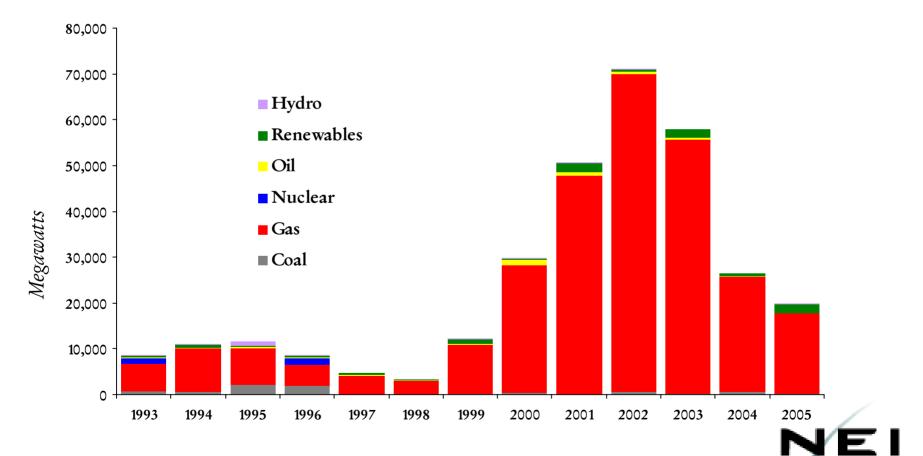
"If Not Gas, Then ..." **The Role of Nuclear Power in a Diversified Electricity Supply Portfolio**

27 March 2006

Outline

- From EPAct 1992 to EPAct 2005: Lessons learned
- Nuclear power and the Energy Policy Act of 2005
- New nuclear plant construction: Current status and prospects



The Bottom Line

- The lesson of the last 15 years in U.S. electricity policy:
 - Diversified fuel and technology portfolio is highly desirable, if not essential
 - All fuels and technologies (nuclear, coal, natural gas, renewables, efficiency) have a legitimate role
- The challenge for the next 15 years and beyond:
 - Preserving/restoring diversified portfolio
 - Defining appropriate roles for the various fuels and technologies

From EPAct 1992 to EPAct 2005: Generating Capacity Online (1993-2005)

Source: Global Energy Decisions

The "Dash to Gas" Since '92: Why?

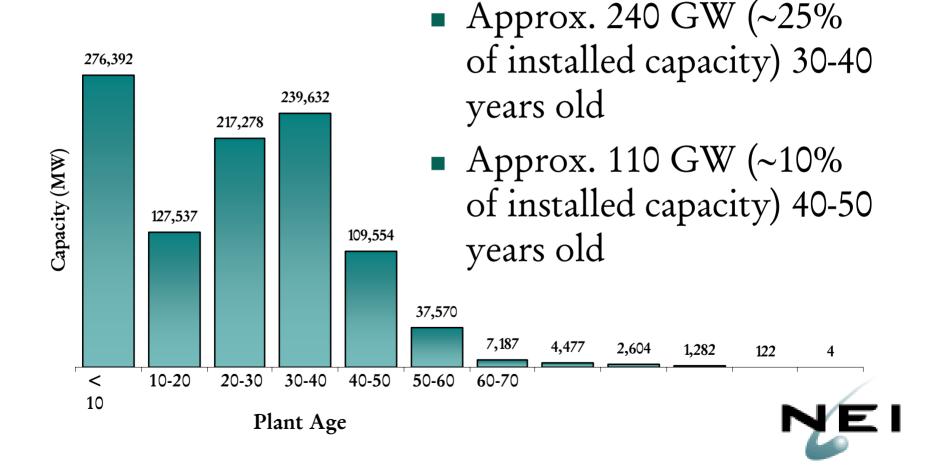
- U.S. entered the 1990s heavy on baseload
 - Needed mid-merit, peaking capacity
- At \$2-2.50/million Btu, natural gas was inexpensive
- No recognition of supply constraints
- But mostly, gas-fired generating capacity represented lowest investment risk at a time of punishing business uncertainty
 - Industry structure
 - Market design

The Last 15 Years: Investment in Electric Infrastructure Collapsed

- With industry restructuring, significant investment, but only "churning" existing assets
- Investment in new coal and nuclear generating capacity all but disappeared, even though they pepresenof.U.S. electricity supply

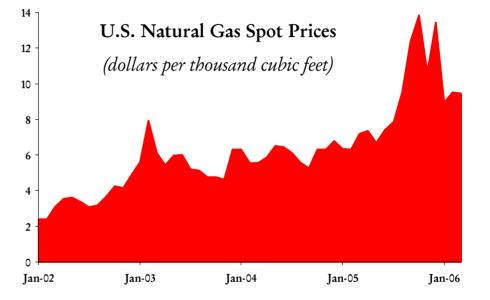
0.0 M2	0,011111
Gas	288,576 MW
Nuclear	2,485 MW
Oil	4,933 MW
Renewables	9,983 MW
Hydro	2,629 MW
Other	223 MW

