Renewable Fuels Module

The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind¹.

Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

The submodules of the RFM interact primarily with the Electricity Market Module (EMM). Because of the high level of integration with the EMM, the final outputs (levels of consumption and market penetration over time) for renewable energy technologies are largely dependent upon the EMM.

Projections for residential and commercial grid-connected photovoltaic systems are developed in the end-use demand modules and not in the RFM; see the Distributed Generation and Combined Heat and Power descriptions in the "Commercial Demand Module" section of the report.

Key Assumptions

Nonelectric Renewable Energy Uses

In addition to projections for renewable energy used in central station electricity generation, the *AEO2008* contains projections of nonelectric renewable energy uses for industrial and residential wood consumption, solar residential and commercial hot water heating, biofuels blending in transportation fuels, and residential and commercial geothermal (ground-source) heat pumps. Assumptions for their projections are found in the residential, commercial, industrial, and petroleum marketing sections of this report. Additional minor renewable energy applications occurring outside energy markets, such as direct solar thermal industrial applications or direct lighting, off-grid electricity generation, and heat from geothermal resources used directly (e.g., district heating and greenhouses) are not included in the projections.

Electric Power Generation

The RFM considers only grid-connected central station electricity generation systems. The RFM submodules that interact with the EMM are the central station grid-connected biomass, geothermal, conventional hydroelectricity, landfill gas, solar (thermal and photovoltaic), and wind submodules, which provide specific data or estimates that characterize that resource. A set of technology cost and performance values is provided directly to the EMM and are central to the build and dispatch decisions of the EMM. The technology cost and performance values are summarized in Table 38 in the chapter discussing the EMM. Overnight capital costs are presented in Table 72 and the assumed capacity factors for new plants in Table 73.

Table 72. Overnight Capital Cost Characteristics for Renewable Energy Generating Technologies in Three Cases (2006\$/kW)

echnology	Year	Reference	High Cost Renewable ¹	Low Cost Renewable
Geothermal ²	2010	1,126	1,149	1,093
	2020	3,231	3,511	3,031
	2030	3,122	3,647	2,808
Hydroelectric ^{2,}	2010	1,769	1,784	1,716
	2020	1,644	1,782	1,631
	2030	1,575	1,782	1,475
Landfill Gas	2010	1,881	1,897	1,881
	2020	1,828	1,897	1,828
	2030	1,776	1,897	1,776
D 3	2010	4,915	5,084	4,825
Photovoltaic ³	2020	4,331	5,084	4,077
	2030	3,681	5,084	3,397
		,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Solar Thermal ³	2010	3.004	3,370	2,941
	2020	2,524	3,370	2,337
	2030	2,149	3,370	1,888
Biomass ⁴	2010	2,758	2,783	2,698
Biomaco	2020	2,482	2,647	2,301
	2030	2,224	2,487	1,929
Offshore Wind	2010	2,812	2,872	2,808
	2020	2,641	2,872	2,621
	2030	2,473	2,872	2,452
Onshore Wind	2010	1,707	1,721	1,702
	2020	1,693	1,721	1,669
	2030	1,683	1,721	1,656

¹Overnight capital cost (that is, excluding interest charges), plus contingency, learning, and technological optimism factors, excluding regional multipliers. A contingency allowance is defined by the American Association of Cost Engineers as the specific provision for unforeseeable elements of costs within a defined project scope. This is particularly important where previous experience has shown that unforeseeable events which will increase costs are likely to occur.

Source: AEO2008 National Energy Modeling System runs AEO2008.D030208F, HIRENCST.D030408A, and LORENCST.D030408A.

²Geothermal and Hydroelectric costs are specific for each site. The table entries represent the least cost unit available in the specified year in the Northwest Power Pool region. In the 2006 Renewables cases, costs vary as different sites continue to be developed.

³Costs decline slightly in the Low Renewable case for photovoltaic and solar thermal technologies as technological optimism is factored into initial costs (see pg. 72 in the chapter discussing the EMM). However, there is no learning-by-doing assumed once the optimism factor has been removed.

⁴Biomass plants share significant components with similar coal-fired plants, these components continue to decline in cost in the Low Renewables case, although biomass-specific components (especially fuel handling components) do not see cost declines beyond 2005.

Table 73. Capacity Factors for Renewable Energy Generating Technologies in Three Cases

Technology	Year	Reference	High Renewable Cost	Low Renewable Cost
Geothermal ²	2010	0.90	0.90	0.90
	2020	0.90	0.90	0.90
	2030	0.90	0.90	0.90
Hydrolectric ²	2010	0.64	0.64	0.64
	2020	0.50	0.51	0.57
	2030	0.49	0.51	0.54
Landfill Gas	2010	0.90	0.90	0.90
	2020	0.90	0.90	0.90
	2030	0.90	0.90	0.90
Photovoltaic	2010	0.21	0.21	0.21
	2020	0.21	0.21	0.21
	2030	0.21	0.21	0.21
Solar Thermal	2010	0.31	0.31	0.31
	2020	0.31	0.31	0.31
	2030	0.31	0.31	0.31
Biomass	2010	0.83	0.83	0.83
	2020	0.83	0.83	0.83
	2030	0.83	0.83	0.83
Offshore Wind ³	2010	0.40	0.40	0.46
	2020	0.40	0.40	0.46
	2030	0.40	0.40	0.46
Onshore Wind ³	2010	0.43	0.42	0.44
	2020	0.45	0.42	0.48
	2030	0.45	0.42	0.50

¹Capacity factor for units available to be built in specified year. Capacity factor represents maximum expected annual power output as a fraction of theoretical output if plant were operated at rated capacity for a full year.

