What Works Clearinghouse

This review summarizes the second wave of intervention reports produced in 2006-07.
http://ies.ed.gov/ncee/wwc/

The What Works Clearinghouse (WWC) reviewed interventions to promote middle school students' math knowledge and skills. ${ }^{1}$ Because there is some variation in how school districts organize middle school, we considered curricula aimed at students in grades 6 through 9, covering one or more of the following content areas: numbers and operations, algebra, geometry, measurement, and data analysis and probability. Only core, comprehensive math curricula were eligible for inclusion in this review. ${ }^{2}$ These curricula extend over the course of one semester or more, are central to students' regular school instruction, and are based on any combination of text materials, manipulatives, computer software, videotapes, and other materials.

We looked at 361 studies. Of these, 203 appeared to be studies of practices or other interventions that did not qualify for our review. Of the 158 remaining studies, 21 studies of 7 curricula met our evidence standards, 4 without reservations and 17 with reservations. Altogether, the WWC looked at 34 interventions: 7
had studies that met WWC standards with or without reservations and 27 had studies that did not meet WWC evidence screens. No eligible studies were identified for an additional 16 programs at the time of this review. (The identification of eligible programs ended in September 2005, and that of eligible studies in July 2006.)

The WWC rated the effectiveness of middle school math curricula based on the available research evidence. In looking at math achievement for the 7 curricula:

- I Can Learn® Pre-Algebra and Algebra had positive effects.
- Saxon Middle School Math had positive effects. \qquad
- Cognitive Tutor had potentially positive effects. \square
- The Expert Mathematician had potentially positive effects.
- UCSMP Algebra had potentially positive effects.
Two other curricula had mixed effects on math achievement.

Intervention Effectiveness Ratings for Middle School Math

Each middle school math curriculum that had at least one study meeting WWC standards (with or without reservations) received a rating of effectiveness in math achievement. The rating aims to characterize the existing evidence, taking into account the quality of the research design, the statistical significance of the findings, the size of the difference between the average math achievement for
students in the intervention and comparison conditions, and the consistency of findings across studies.

The research evidence can be rated as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative (see the WWC Intervention Rating Scheme). Table 1 shows the effectiveness ratings for the 7 middle school math curricula.

Table 1 Effectiveness ratings for 7 middle school math curricula

Intervention name
$\underline{\text { Cognitive Tutor }}{ }^{\circledR}$ Algebra I (http://www.carnegielearning.com)
Connected Mathematics Project (CMP) (http://connectedmath.msu.edu)
I CAN Learn ${ }^{\circledR}$ Pre-Algebra and Algebra (www.icanlearn.com)
Saxon Middle School Math
(http://saxonpublishers.harcourtachieve.com/en-US/saxonpublishers.htm)
The Expert Mathematician (www.expertmath.org)
Transition Mathematics (http:///www.phschool.com/atschool/ucsmp/index.html)
University of Chicago School Mathematics Project (UCSMP) Algebra
(http://www.phschool.com/atschool/ucsmp/index.html)

Extent of evidence
 each curriculum name is the developer's website address. The research evaluated addresses some but not all grade levels targeted by these curricula. Grade levels are related to student age and may affect outcomes. For a comparison of targeted grade levels and grade levels in the studies reviewed by the WWC, see Appendix A2.

Potentially \quad Mixed effects: positive effects: positive effect positive effect ontrary evidence

of effects

Potentially negative effects: evidence of a with no overridin with no overriding

Negative effects: strong evidence of a negative effect with no overriding contrary evidence

Average improvement indices

The WWC computes an average improvement index for each study, as well as an average improvement index across studies of the same intervention (see the Technical Details of WWC-Conducted Computations).

The improvement index represents the difference between the percentile rank of the average student in the intervention condition and the percentile rank of the average student in the comparison condition. It can take on values between -50 and +50 , with positive numbers denoting results favorable to the intervention group. Unlike the rating of effectiveness, which is based on four factors, the improvement index is based only on the size of the difference between the intervention and the comparison conditions.

Math achievement

Math achievement includes three types of outcome measures:

- Standardized, nationally normed achievement tests that are appropriate for elementary students (e.g., Comprehensive Test of Basic Skills, Wide Range Achievement Test)
- Standardized state or local tests of math achievement
- Research-based or locally developed tests or instruments that assess students' mathematical concepts or skills
We reviewed math achievement outcomes for 7 curricula, and the average improvement index ranged from -2 to +14 percentile points (figure 1). ${ }^{3}$

Figure 1 Math achievement: average improvement

Note: Bold text indicates interventions with a medium to large extent of evidence.
3. To enable comparisons across interventions, improvement indices are calculated from student-level findings. In the case of the Connected Mathematics Project (CMP) and Saxon Middle Schoo Math, the average improvement index does not represent all of the findings included in the WWC intervention reports, as some findings reviewed were reported on the classroom or school level and student-level improvement indices could not be computed. For further details please see Technical Details of WWC-Conducted Computations.

