

The Outlook for Energy - A Focus on Oil

2005 EIA Midterm Energy Outlook & Modeling Conference April 12, 2005

Todd Onderdonk Corporate Planning

A 2030 View

This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein (and in Item 1 of ExxonMobil's latest report on Form 10-K. This material is not to be reproduced without the permission of Exxon Mobil Corporation.

World GDP Grows by 2.8% Annually

Population Grows 27% by 2030

GDP per Capita in Developing Areas Still Small

GDP per Capita in Developing Areas Still Small

Conservation Reduces Energy Requirements

World Energy Demand Grows 1.7% Per Year

World Oil Demand Grows 1.5% Per Year

Transportation Demand Shapes the Oil Barrel

Efficiency Gains Offset by Sales Mix & Weight

Efficiency Gains Offset by Sales Mix & Weight

Efficiency Gains Return

Hybrid Vehicles Have Highest Potential

Sources: Argonne National Lab, Toyota, NRC, IEA, National Academy, EM analysis

Vehicle Penetration Follows a Pattern

Personal Vehicles Function of Income Per Capita

Historical data through 2002

Personal Vehicles Function of Income Per Capita

History plus View to 2050

Emerging Asia Drives Fuels & Emissions Growth

	North America		Europe		Emerging AP	
	<u>2003</u>	<u>2030</u>	<u>2003</u>	<u>2030</u>	<u>2003</u>	<u>2030</u>
Number Vehicles (Million)	235	325	230	270	55	420
Cars/1000	730	855	395	460	15	100
Efficiency (MPG) Fleet New Sales	20.5 21.0	29.0 38.0	31.5 35.0	39.0 43.0	19.0 20.0	25.0 29.0
Advanced ICE + Diesel (% Sales)	1%	42%	39%	57%	13%	22%
Light Duty Fuels (MBD)	9.5	8.8	3.7	3.6	1.8	7.9
Carbon Emissions (G Tonnes/Yr)	0.35	0.33	0.14	0.14	0.07	0.30

Large Oil Resources Exist

World Liquids Production Outlook

Technology Critical to Extend Resources

Exploration

- 3-D seismic
- Advanced interpretation

• Drilling

- Extended horizontal reach
- Complex well profiles

Offshore

- Deepwater drilling
- Floating production units

• Reservoir Management

- Digital reservoir simulation
- Optimized drilling

• Field Development

- Offshore arctic
- Remote offtake

Sakhalin-1 Chayvo Field Development

Groundbreaking Research Underway

GCEP: Researching commercially viable energy technologies that can substantially reduce greenhouse gas emissions

- \$225 million over 10 years from:
 - -ExxonMobil
 - -General Electric
 - -Schlumberger
 - -Toyota

"The problems we face are extraordinarily complex in scope and scale. No one university, no single company, not even a single country can solve them all. That's why this project is important."

> John Hennessy, Stanford University President

Summary Conclusions

• Economic growth generates increased demand for energy

Rising personal incomes and living standards in developing Asia

> Worldwide consumption grows to 335 MBDOE in 2030

• Supporting demand growth requires accelerated efficiency gains

> Portfolio of consumer acceptable options must be progressed

Efficiency gains aid compliance with environmental standards

Providing timely & adequate supplies is large scale, long term challenge

Continued investment in new technology to provide economic supplies

Uncertain access and pace for OPEC and Russia projects

Application of new technology best way to meet challenges

- Growing and developing the resource base
- Improving efficiency and reducing emissions

• Diversity of energy mix increasing longer term

Increasing opportunity for new coal, nuclear and bio-fuels

Economic growth compromised if supply or demand challenges not met