Source: AEO2008 National Energy Modeling System runs: AEO2008.D030208F, HIRENCST.D030408A, and LORENCST.D030408A.

Capital Costs

Capital costs for renewable technologies are affected by several factors. Capital costs for technology to exploit some resources, especially geothermal, hydroelectric, and wind power resources, are assumed to be dependent on the quality, accessibility, and/or other site-specific factors in the areas with exploitable resources. These factors can include additional costs associated with reduced resource quality; need to build or upgrade transmission capacity from remote resource areas to load centers; or local impediments to permitting, equipment transport, and construction in good resource areas due to siting issues, inadequate infrastructure, or rough terrain.

Short-term cost adjustment factors increase technology capital costs as a result of a rapid U.S. buildup in a single year, reflecting limitations on the infrastructure (for example, limits on manufacturing, resource assessment, and construction expertise) to accommodate unexpected demand growth. These factors, which are applied to all new electric generation capacity, are a function of past production rates and are further described in *The Electricity Market Module of the National Energy Modeling System: Model Documentation Report*, available at http://www.eia.doe.gov/bookshelf/docs.html.

Independent of the other two factors, capital costs for all electric generation technologies, including renewable technologies, are assumed to decline as a function of growth in installed capacity for each technology.

²Hydroelectric capacity factors are specific for each site. The table entries represent the least-cost unit available in the specified year in the Northwest Power Pool region.

³Wind capacity factors are based on regional resource availability and generation characteristics. The table entries represent the least-cost resource available in the specified year in the Northwest Power Pool region.

For a description of NEMS algorithms lowering generating technologies' capital costs as more units enter service (learning), see "Technological Optimism and Learning" in the EMM chapter of this report. A detailed description of the RFM is provided in the EIA publication, *Renewable Fuels Module of the National Energy Modeling System, Model Documentation 2005*, DOE/EIA-M069(2005) (Washington, DC, 2005).

Solar Electric Submodule

Background

The Solar Electric Submodule currently includes both concentrating solar power (thermal) and photovoltaics, including two solar technologies: 50 megawatt central receiver (power tower) solar thermal (ST) and 5 megawatt single axis tracking-flat plate photovoltaic (PV) technologies. PV is assumed available in all thirteen EMM regions, while ST is available only in the six Western regions where direct normal solar insolation is sufficient. Capital costs for both technologies are determined by EIA using multiple sources, including public reports of recent solar thermal capcity additions. Most other cost and performance characteristics for ST are obtained or derived from the August 6, 1993, California Energy Commission memorandum, *Technology Characterization for ER 94*; and, for PV, from the Electric Power Research Institute, *Technical Assessment Guide (TAG) 1993*. In addition, capacity factors are obtained from information provided by the National Renewable Energy Laboratory (NREL).

Assumptions

- Capacity factors for solar technologies are assumed to vary by time of day and season of the year, such that nine separate capacity factors are provided for each modeled region, three for time of day and for each of three broad seasonal groups (summer, winter, and spring/fall). Regional capacity factors vary from national averages. The current reference case solar thermal annual capacity factor for California, for example, is assumed to average 40 percent; California's current reference case PV capacity factor is assumed to average 24.6 percent.
- Because solar technologies are more expensive than other utility grid-connected technologies, early
 penetration will be driven by broader economic decisions such as the desire to become familiar with a
 new technology, environmental considerations, and the availability of limited Federal subsidies.
 Minimal early years' penetration is included by EIA as "floor" additions to new generating capacity
 (see "Supplemental and Floor Capacity Additions" below).
- Solar resources are well in excess of conceivable demand for new capacity; energy supplies are considered unlimited within regions (at specified daily, seasonal, and regional capacity factors).
 Therefore, solar resources are not estimated in NEMS. In the seven regions where ST technology is not modeled, the level of direct, normal insolation (the kind needed for that technology) is insufficient to make that technology commercially viable through 2030.
- NEMS represents the Energy Policy Act of 1992 (EPACT92) permanent 10-percent investment tax credit (ITC) for solar electric power generation by tax-paying entities. The current 30-percent ITC is scheduled to expire at the end of 2008.

Wind-Electric Power Submodule

Background

Because of limits to windy land areas, wind is considered a finite resource, so the submodule calculates maximum available capacity by Electricity Market Module Supply Regions. The minimum economically viable average wind speed is about 14 mph, and wind speeds are categorized by annual average wind speed based on a classification system from the Pacific Northwest Laboratory. The RFM tracks wind capacity (megawatts) by resource quality, distance to transmission, and other resource costs within a region and moves to the next best wind resource when one category is exhausted. For *AEO2008*, wind resource data on the amount and quality of wind per EMM region come from the National Renewable Energy Laboratory² The technological performance, cost, and other wind data used in NEMS are derived by EIA from available data and from available literature.³ Maximum wind capacity, capacity factors, and incentives are provided to the EMM for capacity planning and dispatch decisions. These form the basis on which the

EMM decides how much power generation capacity is available from wind energy. The fossil-fuel heat rate equivalents for wind are used for energy consumption calculation purposes only.

