

Status Report: USGS Coal Assessment of the Powder River Basin, Wyoming

James A. Luppens¹, Timothy J. Rohrbacher², Jon E. Haacke², David C. Scott², and Lee M. Osmonson²

U.S. Geological Survey Open-File Report 2006-1072

U.S. Department of the Interior U.S. Geological Survey This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S.G.S.

¹USGS, Reston, VA ²USGS, Denver, CO

Figure 1. Title Slide: "Status Report: USGS Coal Assessment of the Powder River, Wyoming" by James A. Luppens, Timothy J. Rohrbacher, Jon E. Haacke, David C. Scott, and Lee M. Osmonson; U.S. Department of the Interior, U.S. Geological Survey.

USGS Coal Program

- Current and future coal assessments not just another in-place coal resource number.
- Regional estimates of economically recoverable coal will be an integral part of current and future assessments.
- > How much economically recoverable coal do we have left?

Figure 2. Objectives of the current and future USGS coal assessment programs. An inventory of the estimated economically recoverable coal provides a better foundation for energy planning than simply relying on in-place coal resources.

Importance of Coal Assessment Project

- National energy reliance and energy policy
- Regional energy and economic planning
- Federal lands inventory
- Coal bed methane (CBM) exploration and development
- Carbon sequestration

41 ISES

Figure 3. Importance of USGS coal assessment project to energy policy and research.

Current and Future Coal Assessment Work, Where do we go from here?

- Reserve investigations require more up front geology and engineering work.
- However, new, highly automated regional mine modeling and economic programs developed by the USGS facilitate the reserves evaluation.
- The USGS assessment methodology was formally evaluated by an external review panel with an open file report published in February, 2005 Rohrbacher, T. J., and others, 2005 (http://pubs.usgs.gov/of/2005/1076).
- Builds on the digital geologic framework of past coal resource assessments.
- Started next coal assessment phase in the greater Powder River Basin (PRB) in FY2005.

Figure 4. The direction of current and future USGS coal assessments.

Regional Coal Resource Evaluation Overview

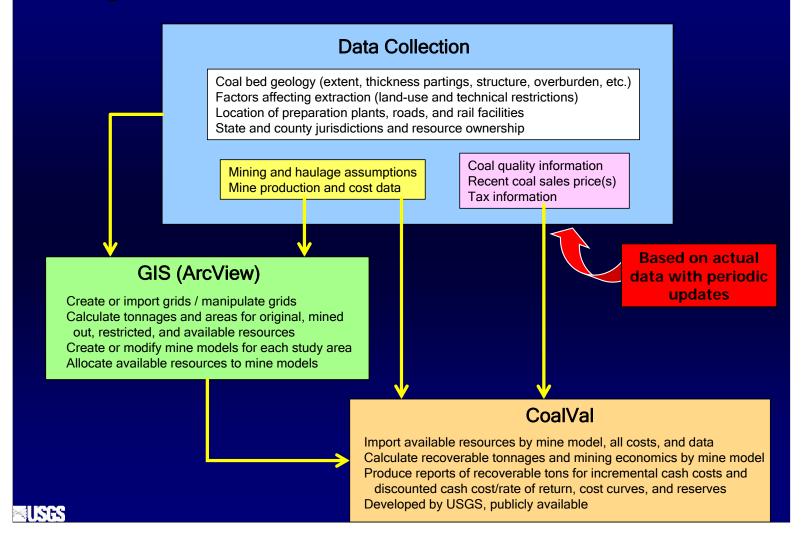
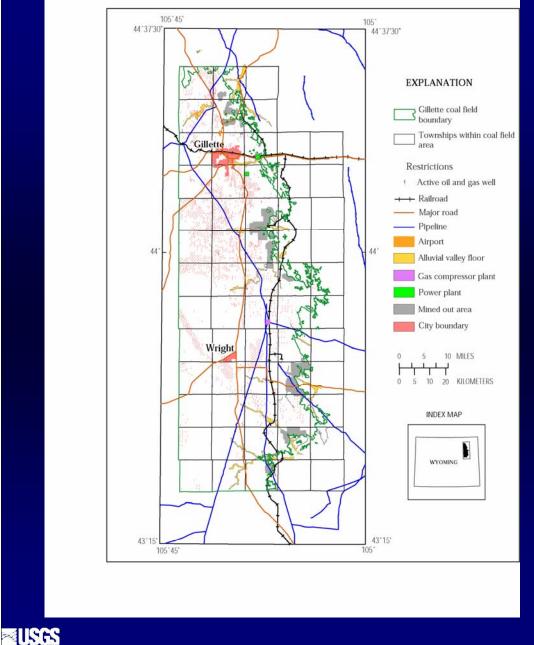



Figure 5. The USGS coal assessment project is designed to provide regional estimates of economically recoverable resources (reserves). Data collection and geological modeling are typically the most time intensive phase. Once the geology model is complete, the GIS program allocates the available coal resources to the various mine models. Finally, a program developed in-house called CoalVal performs the economic analyses.

Environmental, Societal, and Technical Restrictions to Mining in the Gillette Coal Field, Wyoming

Figure 6. In addition to subtracting previously mined out resources, coal restricted by societal and environmental constraints are subtracted to determine the remaining available resources. An economic analysis of the available resources yields an estimate of reserves for the study area.

