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EXECUTIVE SUMMARY 
The report describes progress made towards developing a scientifically rigorous methodology 

for operational probabilistic quantitative precipitation estimation (PQPE) for hydrologic 
applications.  The methodology will be based on the WSR-88D measurements complemented 
with rain gauge and satellite data.  It is flexible enough to allow a smooth transition to the 
polarimetric era after the planned upgrade of the operational network of radars.  The overall 
strategy is to demonstrate hydrologic utility of the probabilistic information of the precipitation 
estimates.  This involves two major elements (1) developing a theoretical and operational 
framework for probabilistic radar-rainfall estimation; and (2) connecting the PQPE input with a 
hydrologic application.  This report documents initial progress made in both elements. 

The authors define a radar PQPE product as a set of situation-dependent parameter values in a 
model describing the probability distributions of the uncertainties in the radar-estimated rainfall.  
The distributions quantify the available probabilistic knowledge about the true spatial rainfall 
that is likely, given current radar measurements and other available information.  The model 
parameter values determine unambiguously the uncertainty distributions for each operationally 
useful distance from the radar and spatiotemporal averaging scale.  This allows generating 
different user-specific outputs demanded by various operational applications.  Among these 
outputs are the uncertainty bounds and probabilities of exceedence.  Generating an ensemble of 
the probable rainfall maps to provide the input for the ensemble forecasting schemes is also 
possible.  The report presents early results of the model formulation. 

The hydrologic utility of the PQPE methodology will be demonstrated using the flash flood 
forecasting problem.  This part of the project is performed in close collaboration with the 
Hydrologic Research Center (HRC).  The demonstration is limited geographically to the 
Oklahoma region.  This report documents developments leading to PQPE application in a Flash 
Flood Guidance and Monitoring (FFGM) system.  The authors present uncertainty analysis of the 
Thresh-R model which is the basis for FFGM and of the soil moisture accounting model.  The 
early results also include effect of the uncertainty in the rainfall input via an example of 
ensemble PQPE simulation.   
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Useful Acronyms 
 
ABRFC Arkansas Basin River Forecast Center 
CDP conditional distribution of precipitation 
CSI Critical Success Index 
DHR Digital Hybrid Scan Reflectivity 
DPA Digital Precipitation Array 
FAR False Alarm Ratio 
FFG Flash Flood Guidance 
FFMP Flash Flood Monitoring and Prediction 
HL Hydrologic Laboratory 
HRC Hydrologic Research Center 
HRAP Hydrologic Rainfall Analysis Project 
KDP specific differential phase shift 
KINX WSR-88D in Tulsa, OK 
KTLX WSR-88D in Twin Lakes, OK 
MAP Mean Area Precipitation 
MFB Mean-field-bias 
MPE Multisensor Precipitation Estimation 
NCDC National Climatic Data Center 
NSSL National Severe Storms Laboratory 
NWS National Weather Service 
PED product-error-driven 
POD Probability of Detection 
PPS Precipitation Processing System 
PQPE Probabilistic Quantitative Precipitation Estimation 
RFC River Forecast Center 
SOW Statement of Work 
WFO Weather Forecast Office 
WSR-88D Weather Surveillance Radar - Doppler 
Z radar reflectivity 
ZDR differential reflectivity 
CSSA Convective/Stratiform Separation Algorithm 
REC Radar Echo Classifier 
RCA Range Correction Algorithm 
EPPS Enhanced PPS 
HCA Hydrometeor Classification Algorithm 
EPRE Enhanced Preprocessing 
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A. BACKGROUND INFORMATION 
Hydrologic forecasting and water resources services performed for the public by the National 

Weather Service (NWS) require decision making in presence of uncertainty due to limitation in 
our understanding of nature, available information, and predictability of natural phenomena.  
High space and time resolution precipitation estimates are the main input for many of the 
forecasting and decision support models and systems.  These estimates are based on information 
from the network of weather radars WSR-88D combined with rain gauge and satellite data (e.g. 
Fread et al. 1995; Stallings and Wenzel 1995).  The current operational NWS multi-sensor 
rainfall algorithms produce only deterministic fields of precipitation intensity and accumulations 
(e.g. Fulton et al. 1998).  The operationally provided rainfall products are deterministic in the 
sense that, while significant errors associated with these products are widely acknowledged, no 
quantitative information on their magnitude associated with the products is routinely available.  
Users of these products would be better able to make informed decisions if they knew not only 
the best rainfall estimate but also the associated uncertainty and/or range that most likely 
includes the actual amount of rainfall that occurred. 

The Office of Hydrologic Development of the NWS intends to address this shortcoming of 
the existing algorithms by preparing a comprehensive plan for development of a new generation 
of algorithms for the precipitation estimation.  These algorithms are referred to as probabilistic 
quantitative precipitation estimation, or PQPE.  Krajewski and Ciach (2003) developed a 
comprehensive plan for nation-wide development of the PQPE algorithms.  Their report lays out 
an early formulation of the problem, identifies conceptual, methodological and technological 
issues, and proposes a feasible plan of action.  However, because the plan calls for considerable 
expenditures of resources, the PQPE Advisory Team suggested preceding it with a 
geographically focused effort of an end-to-end demonstration of the utility of the PQPE 
approach.  In response, Krajewski et al. (2003) formulated a plan for developing such a 
demonstration. 

In this report we present first results of an extensive data analysis and development of an 
initial version of ensemble generator that could be used operationally to provide users with 
plausible realizations of rainfall fields.  Following Krajewski et al. (2003), we describe (1) a 
formulation of the radar-only PQPE algorithm; (2) the corresponding extensive data analyses and 
identification of an appropriate model and estimation of its parameters based on actual data from 
Oklahoma; and (3) the ensemble generator and examples of its workings with potential 
operational use. 
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B. FORMULATION OF THE PQPE METHODOLOGY 
During the project, we continued our analysis and refinement of the methodological 

framework for the PQPE problem that was initiated in Phase I (Krajewski and Ciach 2003).  For 
the sake of completeness of this report, we briefly summarize the proposed methodology for the 
PQPE algorithm development as we understand it now. 

B.1. Basic Definitions 
The four fundamental notions defined below are used throughout this report: 

• True rainfall: The amount of rain-water that has fallen on a specified area in a 
specified time-interval. 

• Radar-rainfall (RR): An approximation of the true rainfall based on radar data 
corresponding to the same spatio-temporal domain. 

• RR uncertainties: All systematic and random discrepancies between RR and the 
corresponding true rainfall. 

• Ground reference (GR): Estimates of the area-averaged rainfall accumulations based 
on rain-gauge data that are used to evaluate RR products. 

B.2. Problem Description 
Progressive evolution of the operational RR products has been guided by the attempts to 

quantify and to reduce the uncertainties in the RR estimates.  The currently existing RR maps 
produced operationally by the NWS (the Stage II and III products) are just arrays of numbers 
describing the spatial distribution of approximate rainfall accumulation values that are obtained 
based on the WSR-88D reflectivity measurements corrected with the available concurrent rain-
gauge data.  Application of the term “quantitative precipitation estimates” QPE to such products 
implies that the maps are completed with quantitative information about the product 
uncertainties.  Without such information about the relation of the RR product to the 
corresponding true rainfall, both the notion of “quantitative” and the mathematical term 
“estimation” would be meaningless in this context.  However, despite a wide use of this term, the 
operational QPE products are devoid of their uncertainty information.  We believe that the 
development of the probabilistic quantitative precipitation estimation (PQPE) products based on 
sound empirical evidence will be a comprehensive solution for this pathological situation. 

The probabilistic products, both in meteorology and hydrology, convey the inferred 
information about the unknown true value of a physical quantity in terms of its probability 
distribution rather than its one “best” estimate (e.g. Krzysztofowicz 2001).  Thus, the radar 
PQPE product can be mathematically defined through the conditional probability distributions of 
the likely true rainfall, given the current radar measurements and other available information.  
These distributions can be determined by specific parameter values of a general uncertainty 
distribution model developed in this project.  The model parameters have to determine 
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unambiguously the uncertainty distributions of given RR estimates in different rainfall regimes 
for each operationally useful distance from the radar and spatio-temporal averaging scale.  From 
such a general PQPE product, one can directly derive any specific uncertainty characteristics (for 
example, the RR expectation, standard errors, probabilities of exceedence, or an ensemble of 
probable rainfall maps) that can be required for different operational applications. 

B.3. Basic Requirements 
During the discussions with the panel of experts engaged in the Phase I of this project 

(Krajewski and Ciach 2003), it was agreed that any method that will be applied to generate the 
PQPE products has to satisfy several key requirements.  These requirements were further 
discussed, analyzed and refined in the course of the Phase II of the project.  We summarize them 
briefly below: 

 

1. The method has to be empirically “verifiable.”  Conditions have to be assured to 
systematically evaluate the degree of agreement between the PQPE results and the 
RR uncertainties estimated based on reliable GR in selected “validation sites.” 

 

2. The method has to be adjustable to different synoptic and topographical 
situations, and to the changing operational environment, by its model parameter 
calibration using available information. 

 

3. The method has to account for the spatio-temporal dependencies in the errors 
process to provide the PQPE products over a broad range of spatial and temporal 
scales used in different hydrological applications. 

 

4. The method has to work with the current reflectivity-only WSR-88D algorithms, 
the multi-parameter (MPE) algorithms using the available concurrent rain-gauge 
and satellite data, and the polarimetric algorithms (using differential reflectivity 
and differential phase-shift) available operationally after the upcoming upgrades 
of the WSR-88D radars. 

 

5. The method has to provide the PQPE products in a format appropriate for their 
efficient usage in different hydrological applications. 

 

B.4. Development of the PQPE Algorithm 
During the previous phases of this project, it has been agreed that the product-error-driven 

(PED) modeling approach for the PQPE algorithm, described in our reports for the Phase1 and 
Phase 2, will be developed using a fully empirically-based framework.  This decision 
acknowledges the obvious fact that building a PQPE algorithm has to be preceded by the 
development of a realistic and parsimonious mathematical model of RR uncertainties underlying 
the probabilistic nature of RR products.  Only a thorough and comprehensive data analysis can 
result in the identification of such a realistic model suitable for the PQPE applications.  We 
describe the data preparation, analysis, and model development in the following sections of the 
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report.  First, we describe development of the PED modeling methodology.  In Appendix A we 
present a methodology we propose for the problem of filtering the point vs. area process 
differences as they pertain to the Ground Reference problem (Habib et al. 2004).  In Appendix B 
we address the issue of estimating small-scale rainfall correlation based on the Piconet data 
(Ciach and Krajewski 2005). 

B.4.1. Development of the PED Modeling Methodology 
There are many sources of errors in RR products and we discussed them in the Phase 1 report.  

The PED approach focuses on the combined effect of all the errors, its modeling, and estimation 
of the model parameters.  This follows the fact that one cannot delineate the separate effects 
using the available measurable quantities.  In practice, only the combined effect on the RR 
estimates can be measured and quantified.  Our objective is to create a flexible parameterized 
mathematical model of the relation between the RR product values and the corresponding True 
Rainfall conditioned on different situations.  The four conditions that we plan to quantify are the 
distance from the radar, space-time averaging scale, rainfall regime, and the PPS setup.  In the 
PQPE algorithm, this model will be used to quantify the probability distributions of the probable 
True Rainfall, given the RR value and the other abovementioned conditions. 

B.4.1.1. General Structure of the Model 

The relationships between RR and the corresponding truth can be described by the family of 
the conditional bivariate frequency distributions that we call the “true verification distributions” 
(TVD): 

 

(Ra , Rr)L,T,d,S  =  f(Ra , Rr | L, T, d, S) (1) 

 

where Ra and Rr are the corresponding (concurrent and collocated) True Rainfall and RR values, 
respectively, L is the spatial averaging scale, T is the temporal scale (accumulation interval), d is 
the distance from the radar station, and S denotes the type of the precipitation system (rain 
regime).  In principle, these distributions can be retrieved from the radar-gauge data samples, if 
additional information on the rainfall variability is available (see section B.4.3 below). 