Assumptions

- Only grid-connected (utility and nonutility) generation is included. Projections for distributed wind generation are included in the commercial and residential modules.
- In the wind submodule, wind supply costs are affected by three modeling measures: addressing (1) average wind speed, (2) distance from existing transmission lines, and (3) resource degradation, transmission network upgrade costs, and market factors.
- Available wind resource is reduced by excluding all windy lands not suited for the installation of wind turbines because of: excessive terrain slope (greater than 20 percent); reservation of land for non-intrusive uses (such as National Parks, wildlife refuges, and so forth); inherent incompatibility with existing land uses (such as urban areas, areas surrounding airports and water bodies, including offshore locations); insufficient continguous windy land to support a viable wind plant (less than 5 square kilometers of windy land in a 100 square kilometer area). Half of the wind resource located on military reservations, U.S. Forest Service land, state forested land, and all non-ridge-crest forest areas are excluded from the available resource base to account for the uncertain ability to site projects at such locations. These assumptions are detailed in the Draft Final Report to EIA on Incorporation of Existing Validated Wind Data into NEMS, November 2003.
- Capital costs for wind technologies are assumed to increase in response to (1) declining natural resource quality, such as terrain slope, terrain roughness, terrain accessibility, wind turbulence, wind variability, or other natural resource factors, (2) increasing cost of upgrading existing local and network distribution and transmission lines to accommodate growing quantities of intermittent wind power, and (3) market conditions, such as the increasing costs of alternative land uses, including aesthetic or environmental reasons. Capital costs are left unchanged for some initial share, then increased 20, 50, 100 percent, and finally 200 percent, to represent the aggregation of these factors.
- Proportions of total wind resources in each category vary by EMM region. For all thirteen EMM regions combined, 1.3 percent of windy land is available with no cost increase, 5.4 percent is available with a 20 percent cost increase, 11.2 percent is available with a 50 percent cost increase, 27.3 percent is available with a 100 percent cost increase, and almost 54.8 percent of windy land is assumed to be available with a 200 percent cost increase.
- Depending on the EMM region, the cost of competing fuels, and other factors, wind plants can be built
 to meet system capacity requirements or as a "fuel saver" to displace generation from existing
 capacity. For wind to penetrate as a fuel saver, its total capital and fixed operations and maintenance
 costs minus applicable subsidies must be less than the variable operating costs, including fuel, of the
 existing (non-wind) capacity. When competing in the new capacity market, wind is assigned a
 capacity credit that declines based on its estimated contribution to regional reliability requirements.
- Because of downwind turbulence and other aerodynamic effects, the model assumes an average spacing between turbine rows of 5 rotor diameters and a lateral spacing between turbines of 10 rotor diameters. This spacing requirement determines the amount of power that can be generated from wind resources, about 6.5 megawatts per square kilometer of windy land, and is factored into requests for generating capacity by the EMM.
- Capacity factors are assumed to increase to a national average of 44 percent in the best wind class
 resulting from taller towers, more reliable equipment, and advanced technologies. Capacity factors
 for each wind class are calculated as a function of overall wind market growth. The capacity factors
 are assumed to be limited to about 48 percent for an average Class 6 site. As better wind resources
 are depleted, capacity factors are assumed to go down.

AEO2008 does not allow plants constructed after 2008 to claim the Federal Production Tax Credit
(PTC), a 2 cent per kilowatt-hour tax incentive that is set to expire on December 31, 2008. Wind
plants are assumed to depreciate capital expenses using the Modified Accelerated Cost Recovery
Schedule with a 5-year tax life.

Offshore wind resources are represented as a separate technology from onshore wind resources. Offshore resources are modeled with a similar model structure as onshore wind. However, because of the unique challenges of offshore construction and the somewhat different resource quality, the assumptions with regard to capital cost, learning-by-doing cost reductions, and variation of resource exploitation costs and performance differ significantly from onshore wind.

- Like onshore resources, offshore resources are assumed to have an upwardly sloping supply curve, in part influenced by the same factors that determine the onshore supply curve (such as distance to load centers, environmental or aesthetic concerns, variable terrain/seabed) but also explicitly by water depth.
- Because of the more difficult maintenance challenge offshore, performance for given annual average
 wind power density level is assumed to be somewhat reduced by reduced turbine availability.
 Offsetting this, however, is the availability of resource areas with higher overall power density than is
 assumed available onshore. Capacity factors for offshore are limited to be about 50 percent for a
 Class 7 site.
- Cost reductions in the offshore technology result in part from learning reductions in onshore wind technology as well as from cost reductions unique to offshore installations, such as foundation design and construction techniques. Because offshore technology is significantly less mature than onshore wind technology, offshore-specific technology learning occurs at a somewhat faster rate than on-shore technology.

Geothermal-Electric Power Submodule

Background

The Geothermal-Electric Submodule (GES) estimates the generating capacity and output potential of 89 hydrothermal sites in the Western United States. This estimation is based on two studies: *New Geothermal Site Identification and Qualification*, prepared by GeothermEx, Inc for the California Public Utility Commission, and *Western Governors' Association Geothermal Task Force Report*, which was co-authored by several geothermal experts from the public and private sectors. These studies focus on geothermal resources with confirmed temperatures greater than 100 Celsius, which is generally considered the threshold for economically feasible conventional development. While EIA had previously distinguished between binary and dual flash technologies, this is no longer an essential component of cost estimates. Instead, these studies incorporate expected power plant cost and performance based on each confirmed resource temperature. This enables greater projection precision relative to a static choice between two technologies. All plants are assumed to operate at 90 percent capacity factor. Enhanced Geothermal Systems (EGS), such as hot dry rock, are not included as potential resources since this technology is still in development and is not expected to be in significant commercial use within the projection horizon.

The two studies off of which EIA estimates are based maintain separate capital cost components for each site's development. The GeothermEx study divided individual site costs into four components: exploration, confirmation, development, and transmission. Site exploration is a small component of aggregate costs, oftentimes being zero. Confirmation and transmission costs may be significant, however the vast majority of capital costs are classified under site development which includes power plant construction. The WGA report, which was used to estimate geothermal potential outside of the GeothermEx database region, did not provide site specific, separate capital cost components. However, it did provide some sites with two levels of capital costs, meaning a portion of the resource could be developed at a lower cost than the remaining potential. Therefore, EIA maintained two categories of site specific capital development costs, with a cost premium placed on some sites beyond their most economic resource. Site specific operation and maintenance costs are also included in the submodule. As a result of revised supply estimations, the annual site build limit has been relaxed but still remains. Geothermal development is limited to 25 MW of generating capacity until 2010, when the 50 MW limit goes into effect for the remainder of the projection period.