The GIS Process of Merging Layers or Themes of Data into More Meaningful Interpretations

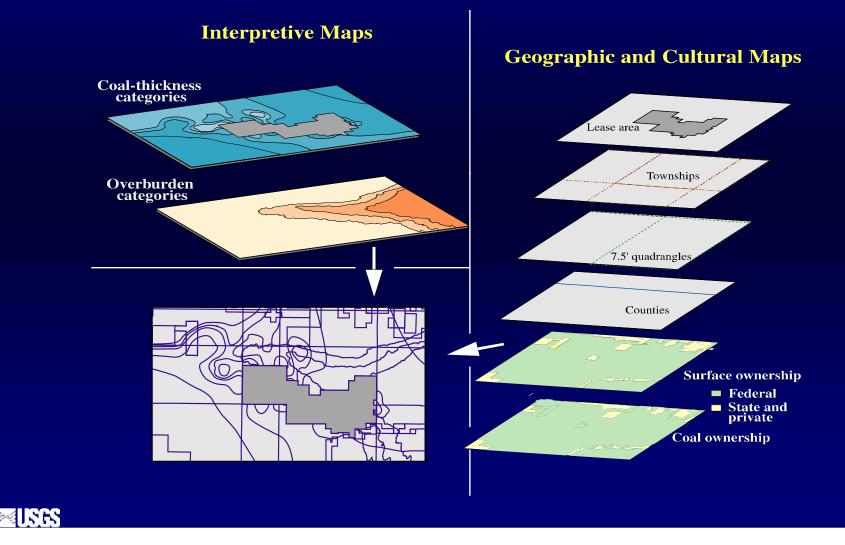


Figure 7. The availability of GIS coverages for land, restrictions, geology, etc. greatly facilitate the evaluation process.

Available Resource Areas Input into CoalVal

Projects File Reports Tools Help				
CoalVal Projects Seams, Arr	eas, and Discounted Cash Flows		Filter by Region\Mine Data Group	GIS study assigns coa
	rce and Discounted Cash Flow A			to mine models.
Area ID Area Name	7475 Greene, PA LW72	7476 Greene, PA LW96	Listing of all Areas:	Coal tone are imported
⊞Mine Model	Greene County, PA Greene County, PA Longwall 72''- 96'' Pittsburgh Seam	Greene County, PA Greene County, PA Longwall > 96'' Pittsburgh Seam	Lewis, WV LW72	Coal tons are imported by county into
⊟Mining Data	A: 131,855,00 C:1,531,998,848,00 P:79,160,816,00 Washed:Yes G:Longwall 72"-96" Pittsburgh Seam Life:10	A: 4,435.00 C: 64,859,416.00 P: 3,897,185.00 Washed: Yes G: Longwall > 96'' Pittsburgh Seam Life: 10	Gilmer, WV LW72 Gilmer, WV LW72 Gilmer, WV LW72 Gilmer, WV LW72	resource areas for each mine model.
Area Acres Mine Tons Coal	131,85 1,531,998,84		4,435 4,859,416 Putnam, WV LW42	
-Mined Tons Parting	79,160,81		2 897,185 Putnam, WV LW72	
Washed?			10 Kanawha, WV LW42	Results from GIS are:
└──Mine Life ⊡Quality	1	<u></u>	10 Kanawne, 14/1 W72	
⊞General Information			Washington, PA LW42 Washington, PA LW72	Acreage
	Ν		Was Nington, PA LWss Greene, PA LW42 ▶ Greene, PA LW72	In Situ Tons Coal
<u> </u>	<i>▶</i>		Greene, PA LW96	In Situ Tons Parting
	। + - 	🖉 🚰 Number of Columns	s: 2	
Expand All C	Collapse All	Sort by	Edit/Add Tax Table Edit/Add Haul Table	
Add Project Data Item	SINGLE Mine Model Calculated	 One (can edit) ○ Mine Model ID 	Re-calculate Costs	_
		© Tax Table ID © Haul Cost Table ID © Area Name		
Add Areas to a Seam	Pittsburgh \ Pit			
-US6S				

Figure 8. The first step in an economic evaluation is importing the coal volumes into CoalVal from the GIS mine models. This example is from an evaluation of the Pittsburgh coal bed in Pennsylvania, but the types of data imported are the same. CoalVal is scheduled for publication in 2006

CoalVal - Mine Model Equipment

See Mine Model	
File Reports Tools Help	
CoalVal ? Truc	k-Shovel
Mine Model Salaried and Hourly Employees, Equipment, and M	line Assumptions
Salaried Employees Hourly Employees Equipmen	
Capital Equipment Grouping Equipment Group Production Equipment	uipment
Group Heading:	Change Group: 📃 🕨
Production Equipment	Current Equipment List:
\$77.92 Depreciation Years:	Shifts: # Uints Shift 1: 1.0 # Units Shift 2: 1.0 # Units Shift 3: 1.0 #Units Shift 4: 0.0 Hours Worked/Shift: 8.0 Sorting Code: 0 Coal Drill, 4 Coal Drill, 6",trk mtd,75hp,25'rods Front End Lder,33cy,22'dmpht,1800hp Dozer, 14.8' blade, 370 hp, ripper Dozer, 17.3' blade, 520 hp, ripper Dozer, 21' blade, 770 hp, ripper Dozer, rubtired, 15.2'blade, 450hp Comptr Haul Dispatch Sys, per unit Spare OB Haul Truck, 255t, 193cy V
Image: Add Mine Model Data Items Ordered ? Add Mine Model Data Items Arrange Equipment	Help 📴
	el 6:1 \ Truck-Shovel
83	

Figure 9. CoalVal provides a series of tables to add and cost out mine equipment.