To simplify the notation, we can focus on one spatiotemporal resolution (L, T), distance (d) 
from the radar and rain regime (S).  To model the (Ra , Rr) distribution for these specified 
conditions, we claim it is convenient to use the following functional-statistical representation: 

 

Ra = h(Rr) e(Rr) (2) 

 

where h(·) is a deterministic distortion function, and e is a random variable representing the 
random uncertainties that we call the multiplicative random uncertainty factor.  If parametric 
models of the deterministic function, h(Rr), and the stochastic function, e(Rr), are identified and 
its parameter estimates conditioned on a specific situation are known, this representation 
prescribes a way in which the ensembles of probable True Rainfall values, or only its selected 
statistical characteristics required by the users, can be generated for each given value of RR. 
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B.4.1.2. Main Elements of the Model 

Because all systematic biases can be described by the deterministic distortion function, we 
can assume without any loss of generality that the mean of the random uncertainty factor is 
always equal to unity (E{e}=1).  This allows for a rigorous definition of the h(·) function based 
on the general regression formula: 

 

h(x) = E{Ra | Rr=x}, (3) 
 

which, in practice, can be identified and estimated using any version of the nonparametric 
regression apparatus (e.g. Hardle 1990; Simonoff 1996).   

Although the mean of the multiplicative random uncertainty factor, E{e(Rr)}, is equal to unity 
for each value of Rr, its distribution can vary with Rr.  The first step in identifying this 
dependence is to estimate the variance of e(Rr) as a function of Rr.  This can be done in a similar 
way as estimating the h(Rr) function.  An example of such a procedure is shown in the section 
B.4.1.3 below. 

Next, we have to find a suitable parametric model for the e(Rr) distributions.  This can be 
achieved based on extensive data analysis by examining the shapes of the actual e(Rr) 
distributions under different values of the conditioning factors.  Since the extreme rainfall events 
are the most important in hydrological practice, it is essential that the selected probability 
distribution model describes the uncertainty distribution tails with a reasonable accuracy.  
Examples of the models that have distinctly different tails are the gamma, lognormal and beta 
distributions.  Each of them can lead to different decisions based on the PQPE results.  The 
goodness-of-fit of these and perhaps several other models will have to be tested on the large data 
sample before a justified choice can be made. 

Once parametric models of the h(Rr) function and the e(Rr) variable (or the family of random 
variables indexed by Rr) are identified, the dependence of their parameters on the averaging scale 
(L, T), distance from the radar (d) and rain regime (S) can be estimated based on the family of the 
verification distributions (estimated bivariate distributions of RR and the corresponding True 
Rainfall): 

 

(Rr , Ra)Ln,Tn,d,S ,  n=1, 2, … , Nmax (4) 

 

where the distributions are sampled for several spatio-temporal scales that are multiples of the 
original RR product scale.  Spatio-temporal dependencies in the model parameters can then be 
modeled to reproduce the dependence of these conditional model parameter estimates on the 
discrete series of scales (An ,Tn), for each given distance from the radar (d) and precipitation 
regime (S). 

It is still unclear to us how to stratify the data sample according to the precipitation regime (S) 
so that this information is meaningful for the PQPE methodology.  The appropriate classification 
has to be based on data that are readily operationally available during the PPS processing, 
preferably the radar data alone.  In addition, it should exhibit distinct differences in the PED 
model parameter values for the different regimes.  One of such classification schemes by Steiner 
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et al. (1995) has been investigated by Ciach et al. (1997).  Our results indicated that its effects on 
the RR estimation algorithm are practically the same as the stratification of the data sample 
according to different RR values.  Consequently, using this specific precipitation regime 
classification can only complicate the PQPE algorithm unnecessarily without adding any value to 
it.  A classification of the synoptic situation, or some other information (e.g., the zero isotherm 
level) based on the operational weather forecasts could perhaps be a better alternative to the 
schemes using the radar data only.  However, the best way to use this external information 
remains to be investigated. 

Obviously, the successful development of operationally applicable parametric models of the 
h(Rr) function and the e(Rr) variable will most likely require a number of generalizations and 
simplifications in the mathematical description of the abovementioned dependences.  The 
specific formulas will be identified during the extensive analysis of large data samples described 
later in the report. 

B.4.1.3. Preliminary Analysis of RR Error Structure 

In the Phase 3 of this project, we performed a preliminary study of the basic elements of the 
RR error structure.  It is an extension of our first analysis that we described in the Phase 1 report.  
This analysis is based on a relatively small data sample of 50 rainy days and its main purpose 
was to develop and test the first version of the data processing and functional estimation tools 
that will be applied to the large samples of the operational RR products.  The radar data from the 
Tulsa, Oklahoma, NEXRAD station (KINX) were quality controlled and converted into hourly 
accumulations in polar grids over 23 surrounding rain gauge stations (Vignal and Krajewski 
2001; Krajewski and Vignal 2001). 

Because there are two variables (Ra , Rr), there exist two mathematically equivalent ways to 
represent their joint distribution in the form of a functional-statistical relationship between these 
variables.  The first form is defined in Equation (2), whereas the second is obtained by switching 
the Ra and Rr variables in this Equation.  Although the second representation is more suitable for 
characterizing the RR error structure than for building the PQPE ensemble generator, we used it 
in this preliminary analysis to obtain results that are formally comparable with the results that we 
had obtained previously.  From the point of view of the estimation technique, both 
representations are exactly the same and the same data processing tools can be applied to both of 
them.  However, to avoid confusion, we denote the equivalent deterministic and random 
components as h1 and e1, respectively.  Additionally, we simplified the analysis by assuming the 
raingauge rainfall accumulations, Rg, for the approximations of the true rainfall Ra.  In fact, using 
our area-point error filtering procedure (see section B.4.2) was impossible for this sample due to 
the lack of the corresponding small-scale rainfall variability data. 

Using the 50-storm data sample, we estimated the deterministic error function, h1(·), and the 
variance of the multiplicative random error, e1(·), as functions of the accumulation time.  At this 
stage, we did not consider the dependences on the spatial scale, distance from the radar, or the 
rain regime.  The temporal dependences in the RR error process were estimated for five 
accumulation intervals: 1, 3, 6, 12, and 24 hours.  The deterministic distortion function was 
estimated using the following scheme of moving-window averaging: 

 

h1(r)  ≈  < Rr | r-u ≤ Rg  ≤ r+u > (5) 
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where Rg is the rain gauge rainfall accumulation and u is the averaging window size.  The 
window size was increased with Rg to compensate for the decreasing number of data points.  
These functions, for the five time scales, are shown in Figure 1. 

The results in Figure 1 show that the systematic distortion component is a nonlinear function 
of the True Rainfall.  This function is a way to quantify the conditional biases in different RR 
products that have been qualitatively demonstrated long time ago by Austin (1987) and 
investigated using an idealized analytical model by Ciach et al. (2000).  For the larger 
accumulation intervals (6, 12 and 24 hours), these conditional biases are relatively small and 
invariant with respect to the time-scale.  The outstanding results for the 1-hour and 3-hour time-
scales might be the effect of large rain gauge representativeness errors, however, they might as 
well indicate a distinctly different uncertainty structure at the short scales.  This question requires 
more extensive analyses using the area-point error filtering method described in Appendix A. 

The standard deviation of the random error factor as a function of the rain gauge rainfall 
accumulation for the same five accumulation intervals is shown in Figure 2.  The e1(·) variances, 
σe1

2, as a function of Rg were estimated in a similar way as the h1(·) functions: 

 

σe1
2(r)  ≈  < (e1(Rg)-1)2 | r-u ≤ Rg  ≤ r+u > (6) 

 

using the same moving-averaging scheme with variable window size. 

The results in Figure 2 show that, for each of the five accumulation intervals, the standard 
deviation of the multiplicative random uncertainty factor decreases rapidly with increasing 
rainfall and then stabilizes at the level of about 30%.  The estimates of the random component 
seem to be less sensitive to the shorter time-scales than the estimates of the systematic distortion 
function.  This invariance, if confirmed on the large data sample that we currently prepare, can 
be a good basis to reduce the number of parameters of the final PED model that will be used for 
the PQPE algorithm. 
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Figure 1.  Systematic distortions, h, as functions of True Rainfall for the five accumulation 
intervals. 
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Figure 2.  Standard deviations of the multiplicative random error factor, e, as functions of True 
Rainfall for the five accumulation intervals. 
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Note that the results shown in Figures 1 and 2 are based on a research sample that was 

carefully selected and quality controlled.  A well tested and sample-calibrated ground clutter and 
AP reduction procedure based on a neural-network algorithm was applied prior to the Z-R 
conversion (Krajewski and Vignal 2001).  The coordinate transformation errors are not present 
because the RR estimates are only in the polar coordinates.  Additionally, a correction of the 
vertical profile of reflectivity (VPR) reduced the RR errors considerably at larger distances 
(Vignal and Krajewski 2001).  Consequently, the uncertainties presented above can be 
significantly smaller than what we expect to obtain based on the operational PPS products.  
Therefore, it is essential to repeat the analysis on the large sample of the PPS products that we 
described in section C.1. 

B.4.1.4. Two Idealized Implementations 

One of the most difficult elements of the PQPE methodology concerns including the spatial 
and temporal dependences that exist in the RR uncertainty process into the probabilistic model 
that we create using the PED approach.  In the course of developing a viable technique to treat 
this problem, we started with two idealized implementations of the PQPE algorithm that are 
based on the following simple model of the (Ra , Rr) distribution: 

 

Ra = Rr e (7) 

 

where the random uncertainty factor, e, is lognormally distributed and does not depend on the 
RR value (a multiplicative homoscedastic model).  Both algorithms are designed to simulate 
ensembles of the probable true rainfall conditioned on the RR values obtained from the radar 
data.  The first algorithm includes the temporal dependences in the uncertainty process, whereas 
the second algorithm generates ensembles of spatially correlated uncertainty fields.  These 
dependences in the e variable were modeled based on a meta-Gaussian model that starts with a 
time series (or spatial field) of the uncorrelated standard normal white noise.  Next, this variable 
is correlated in time (or space) using weighted moving-window averaging with a specified 
averaging mask, and the outcomes are transformed into the positively defined random process 
through the exponential transformation.  The parameters of this transformation are such that the 
resulting variable has the mean equal to unity and the specified variance. 

The temporally correlated 1-D version of this simple PQPE algorithm was applied to generate 
the ensembles of time-series of probable true rainfall for the lumped flash flood forecasting 
model that we implemented and upgraded into probabilistic framework with the help of the 
Hydrologic Research Center.  This numerical experiment is a part of the PQPE project and we 
described its application to a flash-flood prediction problem in Krajewski et al. (2003).  The 
flowchart of this algorithm consists of the following steps: 

 

1. Generate a one-dimensional array of independent standard normal deviates. 
2. Apply the weighted averaging moving-window to the array. 
3. Apply the exponential transformation to the smoothed array. 
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This procedure generates one time-series of the time-correlated meta-Gaussian uncertainty 
process.  It is repeated to obtain the required number of the ensemble members.  The weighted 
moving-window averaging can, in principle, be performed using any averaging mask.  This 
allows fairly flexible adjustment of the simulated temporal uncertainty structure to the empirical 
estimates that we will obtain from the data analysis.  At this stage, we used a simple polynomial 
mask for this smoothing.  The parameters controlling the algorithm outcomes are: 

 

1. The number of realizations in the ensemble. 
2. The length of the simulated time-series. 
3. The size and shape of the smoothing mask. 
4. The standard deviation of the uncertainty factor. 