Assumptions

- Existing and identified planned capacity data are obtained directly by the EMM from Forms EIA-860A (utilities) and EIA-860B (nonutilities) and from supplemental additions (See Below).
- The permanent investment tax credit of 10 percent available in all projection years based on the EPACT applies to all geothermal capital costs, except through 2008 when the 1.9 cent production tax credit is available to this technology and is assumed chosen instead.
- Plants are not assumed to retire unless their retirement is reported to EIA. Geysers units are not assumed to retire but instead are assigned the 35 percent capacity factors reported to EIA reflecting their reduced performance in recent years.
- Capital and operating costs vary by site and year; values shown in Table 39 in the EMM chapter are indicative of those used by EMM for geothermal build and dispatch decisions.

Biomass Electric Power Submodule

Background

Biomass consumed for electricity generation is modeled in two parts in NEMS. Capacity in the wood products and paper industries, the so-called captive capacity, is included in the industrial sector module as cogeneration. Generation by the electricity sector is represented in the EMM, with capital and operating costs and capacity factors as shown in Table 38 in the EMM chapter, as well as fuel costs, being passed to the EMM where it competes with other sources. Fuel costs are provided in sets of regional supply schedules. Projections for ethanol are produced by the Petroleum Market Module (PMM), with the quantities of biomass consumed for ethanol decremented from, and prices obtained from, the EMM regional supply schedules.

Assumptions

- Existing and planned capacity data are obtained from Form EIA-860.
- The conversion technology represented, upon which the costs in Table 39 in the EMM chapter are based, is an advanced gasification-combined cycle plant that is similar to a coal-fired gasifier. Costs in the reference case were developed by EIA to be consistent with coal gasifier costs. Short-term cost adjustment factors are used.
- Biomass cofiring can occur up to a maximum of 15 percent of fuel used in coal-fired generating plants.

Fuel supply schedules are a composite of four fuel types: forestry materials, wood residues, agricultural residues and energy crops. Energy crop data are presented in yearly schedules from 2010 to 2030 in combination with the other material types for each region. The forestry materials component is made up of logging residues, rough rotten salvageable dead wood, and excess small pole trees.⁴ The wood residue component consists of primary mill residues, silvicultural trimmings, and urban wood such as pallets, construction waste, and demolition debris that are not otherwise used.⁵ Agricultural residues are wheat straw, corn stover, and a number of other major agricultural crops.⁶ Energy crop data are for hybrid poplar, willow, and switchgrass grown on crop land, pasture land, or on Conservation Reserve Program lands.⁷ The maximum amount of resources in each supply category is shown in Table 74.

Table 74. 2020 Maximum U.S. Biomass Resources, by Coal Demand Region and Type (Trillion Btu)

Coal Demand Region	States	Agricultural Residue	Energy Crops	Forestry Residue	Urban Wood Waste/Mill Residue	Total ¹
1. NE	CT, MA, ME, NH, RI, VT	0	17	70	15	102
2YP	NY, PA, NJ	22	95	45	59	221
3. SA	WV, MD, DC, DE, VA, NC, SC	72	272	429	56	829
4. GF	GA, FL	4	115	158	47	325
5. OH	ОН	97	86	167	17	366
6. EN	IN, IL, MI, WI	726	286	426	47	1,485
7. KT	KY, TN	27	385	265	30	706
8. AM	AL, MS	0	281	37	19	338
9. CW	MN, IA, ND, SD, NE, MO, KS	1085	1,231	190	28	2,534
10. WS	TX, LA, OK, AR	14	632	152	57	855
11. MT	MT, WY, ID	26	20	326	25	397
12. CU	CO, UT, NV	53	1	155	7	215
13. ZN	AZ, NM	17	0	378	7	403
14. PC	AK, HI, WA, OR, CA	76	0	100	83	259
Total U.S.		2,218	3,422	2,898	497	9,034

¹May include rounding error.

Sources: Urban Wood Wastes: Antares Group Inc., *Biomass Residue Supply Curves for the U.S (updated)*, prepared for the National Renewable Energy Laboratory, June 1999; Agricultural residues, energy crops, and forestry residues from the University of Tennessee Department of Agricultural Economics POLYSIS model, 2007.

Landfill-Gas-to-Electricity Submodule Background

Landfill-gas-to-electricity capacity competes with other technologies using supply curves that are based on the amount of "high", "low", and "very low" methane producing landfills located in each EMM region. An average cost-of-electricity for each type of landfill is calculated using gas collection system and electricity generator costs and characteristics developed by EPA's "Energy Project Landfill Gas Utilization Software" (E-PLUS).8

Assumptions

- Gross domestic product (GDP) and population are used as the drivers in an econometric equation that establishes the supply of landfill gas.
- Recycling is assumed to account for 35 percent of the total waste stream by 2005 and 50 percent by 2010 (consistent with EPA's recycling goals).
- The waste stream is characterized into three categories: readily, moderately, and slowly decomposable material.
- Emission parameters are the same as those used in calculating historical methane emissions in the EIA's Emissions of Greenhouse Gases in the United States 2003.⁹

- The ratio of "high", "low", and "very low" methane production sites to total methane production is calculated from data obtained for 156 operating landfills contained in the Government Advisory Associates METH2000 database.¹⁰
- Cost-of-electricity for each site was calculated by assuming each site to be a 100-acre by 50-foot deep landfill and by applying methane emission factors for "high", "low", and "very low" methane emitting wastes.