 \approx

CoalVal Mine Model Assumptions

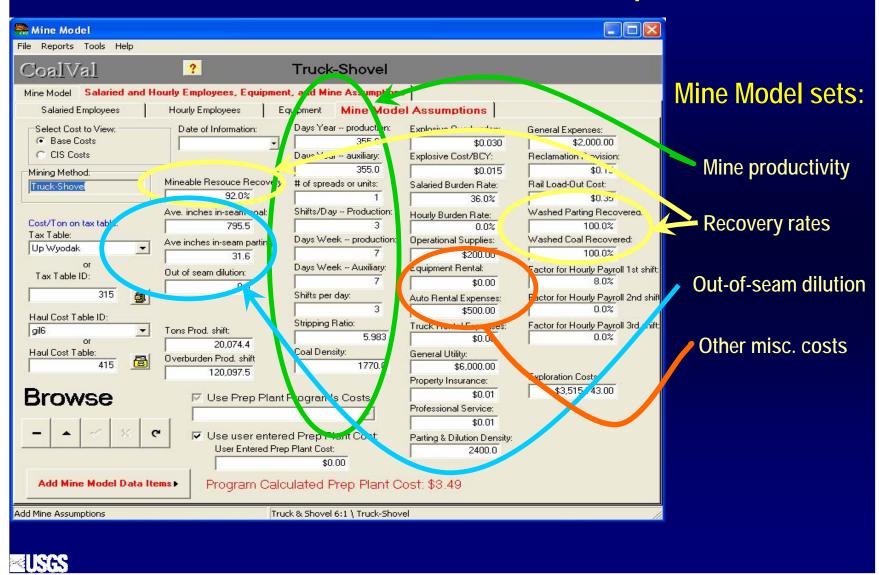


Figure 10. Mine models assumptions including productivity, dilution, and recovery rates are also entered. All data is based on published regional statistics and actual equipment pricing costs, as well as input from and verification of assumptions by coal mines in the region.

Mine Model Employees

Mine Model						
e Reports Tools Help						
CoalVal	?		Truck-Shovel			
Mine Model Salaried and H	ourly Employe	ees, Equipment,	and Mine Assumptio	ns		
Salaried Employees 🛛 🖡	lourly Empl	lovees Equ	ipment Mine M	odel Assumptions	1	
ourly Employee Groupings	Hourly Empl	oyee Group P	oduction			
rouping Name:				Change Group:		
roduction				_ Change Group.	1	
elect Employee by Type or I	by Employee I	D			_	
Employee Type			#Employees Shift 1	# Employees Shift 2	# Employees Shift 3	# Empld
Electric Shovel Operator		8	4	4	4	
Dragline/Shovel Oiler	348	8	4	4	4	
Shovel Operator-Coal	369	8	1	1	1	
Shovel Oiler-Coal	371	8	1	1	1	
Truck Driver	352	8	30	30	30	
Truck Driver-Coal	370	8	5	5	5	
Drill Operator	349	8	6	5	3	
<						>
IA A F FI	+ - -		ା ଜା Orde	red Arr	ange Employee Orde	
Employee Details:						
Grade Name:		R	ate:	_		
5			\$24.91		5 🦵 Mechan	ic
Reference:						
Western Mine Engineerin	g					
Add Mine Model Data Ite	ems >					
Hourly Employees to a Hourly	Group	Truck	& Shovel 6:1 \ Truck-Sh	ovel		
R			The second second			

Figure 11. Input for the manpower table is also regionally-based from published labor statistics and mining company information. CoalVal will be published with all the basic tables completed as place markers; however, it will be the user's responsibility to supply current information.

CoalVal - Discounted Cash Flow Summary

Material Flow Tracking Summary

N. App. Basin: LW42"			10 422,133	,400	10.00 % \$26.18	
	Coal	Parting n Place Tonnage	Dilution	Total		
In Place Total			50.004.400	726,181,682	Fractional Report	
from Whole LPUs	642,789,824 600,339,621	29,590,659 27,636,476	53,801,199 50,248,137	678,224,234		
from Carry Over	42,450,203	1,954,184	3,553,062	47,957,448	Number LPU's Based on User En	tered Mine Life
	Annual In F	Place Tonnage per LPU			Number LPU's Based on Calcu	
LW Part of LMU	3,772,545	173,668	315,760	4,261,974		10.71
CM Part of LMU	2,230,851	102,697	186,721	2,520,269	Calcu	lated Mine Life
Totals	6,003,396	276,365	502,481	6,782,242		10
					Mineable Resourc	
		of Mine Tonnage per LPU			(from mine	,
LW Part of LMU	2,867,134	131,988	239,978	3,239,100		76%
CM Part of LMU	1,494,670	68,807	125,103	1,688,580		67%
Totals	4,361,805	200,795	365,081	4,927,680	Mine N	lodel Name:
	In Place Te	onnage Carry Over (CO)				
LW Part of CO	26,675,786	1,228,013	2,232,750	30,136,550	Longwall 42"-72" Pit	sourgn seam
CM part of CO	15,774,417	726,171	1,320,311	17,820,899		
	Rec	overed Carry Over				
LW Part of CO	20,273,598	933,290	1,696,890	22,903,778		
CM Part of CO	10,568,859	486,535	884,608	11,940,002	Quality	
	0.4.4	Varia Diant Carrie Carr			Revised BTU	12,178
	89%	Vash Plant Carry Over 11%	44.00		BTU	13,670
Wash Plant Recovery Rate LW Part of CO	18.043.502	99.862	11% 181,567	18.324.931	RevisedSulfur	2.57 %
LWPartorCO	9,406,285	99,862 52,059	94,653	9,552,997	Sulfur	2.90 %
CM Part of CO	27,449,786	151.921	276,220	27,877,928	RevisedAsh	18.28 %
CM Part of CO Total			2.0,220	21,011,020	Ash	8.16 %
CM Part of CO Total		Nash Plant to Market				
		Wash Plant to Market 2,148,501	3,906,366	394,255,472		0.10 %
Total	Out of V		3,906,366 276,220	394,255,472 27,877,928		0.10 %

Figure 12. The final result of the economic evaluation is a report summing the number of tons at a threshold price (including a discounted rate of return) for each area and mine model for the entire project area.