 

The 1-D algorithm described above is fast and enables generating large ensembles consisting 
of 105, or more, realizations for the probabilistic hydrological forecasting model.  However, it 
can only be applied to the lumped rainfall-runoff models. 

The spatially correlated 2-D version of the PQPE algorithm was applied to generate the 
ensembles of spatial fields of probable true rainfall.  It can be applied to a distributed 
hydrological forecasting model, or used to compute the RR uncertainty bounds for different 
spatial scales.  The flow-chart of this algorithm consists of the following steps: 

 

1. Generate a 2-D array of independent standard normal deviates. 
2. Apply the weighted moving-window averaging to the array. 
3. Apply the exponential transformation to the smoothed array. 

 

This procedure simulates one field of the space-correlated meta-Gaussian uncertainty process 
and is repeated to generate the required number of the ensemble members.  The weighted 
moving-window averaging can, in principle, be performed using any averaging mask.  It can also 
be adjusted to the empirical estimates that we plan to obtain from the data analysis.  The 
parameters controlling the algorithm outcomes are: 

 

1. The number of realizations in the ensemble. 
2. The size of the simulated spatial array. 
3. The size and shape of the smoothing mask. 
4. The standard deviation of the uncertainty factor. 

 

The 2-D algorithm described above is computationally demanding and the largest ensembles 
that we generated so far consisted of up to 103 realizations.  However, it can be used in a much 
broader range of applications than the 1-D algorithm.  Therefore, it will be the basis for the 
development of the full PQPE algorithm.  During its further development, we will extend the 
simulation procedure to include the dependences of the uncertainty factor on the RR values and 
the distance from the radar, and implement different probability distribution models. 
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C. DATA ANALYSES 
Development and testing of the above described PQPE framework requires massive radar and 

rain gauge data sets.  As we argued in Krajewski and Ciach (2003) and Krajewski et al. (2003), 
for the PQPE algorithm to be meaningful it must be strongly based in empirical data.  
Fundamentally, two data types are required for this: (1) radar-rainfall estimates and (2) rain 
gauge data.  While the PED approach relies on radar-rainfall products, it is important to begin 
with basic radar volume scan data.  This way the calculated products are consistent.  For the rain 
gauge data the basic issue is data quality (e.g. Steiner et al. 1999).  Below we discuss our data 
collection and preparation. 

C.1.1. Preparation of the Large Data Sample 
To facilitate our studies we compiled a large sample of Level II radar reflectivity data 

acquired from the National Climatic Data Center (NCDC) for the Oklahoma City NEXRAD 
WSR-88D site (KTLX).  The current sample covers the six-year period from January 1998 to 
December 2003.  We used the Level II data as input to Build 4 of the Open Radar Product 
Generator (ORPG) Precipitation Processing System (PPS) software system and generate the 
Digital Precipitation Array (DPA) products which represent one-hour accumulations and are 
given on the Hydrologic Rainfall Analysis Project grid (Reed and Maidment 1999).  For rain 
gauge data we use observations from three networks: (1) the Oklahoma Mesonet (we acquired 
the data from the JOSS Office in support of another NOAA-sponsored project); (2) the USDA 
Agricultural Research Service (ARS) Micronet (we acquired the data through the OHD), and (3) 
the University of Oklahoma Environmental Verification and Analysis Center (EVAC) Piconet 
located at the Oklahoma City International Airport (we established and maintained the network 
ourselves).  We described these data sets in more detail below. 

C.1.1.1. The 6-year Sample of the KTLX Data 

This sample consists of about 350,000 data files and contains radar observations collected 
during the years of 1998-2003.  We converted the files from the standard UNIX compression 
format that is still used by the NCDC to the much more efficient “bzip” format that is currently 
used as a standard by the OHD.  We decided to adapt to this standard for its speed and efficient 
use of disk space. 

We performed a quality check of all the files which revealed occasional errors in the file 
structure.  About 7,000 (or 2%) of the files are affected by these errors.  The impact of these 
errors on the automatic ORPG data processing has been tested and discussed with the OHD 
specialists.  We excluded these suspect files from further processing. 

C.1.1.2. Oklahoma CS Mesonet Data 

The Oklahoma Mesonet (Brock et al. 1995), established and maintained by the Oklahoma 
Climate Survey, is known as perhaps the best regional network of surface meteorological sensors 
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in the country.  The stations are fairly uniformly distributed over the state and thus the data cover 
the full range of distances from the KTLX radar. 

The Mesonet rainfall data are provided as cumulative values, reset at the beginning of each 
day.  For this dataset, a flagging system is associated with the data to indicate data quality.  
While preprocessing the data and organizing them as 5-minute rain gauge rainfall, we found 
about 100 entries of negative accumulation that were erroneously flagged as good quality data.  
We reported these cases to the Oklahoma Mesonet’s quality-assurance team and they manually 
flagged these cases in their database.  Based on our input they investigated the causes of the bad 
data and decided to reprocess their entire data set.   

Within the KTLX umbrella, there are about 100 rain gauges, almost uniformly distributed, 
covering a wide range of distances (from about 25 km to the edge of the radar umbrella).  Four of 
the Mesonet stations are within or very close to the Micronet network.  The information 
obtainable from the flags in these Mesonet stations is useful during the QC of the Micronet data. 

C.1.1.3. Oklahoma ARS Micronet Data 

The network has been established by the Agricultural Research Service over an experimental 
watershed called Little Washita.  We acquired the corresponding rain gauge data through the 
OHD.  We received the 5-minute rain gauge accumulation data for 42 stations covering the Little 
Washita watershed located about 90 km south-west from the KTLX WSR-88D site (see Figure 
3).  One limitation of the analysis based on this ground reference is that it covers only a very 
limited range of the distances from the radar (from about 70 km to about 105 km). 

The original ARS Micronet archive is organized in a very inefficient way and consists of 
about 640,000 small files.  In addition, the timing convention in this archive is incompatible with 
our radar data.  To make the data usable, we preprocessed the entire archive and converted it to 
72 monthly files of the 5-minute rain gauge rainfall.  During this preprocessing, we detected 
several errors in the data.  These errors were corrected, whenever possible, or flagged as missing 
data records. 

The ARS Micronet data we were provided did not have quality control (QC) flags.  At this 
stage, we have not yet performed extensive QC on the rain gauge data.  However, while 
organizing the data in 5-minute rain gauge rainfall, we checked for negative accumulations and 
we found more than 20 of such entries.  We also found a case where high rainfall was detected 
by only one station but no rain was collected by any other gauge for few hours before and after.  
We have corrected these errors, whenever possible, or flagged them as missing data records. 

After organizing the dataset in a more efficient way, we have georeferenced the rain gauges to 
the HRAP grid, and extracted the corresponding and collocated radar values.  We have then 
accumulated the rain gauge rainfall to hourly scale to have the same temporal resolution of the 
RR estimates.  
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Figure 3.  Schematic map of the Oklahoma/Kansas area and the relevant rain gauge networks.  
(We did not use data from the CASES network in this study.) 
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C.1.1.4. Oklahoma EVAC Piconet Data 

The data sample that we used in this study was collected using a very dense network of 
raingauges designed, deployed and maintained by the Environmental Verification and Analysis 
Center (EVAC) at the Oklahoma University in cooperation with the hydrometeorology group of 
the IIHR–Hydroscience & Engineering at The University of Iowa.  The EVAC PicoNet network 
consists of 25 stations (sites) covering an area of about 3 km by 3 km within the Will Rogers 
International Airport in Oklahoma City.  The EVAC PicoNet was deployed in 2001 and 
comprises several unique features that facilitate direct measurements and comprehensive 
analyses of small-scale rainfall structure with an unprecedented accuracy. 

The EVAC PicoNet stations are distributed over the flat and practically obstruction-free 
measurement area in the form of a fairly regular grid of 5 by 5 sites (Figure 4).  Each station, 
apart from the central one, consists of two high-precision tipping-bucket rain gauges mounted 
about 2 m apart.  An example of a typical PicoNet measurement point (Station 02) is shown in 
the inset of Figure 1.  The central point (Station 13) consists of 5 rain gauges to reduce the local 
random errors so that this station can additionally serve as a test-bed to evaluate the accuracy of 
other rain gauge designs.  The rain gauges are manufactured by MetOne Inc. and have the 
rainfall measurement resolution of 0.254 mm (0.01 inch) and the orifice diameter of 30.5 cm (12 
inches).  Static and dynamic calibrations of the gauges were performed with the help of the 
Oklahoma Climatological Survey using the equipment of the Oklahoma Mesonet Laboratory. 

The rain gauges are equipped with individual event-counting data-loggers that record the tip-
times with the resolution of 0.5 second and have the capacity of 8000 tips (HOBO loggers 
manufactured by Onset Computer Corporation).  The loggers are mounted inside of the rain 
gauge tubes, which proved to be an effective way for protecting them from the elements.  In our 
previous experiments (Ciach 2003) the loggers were exposed and, in about 15% of cases, the 
latch of their plastic enclosures broke after 1-2 years of field operation.  This never happened 
during the four years of the PicoNet operation in its current setup. 

The EVAC PicoNet data that are available for this study were collected during the warm 
months of 2001 and 2002.  The 2001 data used here were collected from May 1 (the launching of 
the PicoNet) through October 16, whereas the 2002 data are from March 7 through November 6.  
The total gauge-averaged rainfall depth in this two-season sample is equal to 1252 mm (about 50 
inches), from which 527 mm was collected during the 2001 season and 725 mm in the 2002 
season.  About 70% (857 mm) of this sample-total rainfall was produced by 32 events that 
yielded more than 10 mm of gauge-averaged rainfall depth. 

A more informative way to describe the rainfall data sample is through use of the rainfall 
frequency distributions at different time-scales.  The shapes of the distribution tails are especially 
important characteristics of the occurrence of extreme rainfall events.  In the specific context of 
this study, the distribution tails have strong effect on the estimation of second order statistics 
such as the correlations considered here (Habib et al. 2001 and references therein). 
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Figure 4.  Schematic locations of the PicoNet rain gauges.  The scale is not quite correct.  The 
inset shows the double gauge configuration and installation. 
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C.1.2. Basic Data Characteristics 
The results below are based mainly on the Micronet data and before data quality control. 

C.1.2.1. Seasonal Partitioning 

Since it is well known that seasonal variability strongly affect the uncertainty of radar-rainfall 
products, we performed a simple analysis of rain gauge data to determine a possible division of 
our sample into adequate periods that are more homogeneous in terms of their statistical 
characteristics.  As an index, we used the rain-weighted temperatures (Trw) for each month, 
defined as: 
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where Ri and Ti are the rainfall and air temperature measured at the ith station.  

Figure 5 shows the monthly Trw averaged over the six years of data.  Based on this plot, we 
have decided to divide the dataset into three season: cold (January, February, March, November 
and December), where the average Trw is below or around 10°C; warm (April, May and 
October), where the average Trw is between 15 and 20°C; hot (June, July, August, September), 
where the average Trw is above 20°C. 

In Figure 6 a different characteristic distribution of the rain-weighted temperature is evident: 
the cold season is positively skewed, the warm season is more symmetrical, while the hot season 
is negatively skewed.  

C.1.2.2. General Data Features 

Figure 7 shows the time series of the monthly accumulation from gauge and radar estimates.  
It is possible to notice how the radar tends to have larger values than the rain gauge.  This feature 
is more evident from Figure 8, where we show the overall bias, defined as: 
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where Gi is the rain from the ith gauge and Ri is the corresponding value from the radar.   