Conventional Hydroelectricity

The conventional hydroelectricity submodule represents U.S. potential for new conventional hydroelectric capacity 1 megawatt or greater from new dams, existing dams without hydroelectricity, and from adding capacity at existing hydroelectric dams. Summary hydroelectric potential is derived from reported lists of potential new sites assembled from Federal Energy Regulatory Commission (FERC) license applications and other survey information, plus estimates of capital and other costs prepared by the Idaho National Engineering and Environmental Laboratory (INEEL).¹¹ Annual performance estimates (capacity factors) were taken from the generally lower but site specific FERC estimates rather than from the general estimates prepared by INEEL, and only sites with estimated costs 10 cents per kilowatthour or lower are included in the supply. Pumped storage hydro, considered a nonrenewable storage medium for fossil and nuclear power, is not included in the supply; moreover, the supply does not consider offshore or in-stream hydro, efficiency or operational improvements without capital additions, or additional potential from refurbishing existing hydroelectric capacity.

In the hydroelectricity submodule, sites are first arrayed by NEMS region from least to highest cost per kilowatthour. For any year's capacity decisions, only those hydroelectric sites whose estimated levelized costs per kilowatthour are equal to or less than an EMM determined avoided cost (the least cost of other technology choices determined in the previous decision cycle) are submitted. Next, the array of below-avoided cost sites is parceled into three increasing cost groups, with each group characterized by the average capacity-weighted cost and performance of its component sites. Finally, the EMM receives from the conventional hydroelectricity submodule the three increasing-cost quantities of potential capacity for each region, providing the number of megawatts potential along with their capacity-weighted average overnight capital cost, operations and maintenance cost, and average capacity factor. After choosing from the supply, the EMM informs the hydroelectricity submodule, which decrements available regional potential in preparation for the next capacity decision cycle.

Legislation and Regulations

Energy Policy Act of 1992 (EPACT92) and 2005 (EPACT05)

The RFM includes the investment and energy production tax credits codified in the Energy Policy Act of 1992 (EPACT 92) as amended. The investment tax credit established by EPACT 92 provides a credit to Federal income tax liability worth 10 percent of initial investment cost for a solar, geothermal, or qualifying biomass facility. This credit was temporarily raised to 30 percent for some solar projects and extended to residential projects. This change is reflected in the commercial and residential modules, but is not reflected for utility-scale installations, where impacts are expected to be minimal and not in a timeframe to impact the multi-year capacity planning process being modeled. The production tax credit, as established by EPACT 92, applied to wind and certain biomass facilities. As amended, it provides a 2 cent tax credit for every kilowatt-hour of electricity produced for the first 10 years of operation for a facility constructed by December 31, 2007. The value of the credit, originally 1.5 cents, is adjusted annually for inflation. With the various amendments, the production tax credit is available for electricity produced from qualifying geothermal, animal waste, certain small-scale hydroelectric, landfill gas, municipal solid waste, and additional biomass resources. Poultry litter and geothermal resources receive a 2 cent tax credit for the first 10 years of facility operations. All other renewable resources receive a 1 cent tax credit for the first 10 years of facility operations. The investment and production tax credits are exclusive of one another, and may not both be claimed for the same facility.

Alternative Renewable Cases

Renewable Technology Cases

Two cases examine the effect on energy supply using alternative assumptions for cost and performance of non-hyrdo, non-landfill gas renewable energy technologies. The High Renewable Cost case examines the effect if technology costs were to remain at current levels. The Low Renewable Cost case examines the effect if technology energy costs were reduced by 2030 to 10 percent below Reference case values.

The High Renewable Cost case does not allow "learning-by-doing" effects to reduce the capital cost of biomass, geothermal, solar, or wind technologies or to improve wind capacity factor beyond 2008 levels. The construction of the first four units of biomass integrated gasification combined cycle units are still assumed to reduce the technological optimism factor associated with this technology. All other parameters remain the same as in the Reference case.

The Low Renewable Cost case assumes that the non-hydro, non-landfill gas renewable technologies are able to reduce their overall cost-of-energy produced in 2030 by 10 percent from the Reference case. Because the cost of supply of renewable resources is assumed to increase with increasing utilization (that is, the renewable resource supply curves are upwardly sloping), the cost reduction is achieved by targeting the reduction on the "marginal" unit of supply for each technology in 2030 for the Reference case (that is, the next resource available to be utilized in the Reference case in 2030). This has the effect of reducing costs for the entire supply (that is, shifting the supply curve downward by 10 percent). As a result of the overall reduction in costs, more supply may be utilized, and a unit from higher on the supply curve may result in being the marginal unit of supply. Thus the actual market-clearing cost-of-energy for a given renewable technology may not differ by much from the Reference case, although that resource contributes more energy supply than in the Reference case. These cost reductions are achieved gradually through "learning-by-doing", and are only fully realized by 2030.

For biomass, geothermal, and solar technologies, this cost reduction is achieved by a reduction in overnight capital costs sufficient to achieve the 10 percent targeted reduction in cost-of-energy. As a result, the supply of biomass fuel is increased by 10 percent at every price level. For geothermal, the capital cost of the lowest-cost site available in the year 2005 is reduced such that if it were available for construction in 2030, it would have a 10 percent lower cost-of-energy in the High Renewable case than the cost-of-energy it would have in 2030 were it available for construction in the Reference case. For solar technologies (both photovoltaic and solar thermal power), the resource is assumed to be unlimited and the reductions in cost-of-energy are achieved strictly through capital cost reduction.

