2005 EIA Midterm Energy Outlook and Modeling Conference

LACK & VEATCH

Potential Impacts of an Advanced Energy Portfolio Standard in Pennsylvania

Ryan Pletka, P.E.

Black & Veatch

April 12, 2004

Supported by: Heinz Endowments Community Foundation for the Alleghenies

Study Objective

Assess the Potential Economic Impacts of a 20 Percent Advanced Energy Portfolio Standard (AEPS) in Pennsylvania

- 1. Identify most cost effective mix of resources built in response to AEPS
- 2. Identify economic benefits or costs

General AEPS Assumptions

- Timeframe
 - 2006 6%
 - Increases 2%/year
 - 2014 20%
- Evenly split in two-tiers:
 - Tier I RE & EE
 - Tier II waste coal, greenhouse gas, advanced technologies
- No imports or exports (simplification for analysis)
- Production Tax Credit through 2009

AEPS Resource Assessment Methodology

- Screen Technologies
- Characterize Resources
- Estimate Cost to Generate and Transmit Electricity
- Apply Avoided Cost of Power Model
- Develop Supply Curves
- Develop Least-Cost Portfolio of Projects

ELACK & VEATCH

AEPS Eligible Resources

Tier I

- Wind
- Low-impact hydro
- Biogas and coal mine methane
- Biomass
- Solar photovoltaics
- "Energy conservation" demand side, ie, consumers
- "Energy efficiency" supply side, ie, power plants
- Solar thermal
- Ocean and lake energy
- Solid waste (non combustion)
- Fuel cells fueled by Tier I resources

Tier II Resources

- Waste Coal
 - New facilities
 - Air pollution controls at existing facilities
- Integrated gasification combined cycle
- Fuel cells fueled by non-Tier I resources
- Greenhouse gas (GHG) reductions

Wind Assessment

- Pennsylvania wind resources relatively modest
- GIS analysis based on latest NREL data
- Capital Cost:
 - Base: \$1,175-\$1,275/kW
 - Transmission: +\$20-\$110/kW
 - "Expensive" resources: +\$500/kW (50% of total)
- Included 300 MW, class 5, offshore wind farm in Lake Erie

6 A ELACK & VEATCH

Biomass Cofiring Assessment

- Pennsylvania has good biomass resources and lots of coal plants
- Focused on cofiring at 38 existing coal units
 - Capital cost: \$100-\$700/kW
- Biomass resources
 - Only <u>sustainable and clean</u> resources identified
 - Assessment based on ORNL database
 - Biomass collected from 75 mile radius around plants

Energy Conservation / Efficiency Assessment

- Good opportunity for energy conservation/efficiency in PA
- Analysis Based on B&V, ACEEE assessments
 - Residential measures
 - Commercial & Industrial measures
- Over 16,000 GWh of potential identified over 20 years
 - About 10% of PA consumption
 - Wide range of costs and payback potential
 - Consumers won't necessarily implement
 *measures even if economical

Waste Coal Combustion

- Excellent waste coal resource in Pennsylvania
- To be eligible for AEPS, waste coal projects must be low emissions
- Analysis Based on PA DEP waste coal assessments
 - 3 Planned New Site Developments
 - 15 Environmental control upgrades at existing plants
- Environmental control upgrade projects also receive substantial revenue from emissions credit markets

Properly Characterizing Resource Cost

- One of the largest modeling differences between renewables and fossil fuels is that costs vary tremendously based on renewable resource quality
- There are a limited number of very good renewable / advanced project sites
- Costs rise as "low-hanging" projects are developed
- Supply curves capture these effects

Aggregate Tier I Supply Curve 2010

2010 Supply Curve

Additional Renewable Generation Required: 3154 GWh

6 A BLACK & VEATCH

Aggregate Tier II Supply Curve 2010

2010 Supply Curve

Additional Renewable Generation Required: 2955 GWh

Tier I Cost Premium Supply Curves

Tier I Least Cost Mix

Technology	Wind	Landfill Gas	Biomass Cofiring	Hydro	Solar PV	Energy Con- servation	Energy Efficiency
Share of RPS Mix (energy), %	38.6%	5.7%	24.9%	12.6%	0.0%	14.0%	4.1%
Energy, GWh	6,361	906	4,097	2,011	6	2,256	660
Capacity, MW	2,315	129	637	460	5	555	120
Capacity Factor, %	31%	80%	73%	50%	14%	46%	63%
Capital Cost, \$/kW	1,498	2,083	283	1,791	6,534	975	2
Average Cost Premium, \$/MWh	12.56	(1.51)	12.02	10.96	517.2	(30.85)	(0.34)

- Wind, biomass cofiring, and energy conservation comprise about 80 percent of mix
- Some solar (4 MW) assumed to be built, even though not economical

Economic Impacts Assessment

Compared building a 20% AEPS portfolio to building the "Business As Usual" (BAU) portfolio

- Cost of electricity
- Economic impacts (Jobs, Output, Earnings)
- Fossil fuel prices
- BAU Portfolio: 50% coal, 40% combined cycle, 10% simple cycle
- Portfolios equated on an equivalent <u>energy</u> production basis
 - RPS portfolio: 6,470 MW
 - BAU portfolio: 2,460 MW
- Environmental externalities purposely not assessed BLACK & VEA

Cumulative Economic Impacts

	Cost of Electricity	Employment Impact (job-years)	Earnings Impact	Output Impact
AEPS Portfolio	\$ 3.9 Billion	165,689	\$ 6.6 Billion	\$18.9 Billion
BAU Portfolio	\$ 6.6 Billion	94,753	\$ 4.1 Billion	\$11.9 Billion
Difference	-\$ 2.7 Billion	70,937	\$ 2.5 Billion	\$ 6.9 Billion

- Economic Benefits of the AEPS Portfolio compared to Business as Usual
 - Cost of electricity: reduced by \$2.7 billion (cumulative present value), about 1% when spread over all consumption
 - Employment: Creates over 70,000 additional job-years over 20 years (average of new 3,500 jobs)
 - **State output:** Creates about \$7 billion in increased state output
 - Personal Income: Creates about \$2.5 billion in additional earnings

AEPS Enacted into Law in Late 2004

Our model does not match what was finally signed into law

- Solar PV Standard 0.5% of electricity demand in 15 years (~680 MW)
- Implementation Challenges
 - Ensuring new projects are deployed to meet the requirements of Tier I
 - Geographic Scope
 - Definition of Low-Impact Hydro
 - Long-Term Contracts
 - Encouraging demand-side management
 - Tier II over-subscription
 - Developing rules

Conclusions and Acknowledgements

Acknowledgements

- Community Foundation for the Alleghenies Mike Kane
- Heinz Endowments
- PA DEP
- REPP
- Industry
- Contact

Ryan Pletka Black & Veatch 913-458-8222 pletkarj@bv.com