In fact notice how, for most of the months, the value of the bias is smaller than 1.  It seems 
that for some months, the value of the bias is very large.  However, looking at Figure 7, we 
notice how these cases correspond to months with low accumulation.  Overall, there is a good 
agreement between radar and gauge estimates, as illustrated by high correlation coefficient 
values (Figure 8). 
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Figure 5.  Histogram of the rain-weighted temperature (Trw) according to month, averaged over 
the six-year period under study. 
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Figure 6.  Histogram of the rain-weighted temperatures (Trw) for the three seasons and for the 
entire dataset.  Each of the seasons is characterized by a different behavior: the cold season is 
positively skewed, the warm season is more symmetrical while the hot season is negatively 
skewed. 
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Figure 7.  Time series of the monthly accumulation for the rain gauges and the radar for the six-
year study period.  These values have to be considered as an underestimation of the true value 
because of the missing data. 
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Figure 8.  Time series of the bias (blue bars) and correlation coefficient (red solid line) for the 
six-year period under study.  
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To characterize the variability of rainfall in our study we calculated spatial and temporal scale 
correlations.  Figures 9 and 10 show the correlations and the correlation function estimated from 
the rain gauge rainfall and the collocated RR estimated for the hourly time scale.  To help 
quantify the variability we fit a three-parameter exponential model: 
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where d is the separation distance, θ0 is the correlation at d = 0, θ1 the correlation distance and θ2 
the shape factor.  We obtained the parameters using a two-step methodology.  First, a global grid 
search of the parameter space is performed.  Then, the results are used as initial values for the 
Levenberg-Marquardt algorithm.  Notice how θ1 is always bigger for the gauge correlation, with 
the exception of the hot season.  These results are in agreement with those by Gebremichael and 
Krajewski (2004).  In the same figures, we have also plotted the correlation function estimated 
for the EVAC Piconet network (Ciach and Krajewski 2005).  We will discuss this result later. 

 

C.1.2.3. Overall Bias 

Before estimating the deterministic and the random components, we have removed the bias 
from the radar data.  According to our partitioning, we have four different values, three for the 
three seasons and one for the entire dataset: 

- Cold season: 0.90 
- Warm season: 0.75 
- Hot season: 0.72 
- Whole dataset: 0.78 
 

According to our definition of the bias, these preliminary results based on Micronet data prior to 
data quality control imply that there is an overall overestimation by the radar, more evident 
during the warm and hot seasons.  It is difficult to ascribe it to a specific reason (e.g. radar 
miscalibration, the OKC radar is known as “hot”); in addition, we should point out that for the 
above analysis we used rain gauge data before quality control. 
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Figure 9.  Spatial correlation of the Micronet rain gauges for the three seasons and the whole 
dataset.  The solid red lines are obtained fitting the data with a three-parameter exponential 
function; the solid magenta line is from the spatial correlation function estimated by Ciach and 
Krajewski (2005) for the Piconet rain gauge network. 
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Figure 10.  Spatial correlation of the radar data at the locations of the Micronet rain gauges for 
the three seasons and the entire dataset.  The solid red lines are obtained fitting the data with a 
three-parameter exponential function; the solid magenta line is from the spatial correlation 
function estimated by Ciach and Krajewski (2005) for the EVAC Piconet rain gauge network. 
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Figure 11. Correlation coefficients between rain gauge and collocated radar values estimated 
from the Micronet network as a function of the distance from the radar site. 
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Figure 12. Bias estimated from the Micronet network as a function of the distance from the radar 
site. 



 32

 
Figure 13.  Bias between radar and rain gauges before QC of the Mesonet.  The QC process 
eliminated the outlying points. 
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C.1.3. Summary of Rain Gauge Data QC 
To quality control the rain gauge data we followed an iterative process.  Preliminary data 

analysis, including the results presented above, identified wrong data values based on simple 
checks, as well as inconsistent behavior of certain rain gauges.  Through tedious work we 
eliminated much of the bad data but almost certainly we failed to identify and eliminate them all. 

Below we only highlight the major procedures and findings of our quality control. 

C.1.3.1. Mesonet Data 

Oklahoma Mesonet is perhaps the best operated surface meteorological network in the United 
States.  Their staff constantly strives to improve their procedures for data quality control and 
comprehensive documentation of their entire database (Shafer et al. 2000).  They developed a 
system of QC flags that accompany the data.  Users can take advantage of these flags in their 
analyses.   

C.1.3.2. Micronet Data 

Although recently the Oklahoma Climatological Survey took over maintenance of the 
Micronet, the network historical database has not yet been incorporated into the system thus it 
lacks the same reliability as the Mesonet.  In our investigation we easily identified and corrected 
obvious errors.  To detect other errors we investigated statistical consistency of various simple to 
calculate indices.  For example, we calculated conditional probabilities Pr(G>0|R=0), 
Pr(R>0|G=0), Pr(G>0|R>0) and Pr(R>0|G>0), for different seasons.  While the “correct” values 
of these indices are unknown, any departure from an overall pattern seems suspicious.  Consider, 
for example, plots in Figures 11-14.  It is easy to notice a couple of gauges that need more 
investigation: 1) there is one station at around 80 km from the radar that constantly seem to lie 
outside the general pattern; 2) there is another station, at about 73 km from the radar that lies 
outside the general trend when considering Pr(R>0|G>10).  Indeed, these two stations behaved 
suspiciously in terms of other statistics as well.  For example, in Figures 15-16 we show a simple 
conditional mean of RR (see Section C.1.4 for details) calculated on a gauge by gauge basis.  
While most gauges follow a certain pattern a couple of them seem to depart.  These are the same 
gauges that we isolated in a previous analysis.  We completed this analysis by computing similar 
conditional probabilities but for different values of the exceedence threshold (0.25, 1, 5, and 10 
mm). 

Rather than eliminating the entire record for the identified stations, we followed the above 
analyses with temporal analysis to zoom in on the period of trouble.  The first step was to 
compute the same conditional probabilities for each year singularly.  In this way, it was possible 
to considerably reduce the period under investigation.  To narrow it down further, we considered 
each season separately and plotted the cumulative rainfall for each month.  From these plots, we 
tried to find the time intervals that appeared suspicious with respect to the other rain gauges, then 
repeated the analysis.  This was a recursive procedure, which lead to a much improved overall 
pattern in the conditional statistics.  

Finally, we developed a flagging system for the data, trying to follow as close as possible the 
flagging system used for the Mesonet data. 
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C.1.3.3. PicoNet data 

Prior to our analysis of the PicoNet rainfall measurements, we had to perform a number of the 
quality-control (QC) procedures to assure reliability of the results.  The corrupted data detected 
in the QC investigation were flagged as invalid and removed from further analysis.  The major 
part of the QC analysis was the comparison of the concurrent rainfall records in the collocated 
pairs of the gauges.  Since the magnitude of the local random errors in the rain gauges can be 
estimated based on the results reported in Ciach (2003), it is fairly easy to identify the situations 
when one of the gauges fails, and to flag the missing or wrong data periods.  Typical causes of 
the failures that we encountered were partial clogging of the rain gauge funnel by the debris and 
occasional problems with the tipping-bucket reed-switches.  In addition to the basic pair-wise 
diagnostics, we also checked the integrity of each PicoNet station with the neighboring stations.  
Using this spatial consistency test, we identified two stations which, during the highest 
vegetation growth (May-June) in 2002, started to be clogged by the plant debris.  Since the effect 
occurred in a similar way in both collocated gauges, their pair-wise comparison could not detect 
it.  Therefore, in these two cases, the approximate identification of the time when the clogging 
started to affect the measurements was based on the comparison with neighboring stations.  This 
example shows that the redundancy of the double-gauge network design, although very effective 
in many failure situations, does not solve all the possible problems with rain gauge 
measurements.  Frequent inspection and cleaning of these instruments is still indispensable to 
ensure good quality of the rainfall data. 

Although the time resolution of the HOBO loggers is high (0.5 second), the factory guarantee 
of their time measurement accuracy is only up to 1 minute per one week.  According to our 
experience in the PicoNet, all the 53 data-loggers show systematic positive time drifts ranging 
from about 10 seconds per week up to about 40 seconds per week for the individual loggers.  Our 
two-year long data sample was collected in 7 periods of variable length ranging from 10 days to 
4 months.  Although the logger timers were set accurately when they were launched at the start 
of each period, at the end of the longer data collection periods they were considerably 
desynchronized.  For the four-month period, the time errors range from 3 to 12 minutes.  We 
corrected these errors assuming that the time-drifts increase linearly in time with the rates 
characteristic for each data-logger.  These individual drift-rates were computed based on the 
cumulative time errors that we measured at the end of each data collection period while 
downloading the data. 

For the data analysis we converted the raw rainfall data collected in a form of tip-time series 
into rainfall intensities averaged over 1-minute intervals.  Then, we aggregated these rain rates 
into accumulations, or time-averaged intensities, over several other time-scales that we consider 
in this study.  To compute the 1-minute rain rates, we applied an inter-tip interpolation scheme 
described in Ciach (2003).  This scheme allows retrieval of the short-time rain rates with 
relatively high accuracy. 

C.1.3.4. Summary 

Quality control of rain gauge data resulted in minor loss of the total number of data points.  
We eliminated data from those sites and or periods that clearly malfunctioned.  At the end, after 
QC, we were left with more than 13 million pairs.  In Figure 17 we present summary of data 
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organized according to pairs of sites separated by a certain distance.  This arrangement is 
particularly relevant for estimation of spatial dependence of rainfall as well as the radar-rainfall 
errors. 

 

 
Figure 14.  Conditional probability of detection within the Micronet on a gauge by gauge 

basis.  Visual inspection of the plots served to identify potentially bad gauges. 
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Figure 15.  Rain gauge averages, conditioned on radar rainfall values, after removing the bias for 
the hourly scale, for the three seasons and the whole dataset.  The black lines correspond to 
individual gauges, the red line is obtained averaging each individual trace and the blue line is the 
sample mean. 



 37

 
Figure 16.  Standard deviation of the random component of the error model, conditioned on radar 
rainfall values, after removing the bias for the hourly scale, for the three seasons and the whole 
dataset.  The black lines correspond to individual gauges, the red line is obtained averaging each 
individual trace and the blue line is the sample mean. 
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Figure 17.  Histogram of the number of gauges separated by a certain distance for the Mesonet 
and for the Micronet.  The plots are helpful in interpretation of the spatial dependence 
(correlation). 
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To facilitate analyses of range dependence we divided our data set into five zones according 
to the distance of the gauges from the OKC radar.  Our criteria included requirement for a similar 
number of sites in each zone and sufficient range resolution to capture eventual range 
dependency behavior of various statistics.  To avoid erratic behavior we allow small overlap (5 
km) between different zones.  We show the final choice of the zones in Figure 18.  Since almost 
the entire Micronet is located in Zone II, the number of gauges in this zone is disproportionately 
large compared to other zones.  It is evident that the number of gauges in Zone I is small 
compared to other zones.  Also, the density of zone coverage by gauges is not even but most our 
statistics ignore inter gauge dependence.  For those that explicitly reflect this dependence the 
density of rain gauges in zones other than Zone II is too small for meaningful analysis, as we will 
see later on.  

Based on the zonal division and the quality controlled data we recomputed the values of the 
overall bias.  We summarize the results in Table 1 below. 