Observation of wind energy markets indicates that improvements in performance (as measured by capacity factor) have, in recent years, dominated reductions in capital cost as a means of reducing cost-of-energy. Therefore, in the Low Renewable Cost case, the reduction in wind levelized cost comes from both modestly reduced capital cost and improved capacity factor. Other assumptions within NEMS are unchanged from the Reference case.

For the Low Renewable Cost case, demand-side improvements are also assumed in the renewable energy technology portions of residential and commercial buildings, industrial processes, and refinery fuels modules. Details on these assumptions can be found in the corresponding sections of this report.

State RPS Programs

Starting with AEO 2008, EIA represents various state-level policies generally referred to as Renewable Portfolio Standards (RPS). These policies vary significantly among states, but typically require the addition of renewable generation to meet a specified share of state-wide generation. Any non-discretionary limitations on meeting the generation or capacity target are modeled to the extent possible. However, because of the complexity of the various requirements, the regional target aggregation (described below), and nature of some of the limitations (also described below), measurement of compliance is assumed to be approximate.

For the AEO2008, regional renewable generation targets were estimated using the renewable generation targets in each state within the region. In many cases, regional boundaries intersect state boundaries; in these cases states were assigned to be within a single region, based on EIA expert judgment of factors such as predominant load locations and location of renewable resources eligible for that state's RPS program. Using state-level RPS compliance schedules and preliminary estimates of projected sales growth, EIA estimated the amount of renewable generation required in each state within a region. Required generation in each state was then summed to the regional level for each year, and a regional renewable generation share of total sales was determined, as shown in Table 75.

Table 75. Aggregate Regional RPS Requirements

Region ¹	2015	2025	2030
ECAR	0%	0%	0%
ERCOT	5%	5%	5%
MAAC	9%	13%	13%
MAIN	6%	12%	12%
MAPP	9%	11%	11%
NY^2	*	*	*
NE	8%	12%	12%
FL	0%	0%	0%
STV	1%	2%	2%
SPP	0%	0%	0%
NWP	7%	12%	12%
RA	4%	7%	7%
CNV ³	*	*	*

¹ See chapter on the electricity Market Module for a map of the electricity regions

Only targets with established enforcement provisions or established state funding mechanisms were included in the calculation; goals, provisional RPS requirements, or requirements lacking established funding were not included. The California and New York programs require state funding, and these programs are assumed to be complied with only to the extent that state funding allows. Compliance enforcement provisions vary significantly among states and most states have established procedures for waiving compliance through the use of "alternative compliance" payments, penalty payments, discretionary regulatory waivers, or retail price impact limits. Because of the variety of mechanisms, even within a given electricity market region, these limits are not modeled.

Supplemental and Floor Capacity Additions

For AEO2008, EIA has continued its tradition of supplemental and floor renewable capacity additions. All specific project listings in Table 76 have been independently verified by EIA, with the exception of landfill gas listings that were obtained through EPA. In total, 6.4 gigawatts of capacity are represented in these listings. For 2008 and beyond, the capacity additions are a preview of the limited data EIA currently has on new projects. Listings additional for these years should not be viewed as comprehensive. This list of projects does not represent renewable capacity that will be induced by State RPS programs beyond 2007.

²New York is not projected to meet RPS targets because of funding limitations. EIA projects that currently authorized funds will support 2.5 billion kilowatthours of new renewable generation by 2015.

³California is not projected to meet RPS targets because of funding limitations. EIA projects that currently authorized funds will support the addition of 700 MW of additional renewable capacity through 2011.

Table 76. Planned U.S. Central Station Generating Capacity Using Renewable Resources for 2004 and Beyond 1

Fechnology	Plant Identification	State	Net Summer Capability (Megawatts)	On-Line Years
Biomass	Okeelanta Cogeneration	FL	40	2007
	Fibrominn Biomass Power Plant	MN	55	2007
	Sierra Pacific Burlington Facility	WA	25	2007
	Plant Carl Project	GA	20	2007
	MN Poultry Litter	MN	55	2007
	Rough and Ready Lumber Biomas Project	OR	1.7	2007
	Lincoln Paper & Tissue	ME	10	2007
	Snowflake White Mountain Power Plant	AZ	24	2008
Geothermal	Galena Unit 2	NV	4.5	2007
	Raft River Geothermal Power Plant	ID	9.8	2007
	Salt Wells Geothermal	NV	11	2007
	Stillwater Addition	NV	15	2007
	Steamboat Hills	NV	4	2007
	Blundell Expansion (Roosevelt Hot Springs)	UT	11	2007
	Galena Unit 3	NV	12.8	2008
Landfill Gas (including mass-burn waste)	C& E Electric	MI	2.3	2007
,	Ocean County Landfill	NJ	9.6	2007
	Seven Mile Creek LFG	WI	0.8	2007
	Horry Land Fill Gas Site	SC	1.1	2007
	Tullytown Land Fill	PA	2.2	2007
	Coventry LFG	VT	1.6	2007
	GROWS Land Fill	PA	2.5	2007
	Seccra Land Fill	PA	0.8	2007
	Rumpke/Pendleton County Land Fill	KY	3.2	2007
	Sauk County Land Fill	WI	0.4	2007
	Cape May County Land Fill	NNJ	0.3	2007
	Newland Park Land Fill	MD	3.1	2007
	Dry Creek Landfill	OR	3.2	2007
	Lee County Solid Waste Energy	FL	16	2007
	Lee County Landfill	SC	1.9	2008
Central Station Photovoltaics (PV)	SunE Alamosa	СО	8	2007
	Springerville Expansion 2008 C	AZ	1	2008
	Springerville Expansion 2009 C	AZ	1	2009
	Springerville Expansion 2010 C	AZ	1	2010
Solar Thermal	Eldorado Solar Thermal	NV	66.5	2007
	Solargenix Solar Thermal Project	NV	64	2007
Conventional Hydro	Gross Hydro Plant	CO	7.8	2007
	Manitou Springs	CO	0.5	2007
	Lower St. Anthony Falls	MN	9	2008
	Castle Creek Hyrdoplant	СО	1	2009