Coal


New Generating Capacity: 1992-2005

8.044 MW

- Greatest forward price stability
- Something wrong with this picture



The "Graying" of the Infrastructure: Age of Generating Capacity

The Gas-Fired Boom and Bust

- Massive build of gasfired capacity: Unsustainable pressure on gas supply and price
 - Periods of punishing

- DaniagEyto other industries (chemicals, steel, plastics, etc.)
- New gas-fired combined cycle capacity running today at ~35% capacity factor

The Challenge Today: Addressing the Energy

Investment Crisis Resurrecting coal and nuclear investment

- - ▶ Coal: 4 GW under construction, 70 GW in development
 - Nuclear: 20 GW in development
- Resurrecting investment in electric and gas transmission:
 - ▶ Electric: Steady decline since late-1970s (\$4.0-4.5 billion/year); bottomed out through 1990s (~\$2.5 billion/year); now turning around
 - Gas: Averaged \$2.8 billion/year 2000-2002; should increase to \$8 billion/year (NPC study)
- Developing workable approaches to ensure resource adequacy

What Is Driving the Interest In New Nuclear Construction?

- Growing need for baseload generation
 - Reserve margins down in 2005 for first time in a decade
- Increasing environmental constraints and compliance costs, potential controls on carbon emissions
- Chronic volatility in natural gas prices

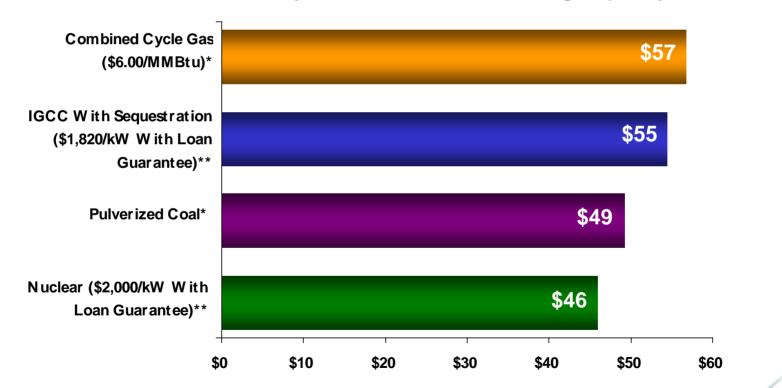
Near-Term Need for New

Canacity

Projected Excess Capacity by NERC Region, 2005-12, Including Power Plants Under Construction (megawatts)						
Region	2007	2008	2009	2010	2011	2012
New	1,933	1,241	535	0	0	0
England New York	1,099	0	0	0	0	0
МААС	0	0	0	0	0	0
ECAR	10,876	8,759	6,998	4,827	2,251	0
MAIN	5,809	5,715	5,061	4,431	3,660	2,246
MAPP-US	2,267	1,319	906	205	0	0
VACAR	0	0	0	0	0	0
Southern	3,079	1,762	1,173	0	0	0
TVA	2,190	1,318	427	0	0	0
Entergy	16,134	15,111	14,500	14,458	13,788	13,105
FRCC	2,086	862	0	0	0	0
SPP	5,681	4,759	3,825	2,879	1,836	792
ERCOT	6,665	5,242	3,783	1,995	468	0
WECC-US	14,191	9,808	7,521	4,469	1,238	0
US Total	72,010	55,897	44,729	33,265	23,241	16,143

Source: Cambridge Energy Research Associates and EV Power ®, Global Energy Decisions, Inc.

Notes: (1) Required reserve margin assumed to be 18 percent in New England, New York, PJM, WECC, and FRCC; otherwise it is 15 percent; (2) Includes only known scheduled retirements.