Coal Resource/Reserve Cost Curve

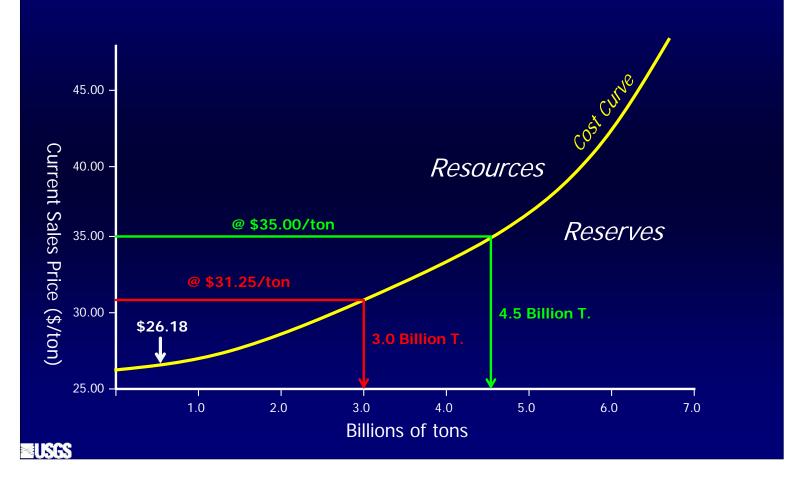


Figure 13. Once the cost of all the available tons are determined, a resource cost curve can be derived. Given a current sales price of \$31.25/ton, about 3 billion tons would be economic. Any coal tons with a threshold price of \$31.25 or less would be considered reserves. Thus, the block shown in fig. 12 at \$26.18 falls into the reserves category. If the price were to increase to \$35.00/ton, and additional 1.5 billion tons would added to the reserves category. It must be stressed, that the determination of reserves is an ongoing process that must be revalidated as market and mining costs, and other economic and technological factors change.

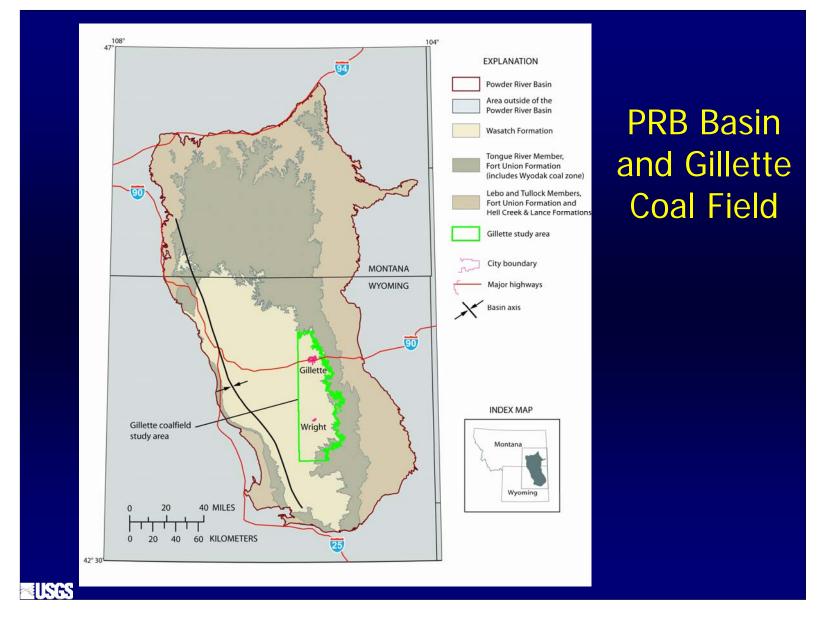


Figure 14. This is the location of the Gillette Coal Field, Wyoming where the initial PRB coal assessment project is starting. The Powder River Basin (PRB) represents the single most productive coal basin in the US, producing nearly 40% of the nation's coal. Just the Wyoming portion of the basin produced 403 million tons in 2005 (U.S. Bureau of Land Management, 2006). Furthermore, the announced additional coal development is significant. Peabody's new School Creek mine (60 miles south of Gillette) alone is expected to come on-line in late 2008 producing 30 million to 40 million short tons/yr (Platts Coal Outlook, 2006).

Current PRB Assessment Status

> Current Database:

Original – 2,200 points New oil & gas wells – 2,330 points New CBM wells – <u>7,470 points</u> **TOTAL – 12,000 points**

> Two Geologists for approximately one year

> About 4,000 points from WY Geological Survey

> Plan to complete Gillette coalfield assessment by Dec., 2006

> Assessment of the north and northwest portions of the PRB will begin following completion of the Gillette coal field evaluation.

≊USGS

Figure 15. The current USGS PRB assessment status. When completed, the resulting database should provide one of the most extensive drill hole compilations for the PRB available to the public. The slides in this next section represent preliminary assessment work and may be modified for the final report.

