c, d and e), respectively. The maps are sorted in
decreasing order of similarity to the STAPLE ground truth, begin-
ning with the most similar map. The sorted maps in (c) and (d)
demonstrate the tendency of the F-measure and the PV to favor
larger segmentations. Note the second and third most similar maps
in (c): These maps correspond to regions that were marked by single
experts and are certainly not within the region of highest probabil-
ity in the GT map. The sensitivity in these cases is high, as the maps
include most of the ground truth region. The specificity is not low
enough when compared to the other cases, due to its narrow range
of values. Both the F-measure and the PV are strongly affected by
cervix segmentations using ground truth from multiple experts.
8.12.002

the sensitivity, which leads to erroneous results. The sorted maps
in (e), where the accuracy measure is used, have a ranking closer
to our intuition. The most similar maps in this case correspond to
the region of high probability within the GT map, where the level
of agreement between the experts is high.

dx.doi.org/10.1016/j.compmedimag.2008.12.002


ARTICLE IN PRESSG Model
CMIG-901; No. of Pages 12

10 S. Gordon et al. / Computerized Medical Imaging and Graphics xxx (2009) xxx–xxx

F rt gro
F rom m

5

t
d
d
s
s
a

a

ig. 7. (a) Markings of 10 experts imposed on original cervigram. (b) Multi-expe
-measure, PV and a ccuracy, respectively. The maps are sorted in decreasing order f

. Conclusions

This work focuses on generating reliable multi-expert ground
ruth for the cervigram segmentation task. In addition several
escriptors based on the output of the STAPLE algorithm are
iscussed, including the ESM and SSM descriptors that measure
Please cite this article in press as: Gordon S, et al. Evaluation of uterine
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.200

egmentation complexity of a single image, and the accuracy mea-
ure that evaluates the performance of automated segmentation
lgorithms as compared to the markings of multiple experts.

Our results demonstrate the correlation between (1) the ESM
nd SSM descriptors and (2) high levels of agreement among
und truth generated by STAPLE. (c, d, e) Sorted segmentation maps according to
ost to least similar to the ground truth segmentation.

experts. We have demonstrated the superiority of these descrip-
tors over alternatives such as simple entropy, standard deviation,
and mean probability measures. The evaluation of segmentation
complexity in the entropy-mean feature space was shown to be
more accurate than the ESM descriptor, when trying to distinguish
between different types of disagreement among the experts. The
cervix segmentations using ground truth from multiple experts.
8.12.002

ability of the accuracy measure to evaluate the results of automated
segmentation algorithms was demonstrated, and this measure was
shown to provide a reliable evaluation that factors in the detection
quality of the object as well as that of the background, without being
too sensitive to their relative sizes. The ESM and the entropy-mean

dx.doi.org/10.1016/j.compmedimag.2008.12.002
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eature space were used to characterize the complexity of seg-
enting acetowhite lesions versus segmenting cervix boundaries.

n all of the presented experiments, the acetowhite segmenta-
ion was shown to be a more complex segmentation task, with
larger amount of disagreement among experts. This result can

e explained by the fact that the acetowhite tissue may consist of
ultiple regions distributed across the cervix, the tissue is visually
ore difficult to detect, and it has less well-defined boundaries. The

ervix region, on the other hand, is a single connected region that
s clearly visible within the cervigram.

The task of automatic uterine cervix image analysis is in its pre-
iminary stages. Detection and segmentation of cervigram tissues is
ery challenging due to the large diversity of the cervigram images
ithin the database and the different artifacts present in the cervi-

rams. Tuning algorithms to the segmentation characteristics of a
ingle expert would be unsatisfactory, due to the large multi-expert
ariability that exists. The complexity definition that we have pro-
osed can be used in future tasks to classify a database into “simple”
nd “complex” images. This may aid in the performance evaluation
nd analysis (per complexity group) of automated segmentation
lgorithms being developed.

We also conducted an initial qualitative comparison between
he visual appearance of the acetowhite lesions (described by

single expert) and the segmentation complexity specified by
he clusters in the entropy-mean feature space. In this compari-
on a correlation was detected between lesions that are difficult
o detect and images that are complex to segment (where the
greement between the experts was poor). In future work we
lan a more thorough analysis of the correlation between seg-
entation complexity and other medical findings available in the
CI database. Finally, the focus of this paper is the cervigrams
atabase, but the methods discussed here are general and can
e applied to a variety of medical image archives and application
omains.
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