 

Table 1. Estimated bias for the 5 zones for different time scales (1, 3, 6, and 24 h) 
 

1 hr Cold season Warm season Hot season Entire dataset 
Zone I 0.95 0.78 0.76 0.82 
Zone II 0.88 0.76 0.73 0.78 
Zone III 0.87 0.68 0.65 0.72 
Zone IV 1.29 0.78 0.65 0.83 
Zone V 2.33 1.11 0.75 1.12 

 
3 hr Cold season Warm season Hot season Entire dataset 

Zone I 0.95 0.78 0.75 0.82 
Zone II 0.89 0.76 0.73 0.78 
Zone III 0.88 0.68 0.65 0.72 
Zone IV 1.29 0.78 0.65 0.83 
Zone V 2.36 1.11 0.75 1.13 

 
6 hr Cold season Warm season Hot season Entire dataset 

Zone I 0.94 0.78 0.75 0.81 
Zone II 0.88 0.77 0.73 0.78 
Zone III 0.88 0.68 0.65 0.72 
Zone IV 1.28 0.78 0.65 0.83 
Zone V 2.35 1.12 0.75 1.13 

 
24 hr Cold season Warm season Hot season Entire dataset 
Zone I 0.94 0.79 0.74 0.81 
Zone II 0.88 0.78 0.70 0.78 
Zone III 0.88 0.69 0.63 0.72 
Zone IV 1.26 0.78 0.65 0.83 
Zone V 2.33 1.09 0.75 1.14 
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Figure 18.  Selected zones with the number of included rain gauges. 
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C.1.4. Conditional Analyses 

C.1.4.1. Outline of the Nonparametric Procedure for Conditional Analysis 

As we mentioned earlier, to characterize the relation between radar-rainfall (RR) and the true 
rainfall, it is possible to consider the true rainfall (RA) as the product of a deterministic distortion 
function ( )⋅h  of the RR and of the random uncertainties ( )⋅e : 

 

( ) ( )rra ReRhR ⋅=  (11) 

 

where Rr and Ra represent the corresponding (concurrent and collocated) RR and RA.  This 
relation has the flexibility to account for different spatio-temporal scales, distance from the radar 
and synoptic conditions.  

To identify the model, it is necessary to estimate the deterministic function h(⋅) and the 
statistical distribution of the random component.  We used data from both the Mesonet and the 
Micronet.  Once removed the overall bias, we have defined the deterministic component h(rr) as 
the following conditional expectation: 

 

( ) [ ]rrar rRRErh == |  (12) 

 

The deterministic component can be approximated using a nonparametric regression method 
(e.g. Hardle 1990; Simonoff 1996).  In this study we have used the following moving-window 
averaging: 
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where k is a parameter that regulates the size of the moving window centered on Rr = rr, and wi is 
the weighting factor.  The size of the windows linearly increases with rr so that a reasonable 
number of data points are used for the estimation.  For this study, k is set equal to 1.5.  The 
weighting factor wi is computed as: 
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Accordingly, w is equal to 1 for Rr = rr and it decreases moving far from the center of the 
window. 



 42

Once we have estimated the deterministic component, we are able to characterize the random 
errors ( )rRe  in the multiplicative and additive forms: 
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From these formulations, notice that the conditional expected values of e(⋅) are always equal 
to 1 for the multiplicative form and 0 for the additive form, while the standard deviations of the 
random component σe( rr ) depends on RR estimates: 
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Using the same nonparametric approach as described above, we estimated σe( rr ) as: 
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C.1.4.2. Deterministic Component of the Error 

The deterministic distortion function h(·) complements the systematic bias by accounting for 
dependence on RR.  We estimated it using the aforementioned nonparametric framework for four 
different time scales (1, 3, 6, and 24 hours) for the three seasons and the whole dataset.  Due to 
the fact that hourly RR are estimated every five minutes there is strong statistical dependence in 
the hourly values.  On the other hand, if we took only adjacent hours that would reduce 
significantly our sample size.  As a compromise between these two aspects of sample selection, 
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we have not considered all hourly data, but only those for which the initial scans were separated 
by at least 20% of the temporal resolution.  In this way, we have more independent information 
included in our statistics.  As RR increases the sample size decreases and the computed statistics 
become less significant.  For our analysis we have considered a minimum weighted sample size 
of 100.   

To avoid overwhelming the reader with numerous plots, in the text below we include and 
discuss results for hourly scale only.  We include the results for the remaining temporal scales of 
three-six- and 24-hours in their respective Appendix (C, D, and E). 

Figure 19 shows the results of analysis.  The curves tend to be close to the 1:1 line, due to the 
removal of the overall bias, and then bend towards the x-axis indicating gradual overestimation 
of the large values except for Zone I during hot season.  In the warm and hot seasons it seems 
that the curves follow the 1:1 line for a longer range.  This can probably be attributed to the fact 
that there are more numerous smaller values in the cold season than in the warm and hot ones.  
However, this conditional on rainfall deterministic distortion function displays little, if any, 
range dependence during warm and hot seasons within the range of 180 km from the radar. 

C.1.4.3. Random Component of the Error 

The random component e(·) describes all random uncertainties.  As we mentioned before, it 
can be formulated in two ways, multiplicative or additive.  Its mean does not depend on the RR 
values, while the standard deviation does.  In Figure 20 we show the standard deviation of the 
random component in the additive form, while in Figure 21 in the multiplicative form.  The 
corresponding results for other time scales are in the Appendices.  Comparing the results from 
the two formulations, it is easy to notice a more regular behavior of the multiplicative form.  
Thus, in the rest of the analysis we abandon the additive form and proceed with the modeling of 
the random component in the multiplicative error formulation.  Also, comparing results for 
different temporal scales we note that the standard deviation in the multiplicative form for RR > 
10 mm does not depend much on the temporal scale (with the exception of the cold season).  
This temporal invariance of e(·) in the multiplicative form will be very useful in the modeling 
effort.   

To characterize the random component in terms of its statistical distribution, we computed the 
0.9, 0.75, 0.50, 0.25, and 0.10 quantiles, focusing our attention on the multiplicative form.  As 
mentioned before, we know that its expected value is equal to 1 and does not depend on RR, 
while its standard deviation does.   

Looking at the results for the three seasons and the whole dataset at the four time scales 
(Figures 22-25 and corresponding plots in the Appendixes), it is possible to notice how the 
quantiles tend to be symmetrical with respect of the median.  For this reason we tried to model 
the empirical results with two symmetrical distributions (Gaussian and logistic, the latter not 
shown) with mean equal to 1 and standard deviation equal to the standard deviation from the 
multiplicative formulation.  The quantiles from these theoretical distributions fit quite well the 
empirical results (perhaps with the only exception of the cold season), especially for large values 
of RR.  These results seem to support the error model proposed by Petersen-Øverleir (2005), In 
that paper, the author used an error model where the observed rainfall is the product between the 
true rainfall and a random component accounting for the total variability in measurement data.  
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He assumes the random component to be normal distributed and he supports his choice by the 
Central Limit Theorem. 

As far as we are concerned, the distribution of each source of uncertainty can be different but 
we are interested in the total error and therefore it is plausible that it is normally distributed by 
the Central Limit Theorem. 

 

 
 
Figure 19.  Rain gauge averages, conditioned on radar rainfall values, after removing the overall 
bias for hourly scale, for the three seasons and the whole dataset.   
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Figure 20.  Standard deviations of the random component in the additive form (mm) for hourly 
data for the three seasons and the whole dataset.   
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Figure 21.  Standard deviations of the random component in the multiplicative form 
(dimensionless) for hourly data for the three seasons and the entire dataset.   
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Figure 22.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9).  For 
the theoretical distribution, the mean is equal to 1 and the standard deviation is the standard 
deviation of the random component in the multiplicative form.  Results for the cold season.  
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Figure 23.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9).  For 
the theoretical distribution, the mean is equal to 1 and the standard deviation is the standard 
deviation of the random component in the multiplicative form.  Results for the warm season.  
 



 49

 
 

 
 
Figure 24.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9).  For 
the theoretical distribution, the mean is equal to 1 and the standard deviation is the standard 
deviation of the random component in the multiplicative form.  Results for the hot season.  
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Figure 25.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9).  For 
the theoretical distribution, the mean is equal to 1 and the standard deviation is the standard 
deviation of the random component in the multiplicative form.  Results for all seasons.  
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C.1.5. Error Dependence Analyses 

C.1.5.1. Temporal Correlation 

At present, the temporal correlation of the errors has not yet been characterized.  Only few 
studies tried to take it into account (e.g., Nijssen and Lettenmaier 2004; Hossain et al. 2004).   

In Figures 26-30, we plotted the temporal correlation of the random component of the error 
model in the multiplicative form for the hourly time resolution.  We calculated it using the same 
nonparametric methodology as above but by keeping track of the temporal sequence of the 
multiplicative deviations.  Notice a quick drop up to around one hour and then a subsequent 
slower decrease in the random component.  We think that this feature can be explained by the 
fact that the DPA products are running 1-h rainfall accumulation and therefore, the information 
up to one-hour lag is not completely independent.  It is also possible to notice a stronger 
correlation for the cold season compared to the other two. 

C.1.5.2. Spatial Correlation 

As for the temporal correlation, our current knowledge about the spatial correlation of the 
errors is extremely limited.  Some studies have compared the possible effects in case of spatial 
correlation and uncorrelation, showing how the outcomes could be sensibly different (e.g., 
Nijssen and Lettenmaier 2004; Villarini et al. 2006).   

In our study, we have found that the random component of the error in the multiplicative form 
is correlated in space (Figures 31-34).  Compared to the spatial correlation estimated from the 
rain gauge data (Figure 9), the scatter is larger and the correlation is lower.   
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Figure 26.  Empirical and model approximated temporal correlation of the random component 
for Zone I. 
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Figure 27.  Empirical and model approximated temporal correlation of the random component 
for Zone II. 
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Figure 28.  Empirical and model approximated temporal correlation of the random component 
for Zone III. 
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Figure 29.  Empirical and model approximated temporal correlation of the random component 
for Zone IV. 
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Figure 30.  Empirical and model approximated temporal correlation of the random component 
for Zone V. 
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Figure 31.  Intergauge spatial Pearson correlation of the random component for the cold season. 
.
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Figure 32.  Intergauge spatial Pearson correlation of the random component for the warm season. 
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Figure 33.  Intergauge spatial Pearson correlation of the random component for the hot season. 
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Figure 34.  Intergauge spatial Pearson correlation of the random component for all seasons. 
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C.2. Error Modeling 
C.2.1. Basic Model Structure 

In this section we present results of approximating the previous analyses with simple 
parsimonious models.  Such simple parametric models allow efficient implementation of the 
radar-rainfall error generator useful in ensemble based propagation of rainfall input uncertainties 
in hydrologic forecasting. 

We already established that the probability distribution of the random component defined in 
the multiplicative form can be well approximated by Gaussian distribution, particularly for 
higher values of RR.  Now we show that simple two-parameter power law type of models 
approximate very well the deterministic component.  We used minimum least squares fitting 
criterion and found the optimal values of the parameters using a systematic search on a regular 
fine grid.  Then, the results are used as initial values for the Levenberg-Marquardt algorithm.  

The fit model confirms regular behavior of the deterministic component of the error model.  
The multiplier tends to 1 as we progress from cold to hot season and the power exponent does so 
too (Figures 35-39).  Similarly, as we progress through temporal scales from hourly to daily, the 
coefficients displays regular behavior (Figures C8-C12, D8-D12, and E8-E12).  We summarize 
the modeling of the deterministic component in Table 2. 

 
Table 2.  Two-parameter power law model coefficient values for the deterministic distortion 
function.  The top value is the multiplier and the bottom one is the exponent. 
 