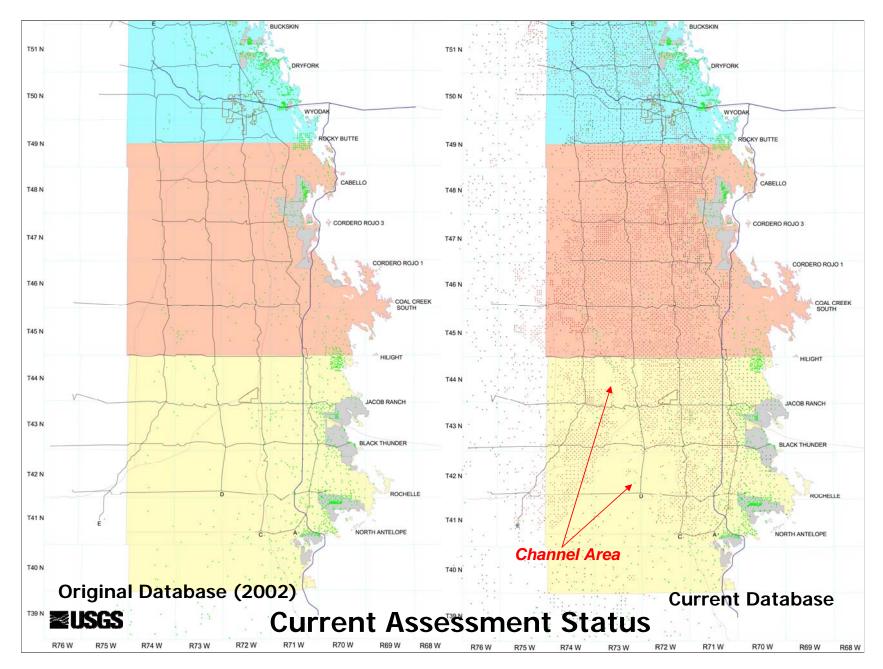


Figure 16. Comparison of the original Gillette coal field assessment coal assessment drill hole database (Ellis and others, 2002) to the current assessment database. The extensive drilling activity associated with coal bed methane (CBM) development has resulted in a relatively dense drilling pattern which, by itself, helps define the limits of a significant channel area where the coal beds are thin or absent.

Preliminary Assessment Results

- Minor changes in coal bed correlations
- Major down-dip channel will be a restriction to surface mining

Figure 17. The preliminary interpretation of the massive amount of new data has resulted in several significant findings. Both are related to the channel geometry defined by the substantial amount of new drilling information.

Previous Coal Bed Correlations (USGS Miscellaneous Investigations Series, Map I-1959-B)

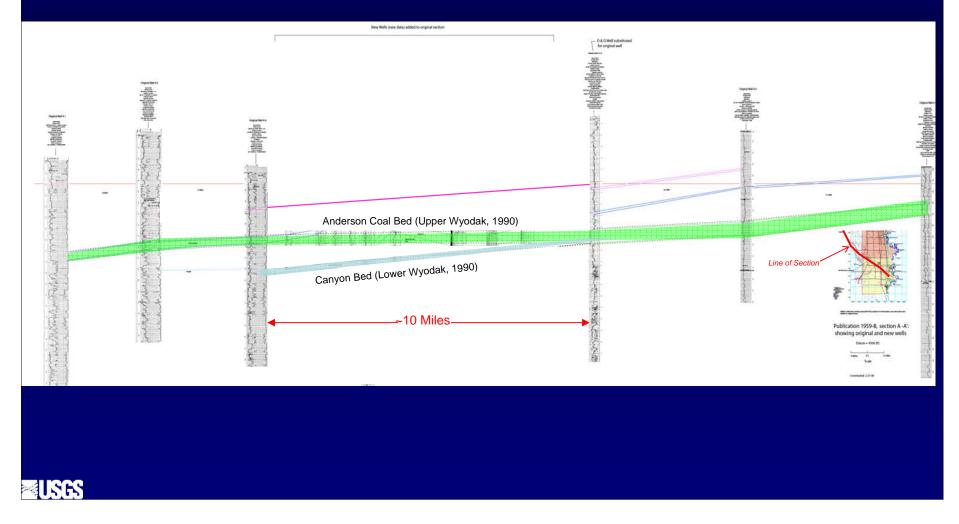


Figure 18. A portion of a published NW-SE cross section through the channel area based on widely-spaced well logs (Pierce, F. W., and others, 1990).

Correlation Changes with Infill Drilling (USGS Miscellaneous Investigations Series, Map I-1959-B)

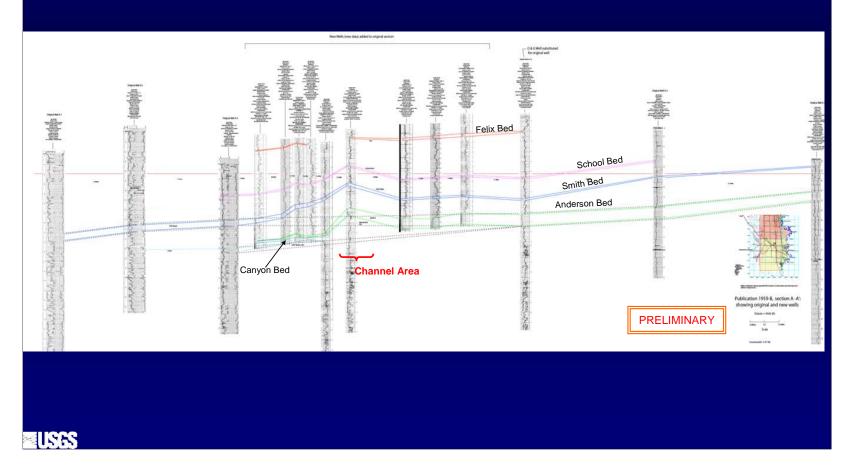


Figure 19. Closer-spaced drilling reveals minor revisions in the coal bed correlations. Dotted lines indicate previous correlations. The Anderson/Canyon coal beds, which are the major beds in the current mining areas of the Gillette coal field split, thin, and (or) are absent in and immediately adjacent to the channel areas. The Smith coal bed thickens rapidly west of the major channel area Both the Smith and the Anderson/Canyon beds are all part of the Anderson-Wyodak coal zone after Flores and others (1999).