Table 76. Planned U.S. Central Station Generating Capacity Using Renewable Resources for 2004 and Beyond (cont)

Alta Mesca Phase IV	- - - - - - - - - - - - - - - - - - -	Plant Identification	State	Net Summer Capability (Megawatts)	On-Line Years
Twin Groves Wind Farm Phase IL	Wind				
Cedar Creek Wind CO 300 2007 Sweetwater Wind5 TX 81 2007 Pakini Nul Wind Farm HI 21 2007 Top of lows Windfafrm III IA 29.4 2007 Lone Star Wind Farm (firmly Cross Timbers) TX 200 2007 Wildoradow Mind Ranch TX 161 2007 Mars Hill Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 Mind Dakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Loust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomercy Wind IA 123 2007 <td></td> <td>Sweetwater Wind Phase IV</td> <td>TX</td> <td>241</td> <td>2007</td>		Sweetwater Wind Phase IV	TX	241	2007
Sweetwater Wind5 TX 81 2007 Pakini Nui Wind Farm HI 21 2007 Top of lowa Windfarm III IA 29.4 2007 Long Star Wind Farm (fmily Cross Timbers) TX 200 2007 Wildorado Wind Ranch TX 161 2007 Mars Hall Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Klondike Windpower Phase III TX 90 2007 Sand Bluff TX 20 2007 Post Oak Wind LC TX 20 2007 Biglow Canyon Wind Farm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomercy Wind IA 123 2007 Scury Courty Wind Project MO 50.4		Twin Groves Wind Farm Phase I	IL	198	2007
Pakini Nui Wind Farm HI 21 2007 Top of lowa Windfarm III IA 29.4 2007 Lone Star Wind Farm (fimily Cross Timbers) TX 200 2007 Wildorado Wind Farm (Fimily Cross Timbers) TX 161 2007 Mars Hill Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomercy Wind TX 130.5 2007 Cov Branch Wind Proyeer MO <td< td=""><td></td><td>Cedar Creek Wind</td><td>CO</td><td>300</td><td>2007</td></td<>		Cedar Creek Wind	CO	300	2007
Top of Iowa Windfarm III IA 29.4 2007 Lone Star Wind Farm (fmly) TX 200 2007 Wildorado Wind Ranch TX 161 2007 Mars Hill Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind TX 100.8 2007 Pomercy Wind TX 130.5 2007 Cow Branch Wind Project WV 164 2007 Cow Branch Wind Power MO 50.4 2007		Sweetwater Wind5	TX	81	2007
Long Star Wind Farm (Irmily Cross Timbers) TX 200 2007 Wildorado Wind Ranch TX 161 2007 Mars Hill Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 Minn Dakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Silglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind TX 130.5 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 Creating House Wind MO 50.4 200		Pakini Nui Wind Farm	HI	21	2007
Wildorado Wind Ranch TX 161 2007 Mars Hill Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 Cow Branch Wind Farm MO 50.4 2007 Loess Hills Wind Farm MO 50.4 2007 <t< td=""><td></td><td>·</td><td>IA</td><td>29.4</td><td>2007</td></t<>		·	IA	29.4	2007
Mars Hill Wind Farm Project ME 42 2007 Allegheny Ridge Wind Farm PA 80 2007 MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind TX 130.5 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007		Lone Star Wind Farm (frmly Cross Timbers)	TX	200	2007
Allegheny Ridge Wind Farm PA 80 2007 MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Wind Farm TX 63 2007 Steel Wind Farm TX 63 2007 Cow Branch Wind Farm NY 20 2007 Steel Wind Farm TX 63 2007 Cow Branch Wind Farm NY 20 2007 Cow Steel Wind Farm NY 20 2007 Cow Steel Wind Farm NY 20 2007 Common Steel Wind Farm NY 20 2007 Cow Steel Wind Farm IL 198 2007 Consent Decree Wind Phase I OH 3.7 2007 Consent Decree Wind Phase I OH 3.7 2007 Consent Decree Wind Phase I OH 3.7 2007 Clean Old Trail Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007		Wildorado Wind Ranch	TX	161	2007
MinnDakota Wind SD 150 2007 Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 33.4 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Steel Winds Wind Farm NY 20 2007 Steel Winds Wind Farm ND 159 2007		Mars Hill Wind Farm Project	ME	42	2007
Twin Buttes Wind Farm CO 75 2007 Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Farm KS 100.8 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 50.4 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm IL 198 2007		Allegheny Ridge Wind Farm	PA	80	2007
Klondike Windpower Phase III OR 221 2007 Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 50.4 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007		MinnDakota Wind	SD	150	2007
Locust Ridge PA 26 2007 Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 50.4 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Sand Bluff TX 90 2007 Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 33.4 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007					
Post Oak Wind LLC TX 200 2007 Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007		-			
Biglow Canyon Wind Farm OR 125.4 2007 Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm IL 198 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007					
Smoky Hills Windfarm KS 100.8 2007 Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007 <td rowspan="2"></td> <td>Post Oak Wind LLC</td> <td>TX</td> <td>200</td> <td>2007</td>		Post Oak Wind LLC	TX	200	2007
Mount Storm Wind Project WV 164 2007 Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Biglow Canyon Wind Farm	OR	125.4	2007
Pomeroy Wind IA 123 2007 Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Smoky Hills Windfarm	KS	100.8	2007
Scurry County Wind TX 130.5 2007 Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Mount Storm Wind Project	WV	164	2007
Cow Branch Wind Power MO 50.4 2007 CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkorn Valley Wind OR 101 2007		Pomeroy Wind	IA	123	2007
CR Cleaning House Wind MO 50.4 2007 Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Scurry County Wind	TX	130.5	2007
Loess Hills Wind Farm MO 5 2007 Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Cow Branch Wind Power	MO	50.4	2007
Bluegrass Ridge Wind Phase I MO 33.4 2007 Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		CR Cleaning House Wind	MO	50.4	2007
Peetz Wind Farm CO 400 2007 Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Loess Hills Wind Farm	MO	5	2007
Steel Winds Wind Farm NY 20 2007 Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Bluegrass Ridge Wind Phase I	MO	33.4	2007
Snyder Wind Farm TX 63 2007 Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkorn Valley Wind OR 101 2007		Peetz Wind Farm	СО	400	2007
Langdon Wind Farm ND 159 2007 Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Steel Winds Wind Farm	NY	20	2007
Old Trail Wind Farm IL 198 2007 Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Snyder Wind Farm	TX	63	2007
Fenton Wind Energy MN 205 2007 Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Langdon Wind Farm	ND	159	2007
Consent Decree Wind Phase I OH 3.7 2007 Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Old Trail Wind Farm	IL	198	2007
Diamond Willow Wind MT 20 2007 Elkoorn Valley Wind OR 101 2007		Fenton Wind Energy	MN	205	2007
Elkoorn Valley Wind OR 101 2007		Consent Decree Wind Phase I	ОН	3.7	2007
		Diamond Willow Wind	MT	20	2007
Endeavor Wind Project IA 100 2007		Elkoorn Valley Wind	OR	101	2007
		Endeavor Wind Project	IA	100	2007