Energy Legislation Provides Investment Stimulus for New Plants

- Federal loan guarantees
 - Covers up to 80% of project cost
 - Allows more highly leveraged capital structure
 - Reduces project cost
- Production tax credits
 - ▶ \$18/MWh for up to 6,000 MW
 - Worth up to \$125 million in tax credits per year for
 - 8 years for 1,000 MW of capacity

Investment Stimulus Offsets Higher Cost of First New Plants

Estimated Electricity Costs for New Generating Capacity

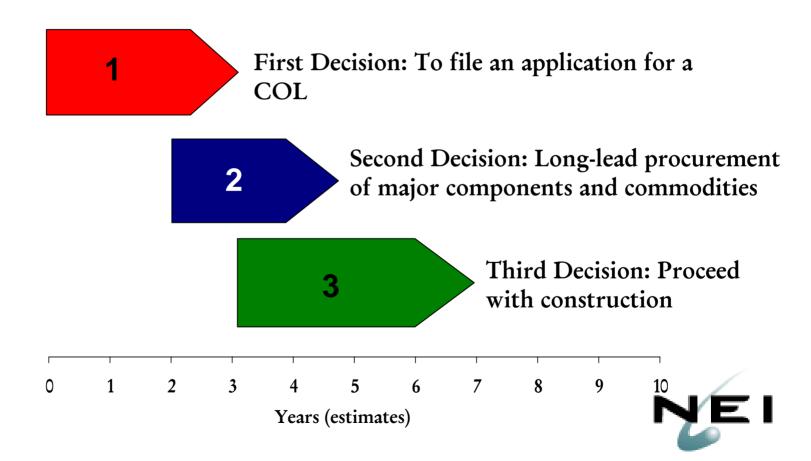
*Assumes 15% cost of equity, 8% cost of debt and a 50/50 debt/equity structure. **Assumes 15% cost of equity, 6% cost of debt and an 80/20 debt/equity structure. Source: NEI analysis of first-year operating costs using EIA data

Containing the Perceived Risk Of First New Nuclear Plants

- New licensing process reduces risk of delay
 - Project developers will have regulatory approvals before significant capital spent
- Federal standby support
 - Provides \$2 billion of risk coverage for first six plants
 - Covers delays resulting from licensing or litigation

Substantial Flexibility in Structuring, Financing New Nuclear Projects

- Regulated companies:
 - in cost-of-service states, companies will build new nuclear plants as rate-base projects
 - conservative capital structure (50/50 debt/equity)
 - Substantial investment protection: Reasonable assurance that all costs prudently incurred recovered through electric rates
- Unregulated generating companies:
 - merchant projects, highly leveraged (80/20 debt/equity)
 - financing supported by long-term power purchase
 agreements and federal loan guarantees


Status of New Plant Licensing

Company	Design	Units	Date for Filing COL Application
Dominion	ESBWR	1	2007
NuStart Energy (TVA)	AP1000	2	2007
NuStart Energy (Entergy)	ESBWR	1	2007/2008
Entergy	ESBWR	1	2008
Southern Co.	AP1000	1-2	2008
Progress Energy	AP1000	2-4	2007
South Carolina Electric & Gas	AP1000	1-2	2007
Duke Energy	AP1000	2	2008
UniStar Nuclear	U.S. EPR	1-4	2008

Roadmap to Commercial Operation

Building a new nuclear plant is not a one-step process or decision: It is a sequence of 3 successive decisions

Nuclear Plant Build Rates

AEO 2006	2020	2030
Reference Case (\$2,014/kW → \$1,733/kW)	6 GW	6GW
Advanced Nuclear Case ($$2,013 \rightarrow $1,387/kW$)	8.9 GW	34 GW
Vendor Estimate Case ($$1,659 \rightarrow $1,136/kW$)	13.3 GW	76.7 GW

CERA (\$2,000 - \$2,350/kW)	2020
Shades of Green	9GW
World in Turmoil	0
Technology Enhanced	18 GW
Rearview Mirror	7 GW

How Much Nuclear Power Do We Need?

- Electricity demand in 2030 will be 45%
 - greater than today
- To maintain current electric fuel supply mix would mean building:

50	Nuclear reactors (1,000 MW)
261	Coal-fired plants (600 MW)
279	Natural gas plants (400 MW)
93	Renewables (100 MW)

Source: 2006 Annual Energy Outlook, Energy Information Administration

Looking Ahead: What's the Next Big Thing?

- On the verge of a major build cycle in the U.S.:
 - ▶ ~75 GW of new coal-fired capacity
 - ▶ ~20 GW of new nuclear capacity
 - ~10-15 new LNG regasification terminals
 - Gas pipeline from Alaska, plus significant expansion of lower-48 pipeline network
 - And other critical infrastructure (roads, bridges, cities)
 - And around the world (China, India, etc.)

Materials, Manufacturing: The Next Big Thing?

- To support a major build cycle takes:
 - Commodities (structural and specialty steels, concrete, etc.)
 - Pipe, compressors, valves, tubing, vessels, steam generators, pumps, steam turbines, reactor vessels, forgings,

24' Diameter x 13' High: 127 Tons

- Hasetanyone done a global inventory of capacity available to support new build cycle across entire energy sector?
- Example: Only one supplier (Japan Steel Works) worldwide for ultra-large ring forgings used to fabricate reactor pressure vessels