Correlation Changes with Infill Drilling

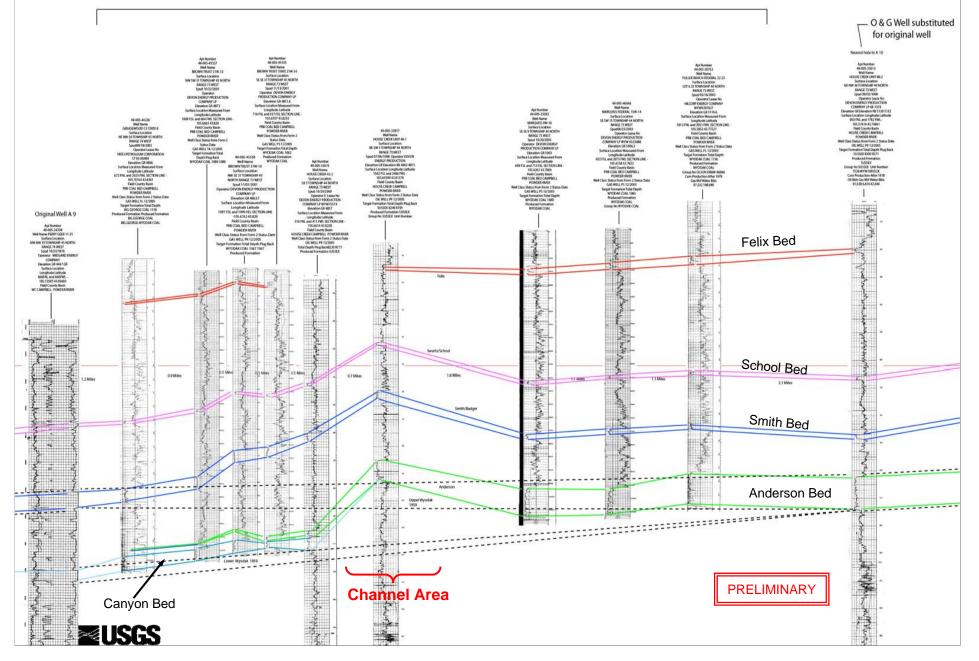


Figure 20. Expanded view of infill drilling (fig.19) showing greater detail for the geophysical logs.

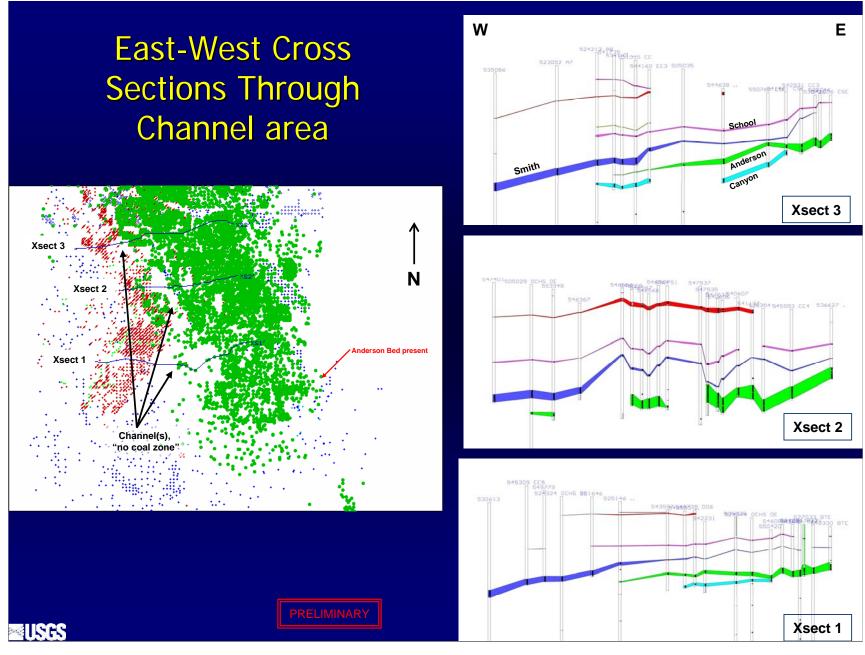
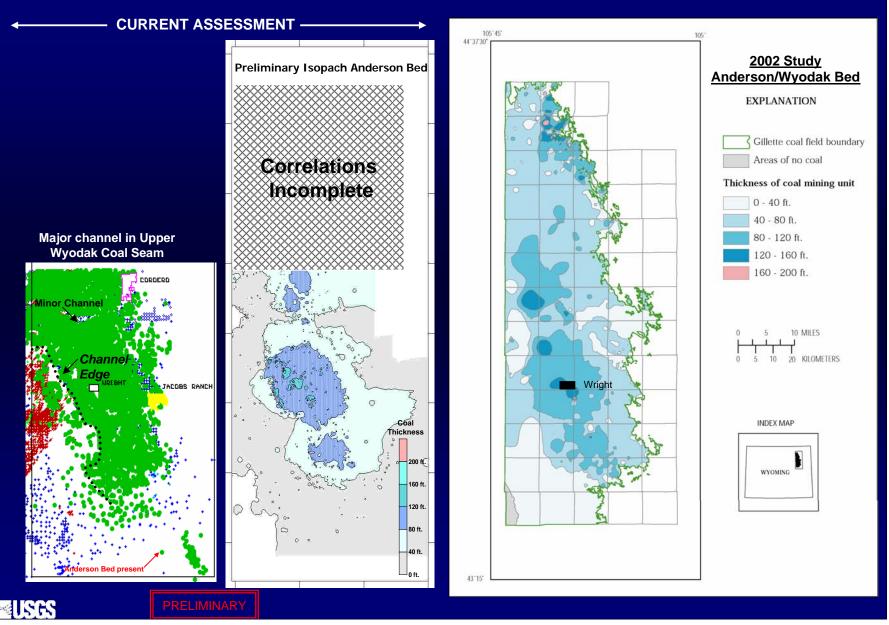
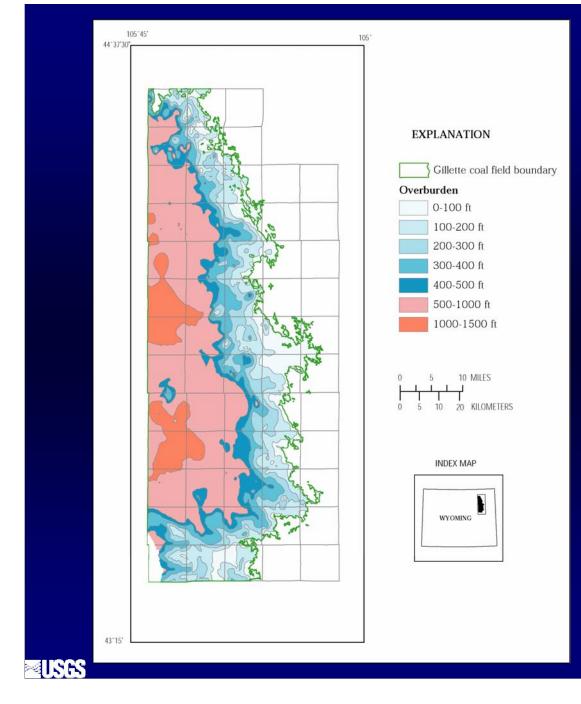
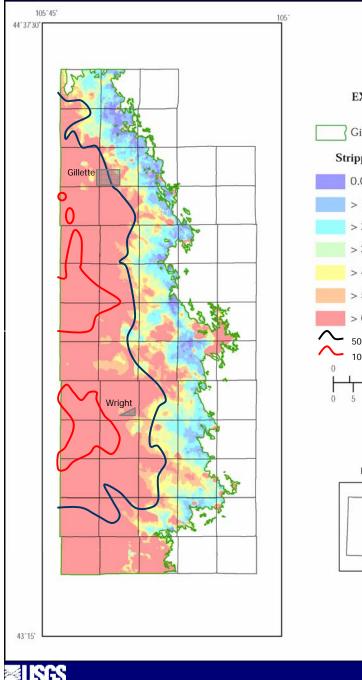