 

Time Scale 
Hourly 3-Hourly 6-Hourly Daily 
Season Season Season Season 

 

Cold Warm Hot Cold Warm Hot Cold Warm Hot Cold Warm Hot 

Zone I 2.09 
0.52 

1.38 
0.84 

1.17 
0.97 

2.46 
0.55 

1.73 
0.81 

1.33 
0.93 

2.61 
0.58 

1.62 
0.84 

1.46 
0.90 

4.39 
0.47 

1.30 
0.93 

1.41 
0.91 

Zone II 1.84 
0.55 

1.34 
0.84 

1.35 
0.87 

3.24 
0.43 

2.03 
0.74 

1.38 
0.89 

4.02 
0.42 

2.18 
0.73 

1.53 
0.86 

5.94 
0.36 

2.84 
0.68 

1.36 
0.91 

Zone III 1.25 
0.72 

1.23 
0.87 

1.50 
0.85 

2.06 
0.62 

1.43 
0.84 

1.32 
0.90 

2.67 
0.57 

1.30 
0.88 

1.23 
0.93 

2.73 
0.64 

1.63 
0.83 

0.97 
0.99 

Zone IV 1.00 
0.78 

1.16 
0.83 

1.51 
0.83 

1.40 
0.74 

1.07 
0.93 

1.69 
0.81 

1.75 
0.71 

1.31 
0.88 

1.62 
0.83 

1.79 
0.76 

1.49 
0.87 

1.58 
0.85 

Zone V 2.03 
0.45 

1.95 
0.63 

1.25 
0.85 

2.79 
0.46 

2.07 
0.67 

1.80 
0.76 

2.51 
0.55 

2.22 
0.68 

1.80 
0.77 

2.13 
0.66 

2.14 
0.72 

1.40 
0.86 

 
 

Next we model the random component of the error model.  Here too the power law model 
approximates the results of the data analyses well (Figures 40-44 and corresponding figures from 
the Appendixes).  However, this time the model has three parameters.  It turns out that adding an 
offset (or an asymptote) greatly improves the model fit.  Indeed, in many cases (of time scale, 
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season and zone) the model and the data are indistinguishable.  We summarize the modeling of 
the standard deviation of the random component in Table 3. 

 

Table 3.  Three-parameter power law model coefficient values for the standard deviation of the 
random component.  The top value is the asymptote, the middle one the multiplier and the 
bottom one is the exponent. 
 
 

Time Scale 
Hourly 3-Hourly 6-Hourly Daily 
Season Season Season Season 

 

Cold Warm Hot Cold Warm Hot Cold Warm Hot Cold Warm Hot 

Zone I 
0.68 
0.25 
-1.09 

0.51 
0.53 
-1.20

0.20 
1.22 
-0.52 

0.71 
0.34 
-1.20

0.42 
1.04 
-0.86

0.18 
1.82 
-0.62

0.72 
0.40 
-1.21

0.38 
1.37 
-0.81

0.10 
2.22 
-0.58 

0.53 
0.80 
-0.58 

0.35 
1.50 
-0.67

0.00 
2.76 
-0.54

Zone II 
0.71 
0.30 
-1.05 

0.45 
0.59 
-0.62

0.34 
0.97 
-0.56 

0.73 
0.36 
-1.13

0.40 
0.92 
-0.70

0.36 
1.41 
-0.73

0.72 
0.40 
-1.21

0.38 
1.37 
-0.81

0.10 
2.22 
-0.58 

0.51 
0.89 
-0.59 

0.32 
1.51 
-0.65

0.14 
2.37 
-0.60

Zone III 
0.63 
0.46 
-0.77 

0.15 
1.00 
-0.31

0.29 
1.19 
-0.52 

0.60 
0.66 
-0.81

0.42 
0.98 
-0.72

0.31 
1.60 
-0.66

0.59 
0.79 
-0.80

0.36 
1.24 
-0.68

0.21 
1.93 
-0.59 

0.36 
1.12 
-0.48 

0.29 
1.43 
-0.59

0.11 
2.56 
-0.57

Zone IV 
0.59 
0.67 
-0.74 

0.56 
0.96 
-0.69

0.14 
1.72 
-0.44 

0.34 
1.17 
-0.50

0.46 
1.40 
-0.68

0.19 
2.04 
-0.51

0.13 
1.47 
-0.38

0.40 
1.59 
-0.64

0.14 
2.37 
-0.51 

0.00 
1.63 
-0.32 

0.31 
1.80 
-0.57

0.00 
2.85 
-0.46

Zone V 
0.69 
0.85 
-0.91 

0.53 
1.26 
-0.62

0.38 
1.85 
-0.63 

0.42 
1.34 
-0.54

0.60 
1.38 
-0.71

0.27 
2.40 
-0.58

0.22 
1.61 
-0.40

0.53 
1.55 
-0.65

0.15 
2.69 
-0.51 

0.00 
1.86 
-0.29 

0.26 
1.82 
-0.46

0.00 
2.95 
-0.43

 

 

C.2.2. Spatial and Temporal Dependence 
Modeling spatial and temporal dependence requires an eligible covariance model.  A good 

choice is a flexible three parameter model with exponential type decay (Figures 45-49 and 
corresponding figures from the Appendixes). 
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Figure 35.  Modeling of the rain gauge conditional averages for Zone I.  The blue lines 
correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 36.  Modeling of the rain gauge conditional averages for Zone II.  The blue lines 
correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 37.  Modeling of the rain gauge conditional averages for Zone III.  The blue lines 
correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 38.  Modeling of the rain gauge conditional averages for Zone IV.  The blue lines 
correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 39.  Modeling of the rain gauge conditional averages for Zone V.  The blue lines 
correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 40.  Modeling of the conditional random error standard deviation for Zone I.  The blue 
lines correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 41.  Modeling of the conditional random error standard deviation for Zone II.  The blue 
lines correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 42.  Modeling of the conditional random error standard deviation for Zone III.  The blue 
lines correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 43.  Modeling of the conditional random error standard deviation for Zone IV.  The blue 
lines correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 



 72

 

 
 

 
Figure 44.  Modeling of the conditional random error standard deviation for Zone V.  The blue 
lines correspond to the empirical result, the red lines are obtained from fitting the data with the 
indicated power law model. 
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Figure 45.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone I. 
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Figure 46.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone II. 
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Figure 47.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone III. 
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Figure 48.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone IV. 
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Figure 49.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone V. 
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C.3. Probabilistic PQPE 
To demonstrate the utility of our data analyses and modeling for radar based probabilistic 

quantitative rainfall estimation we consider two scenarios.  The first one, which we refer to as 
static estimation, is based on a single hour of radar-estimated rainfall.  The radar-rainfall field 
represents the DPA product.  Using our error model we can estimate the corresponding 
probability of actual (true) rainfall exceeding some arbitrarily selected rainfall level.  This 
rainfall level may correspond to, for example, a value determined by a component of the FFG 
system known as Thresh-R.   

The second scenario assumes that an ensemble of a sequence of hourly rainfall fields is 
necessary as input to a hydrologic forecasting model.  To do this a generator of different 
realization of RR error is necessary.  The generator must preserve the statistical error structure 
we identified and modeled in this report.  Below we briefly discuss and illustrate both scenarios. 

C.3.1. Static Estimation 
Consider two hourly rainfall events shown in Figure 50.  The units are mm.  For each of these 

events we can construct the corresponding probability maps: they represent the probability of 
exceedance a threshold value of, for example, 35 mm/h (Figure 51).  To compute the maps we 
use the following algorithm on a pixel by pixel basis:  

 

( ) ( )XTHRESXP Φ−=≥ 1  (21) 

where: 

( ) ( )XerfX
2
1

2
1 +=Φ  (22) 

and 
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( )[ ] 2

1

2

1

2

*

e

b

RRBdc
RRBa
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xX
⋅+

−
⋅=

−
=−=

σσ
μ  (23) 

 

where , a and b are the values of the parameters of the deterministic component model, c, d, e are 
the values of the standard deviation of the random component model for each zone, respectively, 
B is the value of the overall bias, and B⋅RR is the overall bias corrected radar-rainfall value 
observed at a given location in the field. 

In Figure 52 we plot the maps of locations where the threshold is exceeded with probability 
given at six levels as follows P(X≥THRESH)≥0.10, 0.25, 0.50. 0.75, 0.90, and 0.99.  Computer 
code that performs this task is available upon request. 
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Figure 50.  Two example hours with DPA maps (top panels), DPA maps after removing the 
overall bias (middle panels) and corresponding deterministic distortion functions (bottom 
panels).  The corresponding maps of probability of exceedence of the threshold of 35 mm. 



 80

 
 
 

0.0     0.2   0.4 0.6 0.8 1.0  
 
 

Figure 51.  Maps of probability of exceedence of the threshold of 35 mm by the true rainfall for 
the two radar in Figure 51. 
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Figure 52.   Maps indicating locations where the probability of exceedence is greater or equal to 
the indicated value. 
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C.3.2. Ensemble Generator 
Following the notation from Krajewski and Georgakakos (1985), the synthetic radar-rainfall 

field G(x, y) can be expressed as: 
 

( ){ } ( ) ( ){ } tsts yxyxSyxG ,, ,,, ε⋅=  (24) 
 
where S(⋅) is the deterministic distortion function, ε(⋅) is the random component, x and y are the 
field-point coordinates, while the subscripts s and t account for different season and time scale. 

The coordinates x and y uniquely identify each zone; to provide smooth transition between 
adjacent zones, we compute the values for the overlapping areas as a distance-weighted 
combination of values of two neighboring zones.  Notice that the zero-rainfall areas are 
preserved, due to the multiplicative nature of the generator. 

Given the original DPA field RR(x, y), the deterministic distortion function is given by 
 

( ){ } ( )[ ]{ } ts
b

ts yxRRBayxS ,, ,, ⋅=  (25) 
 
where a and b are the deterministic distortion model parameters and  B  is the overall bias. 

The random component ε(x,y) has mean equal to 1, standard deviation ( )( )yxRRe ,σ , spatial 
correlation ( )ss Δρ  and temporal correlation ( )tt Δρ .  The standard deviation of the random 
component is parameterized as: 

 

( )( ){ } ( )[ ] ts
etse yxRRB

dcyxRR
,

, ,
,

⎭
⎬
⎫

⎩
⎨
⎧

⋅
+=σ  (26) 

 
where c, d and e are the random component parameters. 

The correlation in space and time can be represented by a three-parameter exponential 
function as follows: 
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where a0, b0, and c0 are the values of the parameters for the correlation function in space while 
a1, b1, and c1 are the values of the parameters for the correlation function in time. 
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To generate random fields correlated in space and time with non-stationary variance, we use 
an algorithm (Cressie 1993) based on the Cholesky decomposition method.  This method (e.g., 
Kreyszig 1999) allows writing a matrix A as the product of an upper- and lower- triangular 
matrices: 
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where: 
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One condition for the use of the Cholesky decomposition is that the matrix has to be 
symmetric and definite positive.  In this case, this condition is satisfied because the variance-
covariance matrix from an exponential correlation function is symmetric and definite positive 
(Journel and Huijbregts 1978). 

Let D be the domain over which we want to simulate the random field.  In our case it is a 
regular grid with side n.  As written above the random process ( ){ }D∈ssε ;  has the mean 

 
( ) D∈≡ ssμ ,1  (31) 

 

As far as the covariance is concerned, we assume a separable spatio-temporal model which 
we can write as: 

 
( ) ( ) ( )tCCtC jiji Δ⋅−=Δ− ssss ;  Dji ∈ss ,  (32) 

 
where Δt is the time lag. 

To account for non-stationarity in the variance, we can multiply the variance-covariance 
matrix by ( )( )yxRRe ,σ : 

 
( )( ) ( ) ( )tCCyxRR jie Δ⋅−⋅=Σ ss,2σ  Dji ∈ss ,  (33) 

 

Therefore, the variance-covariance matrix at time t0 can be written as: 
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At time t1 we have: 
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where sij=si-sj and ti0=t0-ti.  Applying the Cholesky decomposition to the variance-covariance 
matrix, we obtain 'LL=Σ .   