Table 2 Curricula reviewed with no studies meeting WWC evidence screens

A+ny where Learning System (http://www.amered.com/awl_products.php)

Accelerated Math (http://www.renlearn.com)

Addison-Wesley Mathematics (http://www.scottforesman.com/)
Adventures of Jasper Woodbury Series
(http://peabody.vanderbilt.edu/projects/funded/jasper/Jasperhome.htmI)
Algebra Project (http://www.algebra.org)
Algebraic Thinking (http://www.algebraicthinking.com/)
Appalachia Model Mathematics Program (no website available)
CompassLearning (http://www.compasslearning.com/)
Connecting Math Concepts (CMC) (https://www.sraonline.com/)

CORD Applied Math

(http://www.cordcommunications.com/Store/Contextual_Mathematics/CORD_Applied_Math.asp)
Core Plus Mathematics Project (http://www.wmich.edu/cpmp/)
Countdown Video IGAP Intervention Tape (no website available)

Destination Math
(http://web.riverdeep.net/portal/page?_pageid=818,1381089\&_dad=portal\&_schema=PORTAL)
FUNdamentallyMATH ${ }^{\circledR}$ (http://www.fundamentallymath.com)
Heath Mathematics Connections (no website available)
Holt Middle School Math (http://go.hrw.com/gopages/ma-msm.html)
Integrated Mathematics, Science, and Technology (IMaST)
(http://www.cemast.ilstu.edu/programs/imast/index.shtml)
Key Math Teach and Practice (http://ags.pearsonassessments.
com/group.asp?nGroupInfol $D=a 6880$)
Larson Developmental Math Series (http://college.hmco.com/instructors/catalog/demos/larson.html) Lightspan Achieve Now (http://www.plato.com/Products/PLATO-Achieve-Now-Mathematics.aspx)

Logo (no website available)
Macmillan/McGraw-Hill (http://www.mhschool.com/math/2003/student/index.html)
Math Advantage (http://www.hbschool.com/menus/math_advantage.html)
Math Applications and Connections (http://www.glencoe.com/)
Math Renaissance ${ }^{\circledR}$ (http://www.renlearn.com)
Mathematics in Context (MiC) (http://showmecenter.missouri.edu/showme/mic.shtml)
Mathematics Plus (no website available)
MathScape: Seeing and Thinking Mathematically (http://www2.edc.org/mathscape/)
MathThematics (http://www.mcdougallitell.com/ml/math.htm? $/ \mathrm{v}=4 \& / \mathrm{D}=1005500000030872$)
Middle Grades Math (http://www.pearsonschool.com/index.cfm?locator=PSZ1B7)
Middle School Mathematics through Applications Program (MMAP) (http://mmap.wested.org)
Moving with Math ${ }^{\circledR}$ Extensions (http://www.movingwithmath.com/summer_math/welcome2.htm)
Moving with Math ${ }^{\circledR}$ Math by Topic
(http://www.movingwithmath.com/middle_school/middle_school.htm)
Opening Eyes to Mathematics by The Math Learning Center
(http://www.mathlearningcenter.org/curriculum/elementary/open-eyes.asp)
Partnership for Access to Higher Mathematics (PATH Mathematics; no website available)
PLATO (http://www.plato.com/)
Real Math basal mathematics program (https://www.sraonline.com/m_home.html)
Reasoning Mind (http://www.reasoningmind.org/)
Singapore Mathematics (http://www.singaporemath.com/)
The Six Through Eighth Grade Mathematics (STEM) Project (no website available)
Scott Foresman Math Diagnostic \& Intervention System
(no website available)
Successmaker (http://www.pearsondigital.com/successmaker)
Unitedstreaming™ (http://www.unitedstreaming.com/)

Note: Following each program name is the developer's website address. The table includes all eligible programs with no studies and all eligible programs with no studies meeting evidence standards. Note that some of the programs listed in this table had evaluation studies that did not meet the WWC evidence screens because the programs were supplemental curricula rather than core curricula. Supplemental curricula may be considered when this topic review is updated.

For more information about studies reviewed and WWC methodology, please see the WWC Middle School Math Technical Appendices.