Figure 21. East-west cross sections through the channel confirm the scenario shown in figs. 19 and 20 where the Smith thickens and the Anderson/Canyon (Wyodak) beds are thin or absent westward. Drill holes with the Anderson bed present are displayed with a solid green dot to create a simple areal distribution map. Structural highs in the Smith coal can indicate the presence of an underlying Wyodak "no-coal zone" (Ashley, M., 2006).

Comparison of Anderson Bed - 2002 Study and Current Assessment


Figure 22. Comparison of a preliminary isopach map from the current assessment and that from Ellis and others, 2002. It is obvious that the total coal resources in the final assessment results will be impacted by improved delineation of the channel areas. The end results should provide a more realistic appraisal of the available coal resources.

Overburden Isopach Gillette Coalfield (Upper Wyodak)

(2002 Study Anderson - Wyodak Bed)

Figure 23. Overburden isopach for the Anderson/Wyodak bed (Ellis and others, 2002). Fortunately, much of the major channel lies in areas of deeper cover in the western portion of the coal field.

WYOMING

Stripping Ratios Gillette Coalfield (Upper Wyodak)

(2002 Study Anderson - Wyodak Bed)

Current Assessment will include models down to 10:1 Stripping Ratio

Figure 24. Stripping ratio map for the Anderson/Wyodak bed (Ellis and others, 2002). We plan to conduct an economic evaluation of the Gillette coal field down to a 10:1 stripping ratio during the current coal assessment.

Powder River Basin Study Areas

- > Gillette coal field
- » Birney-Custer-Recluse coal fields (BCR)
- Sheridan-Birney coal fields