It is possible to write 
 

Lημε +=  (36) 
 
where η is a vector of uncorrelated random variables with mean equal to zero and variance equal 
to 1: 
 

( ) ( )( )'...,,1 nn⋅≡ ssη ηη  Dnn ∈⋅ss ,...,1  (37) 
 

In this way, we can generate a field with mean equal to 1 and with the aforementioned spatio-
temporal correlation and variance.  Therefore, given a radar-rainfall field RR(x, y), we have to 
generate r random fields ε(x, y) and multiply each of them by S(x, y) in order to obtain r 
synthetic radar-rainfall maps. 

In Figure 53 we plot the original field (upper left panel) and three simulated fields following 
this methodology. 
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Figure 53.  An example of an hourly radar-rainfall map (corrected for the overall bias; upper left 
panel) and three realizations that have the error structure compatible with the uncertainty model 
we have developed. 

 
 



D. CLOSING NOTES 
In this report we presented results of investigations leading towards development of 

probabilistic algorithms for radar-based rainfall estimation.  Such algorithm may be called radar 
PQPE, for probabilistic quantitative precipitation estimation.  We took the approach of 
developing a stochastic model of the combined sources of uncertainty affecting radar-rainfall 
estimates.  The model is strongly based in empirical evidence resulting from an extensive 
analysis of actual data. 

At this stage of development the model’s validity is restricted to HRAP spatial scale of radar-
rainfall products and the temporal scales (or accumulations) of 1, 3, 6, and 24 hours.  The model 
allows quick generation of the probability maps that the true rainfall in a given location is greater 
then or equal to a given, user specified threshold.  The model also allows generating multiple 
realizations of plausible “true” rainfall fields at the same resolution as the operational products.  
Therefore, the model can be used to generate ensembles of inputs sequences for hydrologic 
rainfall-runoff models.  

One should keep in mind that the model is product (QPE algorithm) specific.  Therefore, 
hourly radar-rainfall maps, even at the same spatial grid (HRAP) but produced by a different 
algorithm (e.g. Z-R relationship, range correction, advections correction, etc.) may have different 
uncertainty structure.  To what extend this structure would be different from the one we 
estimated herein remains to be explored.  Several other aspects of model development remains to 
be further explored.  These include modeling of shorter temporal scales of rainfall accumulation, 
modeling smaller as well as larger spatial scales, investigation of the random component spatial 
and temporal correlation, the issue of ground reference representativeness, and the transferability 
of the results to other areas.  We briefly discuss those below. 

As users of radar-rainfall maps often require higher resolution than that of HRAP grid, we 
plan to explore spatial scales of 1×1 km2 and 2×2 km2 as well as the polar grid that corresponds 
to radar data acquisition (1 km by 1 degree).  However, it is not possible to develop such 
products using the current version of CODE.  We are planning to use our own software that will 
be similar to the PPS but will allow us more flexibility in generating products at different spatial 
scales.  Investigating larger than HRAP scales is easy by aggregating the current products. 

As far as shorter temporal scales are concerned, we are planning to investigate the scales of 5 
minutes and 15 minutes.  This brings the issue of adequacy of reference data.  The 
representativeness of rain gauge data to study radar-rainfall uncertainty structure involves and 
interesting interplay of rainfall variability in space and time and the size of the investigate 
domain (scale).  Shorter period rainfall accumulations vary significantly more than longer period 
accumulation (e.g. Ciach and Krajewski 2005, Appendix B).  On the other hand, the smaller the 
size of the grid, the more representative rain gauge data are of the true area rainfall over that grid 
location.  Thus, our studies of 1×1 km2 and 2×2 km2 as well as the polar grid products will be 
statistically more significant that the current (HRAP grid) results.  At the same time, using the 
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same rain gauge data to study error at larger grids (e.g. 8×8 km2, 16×16 km2) will result in less 
meaningful error characterization.  Also, at shorter time scale the random errors in the rain gauge 
data are more significant, in particular at 5 minute time scale (Ciach 2003). 

To address the issue of transferability of our results, we are planning to repeat the analysis we 
conducted in this project using data from other networks.  In particular, we plan to use data from 
the dense rain gauge network around Iowa City.  We are also planning to use radar data from 
other Oklahoma WSR-88Ds in conjunction with the same rain gauge data.  For example, using 
radar data from the Vance AFB will allow us to study the spatial correlation of the random 
component at far distances from the radar (Zone V) where the current scarcity of data prevents us 
from analyzing the important radar-rainfall error component. 
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GR Error Filtering 
We developed a conditional distribution transformation (CDT) method for improving RR 

uncertainty analyses that use sparse rain gauge networks as the ground reference.  The objective 
of the CDT method is perform a conditional point-area rainfall distribution transformation in 
order to filter out the rain gauge representativeness errors from radar-rain gauge samples.  The 
application of the rain gauge error filtering is essential for the estimation of the spatial 
dependences in the PQPE model because large differences between the sampling areas of radar 
and rain gauge measurements can render the results of direct comparisons meaningless.  We 
tested the validity and evaluated the accuracy of the CDT method.  The tests were based on the 
data from the USDA Agricultural Research Service Micronet.  A detailed description of the CDT 
method and its tests has been documented in Habib at al. [1].  Below, we present only an outline 
of this effort and its results. 

Point-Area Distribution Transformation Method 
Our implementation of the point-area transformation scheme follows in principle the 

methodology presented in Morrissey [3].  Let Rp represent point (single rain gauge) rainfall with 
mean E{Rp} and variance Var{Rp}, and Ra represent the rainfall averaged over an area A with 
mean E{Ra} and variance Var{Ra}.  The means of the two corresponding processes are equal, i.e. 
E{Ra}=E{Rp}, and the variances can be related to each other based on the spatial correlation in 
the rainfall field in the following way: 
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Now, given the probability distribution of Rp, we want to estimate the distribution of Ra that 
has the same mean as Rp, but different and known variance.  As an approximate solution for this 
problem, we adopted a nonparametric distribution transformation method proposed by Journel 
and Huijbregts [2]. 

The probability distribution of rain gauge measurements Rp can always be represented using a 
transformation that expresses Rp as a function of the standard normal random variable Rp=φRp(u), 
where u is the standard Gaussian variable and the equality is in the sense of the same probability 
distributions ([2]).  This function is approximated using a decomposition (expansion) based on 
Hermite polynomials: 
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where Hi(.) are Hermite polynomials of the order i and ψi are their expansion coefficients, and 
the first four Hermite polynomials are shown as an example.  The decomposition coefficients are 
fitted to the empirical frequency distribution of Rp using an iterative procedure described in 
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Journel and Huijbregts [2].  The coefficients ψi are related to the mean and variance of the point 
rainfall as follows: 

 

ψo = E{Rp}, (A.3) 
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The main assumption of the point-area transformation scheme proposed by Journel and 
Huijbregts [2] is that the function φRa , expressing the areal rainfall as a function of the standard 
normal random variable (just as φRp represents the point rainfall), has the same Hermite 
expansion as φRp, but its decomposition coefficients are modified by a single scaling factor, a, in 
the following way: 
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where the coefficients ψi are the same as in the point rainfall decomposition.  Note that this 
distribution transformation preserves the distribution mean since a0=1.  On the other hand, the 
variance of the transformed distribution of the areal rainfall can now be expressed as: 
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and thus, it depends on the known decomposition coefficients ψi of the rain gauge rainfall and the 
scaling factor, a, only.  This equation is a monotone function of a.  Thus, if the variance of Ra is 
known, the scaling factor can be determined, using any iterative or graphical method, so that this 
equality is fulfilled. 

Given the estimates of the coefficients, ψi, and the scaling factor, a, the computer generated 
standard normal deviates can be substituted into the Hermite expansion to simulate the 
distribution of the area-averaged rainfall.  This point-area transformation procedure is general.  It 
can be applied to the whole data sample, as well as to its sub-samples selected (conditioned) in 
any specific way.  Since our focus in this study is on quantification of RR uncertainties, the 
distributions and their transformation have to be conditioned on the radar estimates, Rr. 

The scheme of this conditional distribution transformation (CDT) can be summarized as 
follows.  First, the rain gauge rainfall values in the data sample are grouped into sub-samples that 
are conditioned on a number of ranges of the RR values, (Rp|Rr=r), each range centered on a RR 
value, r.  The number of the sub-samples and their sizes depend on the amount of available data.  
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Then, the correlation function of the point rainfall conditioned on the radar estimate value, 
(ρ|Rr=r), is estimated.  This enables the estimation of the conditional variances of areal rainfall, 
Var{Ra|Rr=r}.  For each of the sub-samples (Rp|Rr=r), the conditional coefficients, (ψi|Rr=r), of 
the Hermite polynomial decomposition and the conditional scaling factors, (a|Rr=r), are 
estimated.  Finally, the conditional distribution transformation functions (φRa|Rr=r) are computed 
and used to generate values that correspond to the areal rainfall (Ra|Rr=r).  These generated 
values can then be used to provide the desired estimates of the conditional distributions of the 
true area-averaged rainfall, f(Ra|Rr), conditioned on RR.  They can be applied to reconstruct the 
bivariate distribution of RR and the corresponding true areal rainfall based on the following 
formula: 

 
f(Ra , Rr) = f(Ra|Rr) f(Rr) , (A.7) 

 
which can then be used to identify the PQPE model at different spatiotemporal scales as outlined 
in the previous Section of this report. 

Tests of the CDT Method 
The goal of the point-area transformation scheme is to obtain the estimates of conditional 

probability distributions of the true areal rainfall, conditioned on RR values, based on the 
conditional distributions of rain gauge rainfall and information on the conditional spatial 
correlation in the rain-field. 

To evaluate the performance of the CDT method we used the data sample of point rainfall, 
areal rainfall and the corresponding RR estimates over three testing boxes within the USDA 
Agricultural Research Service Micronet that are indicated in Figure A.1. 

Only one time scale of 15 minutes was considered at this stage.  We stratified the sample into 
sub-samples of four intervals of the 15-minute RR values, Rr.  For each sub-sample separately, 
we carried out the following procedure: 

1. Construct the sample of concurrent point and areal rainfall for a specified spatiotemporal 
scale.  The Ra values are approximated by averaging the rain gauge observations within the 
area of interest, whereas the Rp values come from all the individual gauges. 

 

2. Estimate the sample variances of the point and areal rainfall values.  Estimate the Hermite 
expansion coefficients for the point rainfall and the value of the scaling coefficient. 

 

3. Perform the distribution transformation procedure described in section 2 to retrieve the 
areal rainfall distribution. 

 

4. Compare the retrieved areal rainfall distribution against the observed one. 
 
The estimates of the scaling coefficient, a, assumed values of about 0.6, for each of the sub-

samples.  The conditional quantile-quantile plots resulting from these tests are shown in Figure 
A.2. 
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Figure A.1.  A layout of the Little Washita Micronet with the three rectangular areas of about 19 
km by 18 km that are used for testing the CDT method.  Rain gauges within each area provide 
approximations of the true areal rainfall. 

 

The solid dots in the plots show the comparisons of the quantiles corresponding to the same 
probability of exceedence for the transformation-based rainfall distributions as a function of the 
gauge-averaged (approximating the true areal) rainfall distributions.  The open circles in the plots 
show the comparisons of the corresponding quantiles for the single-gauge rainfall distributions as 
a function of the gauge-averaged rainfall distributions.  The transformation-based distributions 
are in a good agreement with the observed conditional distributions of areal rainfall and the 
degree of improvement of the radar rain gauge comparison can be seen from the comparison with 
the single rain gauge rainfall distributions.  The tests confirm that the CDT method is able to 
retrieve the conditional distributions of the areal rainfall with quite good degree of accuracy. 