Table 76. Planned U.S. Central Station Generating Capacity Using Renewable Resources for 2004 and Beyond (Cont.)

Beyond	(Cont.)			
Technology	Plant Identification	State	Net Summer Capability (Megawatts)	On-Line Years
	Good Know Windfarm	WA	94	2007
	Prairie Star Wind Farm	MN	100	2007
	Cedar Ridge Wind	WI	68	2008
	Top of Iowa Windfarm II	IA	80	2008
	Blue Sky Green Field Wind Projcet	WI	145	2008
	Marengo Wind Plant	WA	140.4	2008
	White Creek Wind Farm	WA	204	2008
	Oliver Wind Phase II	ND	48	2008
	Champion Wind Farm	TX	126.5	2008
	Roscoe Wind Farm	TX	209	2008
	Clinton Wind Farm	NY	100.5	2008
	Ellenurg Wind Farm	NY	81	2008
	Bliss Windpark Phase II	NY	100.5	2008
	Harvest Wind Farm	MI	53	2008
	Taconite Ridge Energy Center	MN	25	2008
	Tehachapi Wind I	CA	0.6	2009
	Tehachapi Wind Resource II	CA	15.3	2009
	North Dakota Wind Expansion	ND	100	2009
	Consent Decree Wind Phase Ii	ОН	19.3	2009

¹ Includes reported information and EIA estimates for goals, mandates, renewable portfolio standards (RPS), and California Assembly Bill 1890 required renewables.

Source: Energy Information Administration, Office of Integrated Analysis and Forecasting, based on publicly available information about specific projects, state renewable portfolio standards, mandates, goals, and commercial and other plans.

²Regional estimates developed by EIA.

Notes and Sources

- [1] For a comprehensive description of each submodule, see Energy Information Administration, Office of Integrated Analysis and Forecasting, Model Documentation, Renewable Fuels Module of the National Energy Modeling System, DOE/EIA-M069(2005), (Washington, DC, March 2005).
- [2] Revising the Long Term Multipliers in NEMS: Quantifying the Incremental Transmission Costs Due to Wind Power, Report to EIA from Princeton Energy Resources International, LLC. May 2007.
- [3] Wiser, Ryan and Mark Bollinger. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006. U.S. Department of Energy, Office of Energy Efficiency and Reneweable Energy. May 2007.
- [4] United States Department of Agriculture, U.S. Forest Service, "Forest Resources of the United States, 1992", General Technical Report RM-234, (Fort Collins CO, June 1994).
- [5] Antares Group Inc., "Biomass Residue Supply Curves for the U.S (updated)", prepared for the National Renewable Energy Laboratory, June 1999.
- [6] Walsh, M.E., et.al., Oak Ridge National Laboratory, "The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture", (Oak Ridge, TN, May 2000), http://bioenergy.ornl.gov/papers/wagin/index.html.
- [7] Graham, R.L., et.al., Oak Ridge National Laboratory, "The Oak Ridge Energy Crop County Level Database", (Oak Ridge TN, December, 1996).
- [8] U.S. Environmental Protection Agency, Atmospheric Pollution Prevention Division, Energy Project Landfill Gas Utilization Software (E-PLUS) Version 1.0, EPA-430-B-97-006 (Washington, DC, January 1997).
- [9] Energy Information Administration, "Emissions of Greenhouse Gases in the United States 2003", DOE/EIA-0573(2003) (Washington, DC, December 2004).
- [10] Governmental Advisory Associates, Inc., METH2000 Database, Westport, CT, January 25, 2000.
- [11] Douglas G. Hall, Richard T. Hunt, Kelly S. Reeves, and Greg R. Carroll, Idaho National Engineering and Environmental Laboratory, "Estimation of Economic Parameters of U.S. Hydropower Resources" INEEL/EXT-03-00662 (Idaho Falls, Idaho, June 2003).