≊US6S

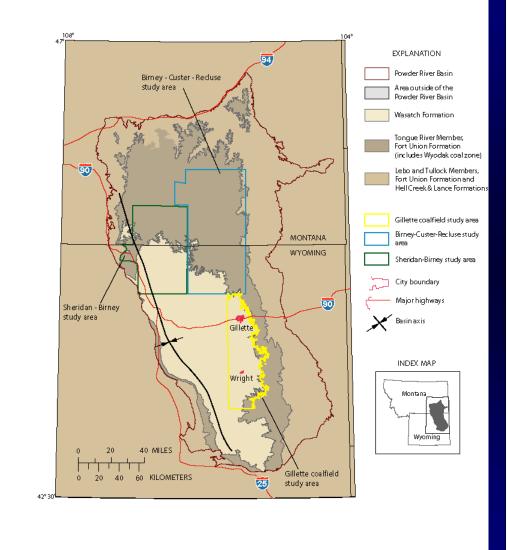
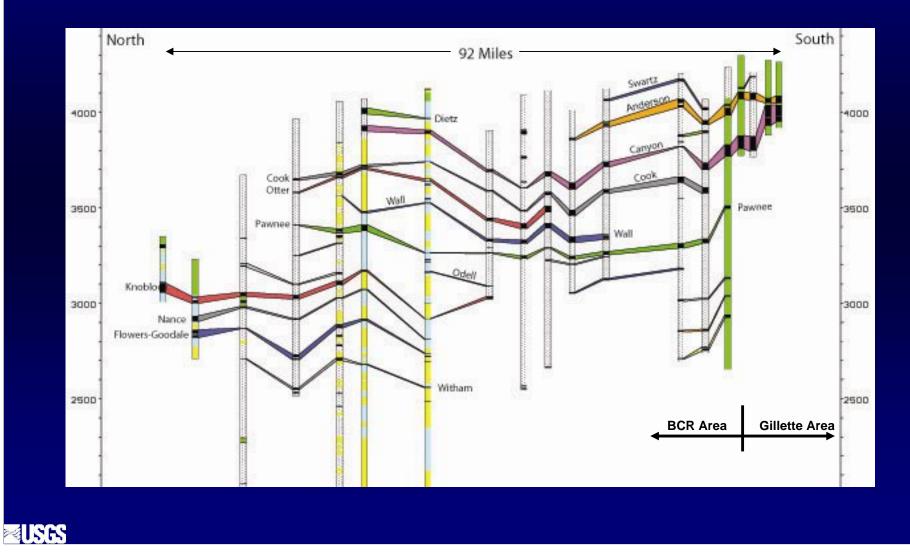
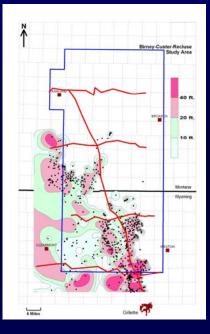
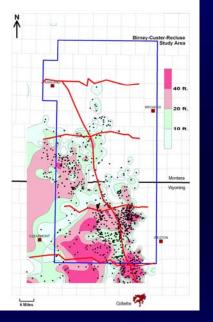


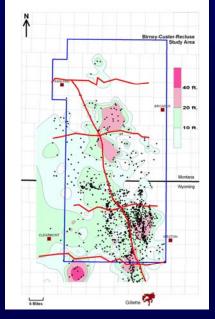
Figure 25. Once the Gillette coal field portion of the PRB is completed, the assessment will move to the north and the northwest into the Birney-Custer-Recluse (BCR) and Sheridan-Birney coal fields.

North-South Cross-Section BCR Study Area

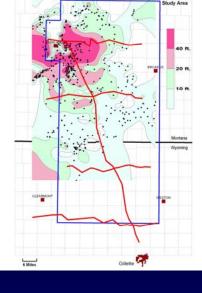




Figure 26. The coal beds including the Anderson and Canyon beds tend to thin northward from the Gillette coal field; however, more coal beds are generally present.

Major Coal Bed Distributions in the BCR


Anderson Isopach

Maximum thickness = 86'


Canyon Isopach

- Maximum thickness = 98'
- Good extent
- Significant areas with thick coal

Pawnee Isopach

- Maximum thickness = 48'
- Good extent

Knobloch Isopach

- Maximum thickness = 79'
- Good extent
- Truncated to south

PRELIMINARY

≊USGS

Figure 27. Although the coal beds are generally not as thick and widespread as those in the Gillette coal field, significant coal resources are present in the BCR coal field.

PRB Coal Resource Assessment Summary

- Extensive CBM and additional oil and gas development, especially in the Gillette coal field, has provided an unprecedented amount of down-hole geological data.
- Better definition of channel/no-coal areas that form barriers to mining will be possible.
- These additional data will provide a more robust evaluation of the single most productive U.S. coal basin.
- The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006.
- The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized.

Figure 28. PRB Assessment Summary.

References

- Ashley, M., 2006, Wyodak Coal, Tongue River Member of the Fort Union Formation, Powder River Basin, Wyoming: "No-Coal Zones" and Their Effects on Coalbed Methane Production; Search and Discovery Article #10094, <u>http://www.searchanddiscovery.com/documents/2005/ashley/index.htm</u>
- Ellis, M. S., Molnia, C. L.. Osmonson, L. M., Ochs, A. M., Rohrbacher, T. J., Mercier, T., and Roberts, L. N. R., 2002, Evaluation of Economically Extractable Coal Resources in the Gillette Coal Field, Powder River Basin, Wyoming; U.S. Geological Survey Open-File Report 02-180, 48 p.
- Flores, R.M., Ochs, A.M., Bader, L.R., Johnson, R.C., and Vogle, D., 1999, Framework geology of the Fort Union coal in the Powder River Basin; Chapter PF, *in* U.S. Geological Survey Professional Paper 1625-A, 40 p.
- Pierce, F. W., Johnson, E.A., Molnia, C.L., and Sigleo, W.R., 1990, Cross-sections showing coal stratigraphy of the southeastern Powder River Basin, Wyoming: U.S. Geological Survey, Miscellaneous Investigations Series, Map I-1959-B.

Platts Coal Outlook, 2006; v. 30, No. 11, http://www.platts.com

- Rohrbacher, T. J., Luppens, J. A., Osmonson, L. M., Scott, D. C., and Freeman, P. A., 2005, An external peer review of the U.S. Geological Survey energy resource program's economically recoverable coal resource assessment methodology—report and comments: U.S. Geological Survey Open-File Report 2005-1076, 21 p.
- U.S. Bureau of Land Management, 2006, Powder River Basin Coal Production; http://www.wy.blm.gov/minerals/coal/prb/PRB_coalpro.htm

Figure 29. References