Discussion 
The conditional scaling factors in the CDT method and their dependence on the spatial 

averaging scale are determined only by the distributions and the spatial correlation functions of 
the radar-conditioned rain gauge rainfall.  These quantities are, in principle, measurable and no 
other fundamental assumptions are necessary to use the CDT in practical applications.  However, 
successful application of the CDT method requires sufficiently accurate information on the 
rainfall spatial correlation structure conditioned on the radar estimates over the spatial scales 
below the resolution of the RR product.  This information is available in many situations where 
dense rain gauge clusters exist within the sparse networks (e.g., in Oklahoma, or Iowa).  Of 
course, the estimates of spatial correlation are bound to be uncertain.  The effects of these 
uncertainties on the CDT scheme are complex and their quantification remains to be investigated.  
However, one thing that we can be sure of is that, whatever are the uncertainties in the 
conditional correlations, the CDT always reduces the RR uncertainty bounds in comparison with 
what we could obtain if we treated the single-gauge data as the corresponding truth.  By its 
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mathematical nature, the CDT just cannot increase the estimated RR uncertainty bounds.  Of 
course, these RR uncertainty estimates are also not perfectly accurate, but this gauge-error 
filtering method always corrects them in the right direction.  The effectiveness of this correction 
is clearly demonstrated in Figure A.2 by comparison of its results and the single-gauge 
performance.  As one can see, the departures from the one-to-one line for the CDT transformed 
and the true area-average rainfall distributions are about ten times smaller than the discrepancies 
between the single-gauge and true area-average rainfall distributions.  Error reduction by an order 
of magnitude is a very good performance for a relatively simple statistical method. 

 

 
 

Figure A.2. A quantile-quantile plot of the cumulative rainfall distributions conditioned on the 
radar rainfall.  Filled circles correspond to the transformation-based versus the true areal rainfall 
distributions.  Open circles correspond to the point (single-gauge) versus the true areal rainfall 
distributions.  The sample was stratified into four ranges of RR estimates.  In the plots, n refers 
to the sample size in each range. 
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1. Introduction 
The text that follows is almost entirely based on Ciach and Krajewski (2005) currently in 

review in Advances in Water Resources.  The spatial variability of rainfall in the range of small 
scales between the size of a single raingauge (of the order of 0.1 m) and a few kilometers is of 
interest both from the practical and scientific points of view.  Design of communication systems 
and urban storm water routing structures require high spatial and temporal resolution data ([3], 
[9], [25]).  High variability of rainfall is a source of fundamental difficulties in conclusive 
verification of radar rainfall estimates (e.g. Austin [1], Kitchen and Blackall [18], Ciach and 
Krajewski [6], Chumchean et al. [4], Habib et al. [15]).  Small-scale rainfall variability is also 
important for the precipitation frequency analyses across different averaging scales required in 
various hydrological applications (e.g. Bras and Rodriguez-Iturbe [2], De Michele at el. [11]).  
Mathematical models of rainfall morphology have the capability to describe a broad span of 
spatiotemporal scales (e.g. Foufoula-Georgiou and Krajewski [12], Lovejoy and Schertzer [22], 
Seed et al. [26], Kundu and Bell [21]).  However, their development and validation requires 
adequate empirical evidence.  Most of the experimental studies on spatial rainfall structure are 
based on the weather radar observations that are inherently spatially averaged over the domains 
of about 1-10 km2, or larger, and cannot provide information on finer scales.  Furthermore, radar 
rainfall estimates are only poor approximations of the true rainfall and the radar-based rainfall 
characteristics can be considerably distorted (Krajewski et al. [19], Harris et al. [17], 
Gebremichael and Krajewski [13]).  On the other hand, direct rainfall measurements with 
raingauges cannot provide the continuous coverage of the observation areas.  Most of the 
relatively dense experimental raingauge networks have the inter-gauge distances of 2-3 km, or 
more, whereas the station spacing in the common operational networks is about an order of 
magnitude larger.  Therefore, spatial rainfall variability at the scales below a few kilometers is 
still a poorly explored research area (Krajewski et al. [20]). 

In this study, we present an extensive analysis of the small-scale variability in rainfall fields 
that is focused on their spatial correlation structure at the distances below 3-4 km.  The 
correlation functions are well established, normalized and commonly used measures of spatial 
dependences that are required by many applications (Bras and Rodriguez-Iturbe [2], Ciach and 
Krajewski [6], Habib and Krajewski [14]).  Furthermore, in contrast to the more comprehensive 
spatial multi-fractal measures (Lovejoy and Schertzer [22]), they can be estimated based on a 
network of point rainfall measurements, provided that the network covers the required range of 
distances.  The correlation estimates presented here are based on a large data sample from a 
unique local cluster of 53 well maintained tipping-bucket raingauges, called the “EVAC 
PicoNet.”  This network (described in more detail in the next section) has the inter-station 
distances of about 0.6 km, uses double-gauge setups in the measurement points, and covers an 
area of about 9 km2 located in central Oklahoma. 

Our present analysis is a continuation of the study by Krajewski et al. [20] that was based on 
small data samples from several locations around the world.  In this case we have used data 
collected from May 1 to October 16 2001 and from March 7 to November 6 2002.  This work is 
also directly relevant to our quest for quantifying uncertainty in radar and satellite remote sensing 
of rainfall.  Our earlier work, e.g. [6], [7], [8], [14], [15], and [20], as well as the current study, all 
provide building blocks for a comprehensive framework addressing the problem.  Relatively 
large size of the sample used here allowed us to look at the rainfield correlations from three 
different perspectives.  First, we examined the dependences of the spatial correlation function on 
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the time-scale for the averaging interval spanning the range from 1 minute to 1 day.  Second, we 
present and analyze the differences between the correlation estimates in the individual rainfall 
events.  Finally, we demonstrate and discuss ambiguities associated with the conditioning of the 
correlation estimates on rainfall intensities. 

2. Analysis and modeling method 
Our objective is to describe the inter-gauge correlation coefficient in rainfall accumulations 

as a continuous function of the separation distance for different averaging intervals and 
precipitation regimes.  In this study, we used a two-step procedure to quantify these 
characteristics.  The first step consists of estimating the Pearson’s product-moment correlation 
coefficients for each pair of the raingauges based on the time-series of rainfall accumulation 
obtained from the data sample.  We used the standard formula for estimating these inter-gauge 
correlations: 
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where Ri and Rj are concurrent rainfall values in two raingauges, i and j are the indexes of the 
raingauges, and the bar denotes averaging over the sample time-series. 

For small data samples with highly skewed distributions of the rainfall values, the estimates 
obtained using Eq. (B.1) can be biased (Habib et al. [16]).  To reduce this sample bias, Habib et 
al. [16] proposed an estimation scheme based on logarithmic transformation of the rainfall values.  
However, this procedure is only applicable to the situations where rainfall values in raingauge 
pairs are distributed according to the bivariate mixed lognormal law (Shimizu [27]).  As we 
demonstrated (Figure B.1) lognormal distribution model does not apply to the PicoNet rainfall 
sample and the tails of the rainfall amounts in Central Oklahoma are much shorter than those of 
lognormal distribution.  In fact, they are even shorter than in the exponential distribution, 
especially for larger time scales.  Furthermore, our sample is much larger that the sample sizes 
considered by Habib et al. [16] and thus the sample biases are much smaller.  Therefore, in this 
study, we directly use the standard estimator (B.1) to compute the inter-gauge correlation 
coefficients. 
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Figure B.1. Figure 3: Probabilities of exceedence of raingauge rainfall in the PicoNet for six 
averaging time-scales. 

 

The second step of our analysis consists of fitting a parametric model to each set of the 
inter-gauge correlation coefficients obtained in the first step.  We chose the following modified-
exponential formula for this modeling: 
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where d is the separation distance between two points, c0 is the correlation value for the near-zero 
distances (much smaller than the network grid, but not zero) that we call the “nugget parameter,” 
d0 is the correlation distance (or the spatial decorrelation scale) and we call it the “scale 
parameter,” and s0 is the correlogram “shape parameter.”  We use the term “nugget” for the c0 
parameter following the geostatistical literature (e.g., Cressie [10]).  Note that (1-c0) is the 
“instant decorrelation” due to the local random errors in the raingauge measurements [5].  The 
shape parameter s0 controls the behavior of the functional model (2) near the origin (i.e. small 
separation distance); e.g. for s0=1 we have exponential drop of the correlation while for s0=2 the 
curve is flat like near the top of the bell (Gaussian) curve. 

We estimated the values of the three parameters in Eq. (B.2) using the following scheme.  
First, we estimated the parameter c0 as an average of the sample correlation coefficients obtained 
based on Eq. (B.1) for all pairs of collocated raingauges.  If all the gauges work properly, there 
are 34 of such collocated pairs in the PicoNet (10 pairs in the central station and 24 in the other 
stations).  With known c0, the remaining two parameters, d0 and s0, were estimated by minimizing 
the root-mean-square (RMS) error between the model values and all the inter-gauge sample 
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correlation coefficients in the pairs of non-collocated raingauges.  We performed this 
minimization using the simple “exhaustive search” of the two-parameter space with the 
resolution of 0.01 km for d0 and 0.005 for s0.  This most straightforward scheme of model fitting 
is sufficiently fast for all our purposes.  We applied this two-step procedure described to every 
time-scale (rainfall averaging interval) considered in this study and each sub-sample selected 
according to different conditions described in the next sections. 

As an alternative parametric model, we also tested the second order polynomial that is also 
described by a three-parameter expression.  The results showed that this polynomial model does 
not provide a better fit to the inter-gauge correlation coefficients in terms of the minimized RMS 
error values.  Therefore, we chose the modified-exponential parameterization defined by Eq. 
(B.2) as the basis for the analyses in this study.  In addition to the optimality of the selected 
model, its parameters have a convenient interpretation in terms of the local random errors in 
raingauges, correlation distance and correlogram shape.  Note that the scale parameter, d0, in the 
modified-exponential function (2) has exactly the same “e-folding distance” meaning (that is, 
ρg(d0)=ρg(0)/e) as in the simple exponential model obtained from (2) when s0=1. 

Note, that in the selected parameterization of spatial rainfall correlogram, the local random 
errors in raingauge measurements affect only the c0 parameter.  Therefore, we can obtain spatial 
correlogram estimates of the true rainfall, ρr(d), by removing this coefficient from the inter-gauge 
correlogram estimates: 

 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

0

00

exp
s

g
r d

d
c

d
d

ρ
ρ . (B.3) 

 

Adding this simple “raingauge error filtering” to the rainfall analyses is especially beneficial 
at the short time-scales where the random errors in raingauges are large [5]. 

3. Dependence on time-scale 
We now apply the modeling technique described in the previous section to the entire data 

sample and over a broad range of time-scales (averaging intervals).  In Figure B.2, we show four 
examples of the estimation results with the inter-gauge correlation coefficients and the parametric 
fits as functions of the separation distance for the time-scales of 5, 15, 60 and 180 minutes.  The 
convex shape of the correlograms and their flattening at the small distances are clearly visible and 
supports our selection of the three-parameter analytical approximation including the shape 
parameter s0.  The necessity to account for the correlogram shape, which cannot be described 
with the commonly used simple exponential model, has already been postulated by Krajewski et 
al. [20] based on several small data samples from different regions.  The present study confirms 
that the modified-exponential function defined by Eq. (B.2) is a good choice that can be applied 
over a broad range of time-scales. 

An interesting feature of the results in Figure B.2 is that, despite the large sample size used 
here, there is still a considerable scatter of the inter-gauge correlation coefficients obtained from 
the individual pairs of raingauges.  Note that the PicoNet cluster covers a relatively small and 
homogenous area, and all the stations have basically the same statistical characteristics.  
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Therefore, the scatter is most likely the manifestation of large estimation uncertainties of second-
order statistics in rainfall.  These uncertainties are typical for skewed random variables as 
discussed in Habib et al. [16].  However, the overall RMS error of our parametric approximation 
is only about 1-2% for all four time-scales indicating that the large numbers of raingauge pairs in 
the PicoNet is essential for obtaining stable spatial correlogram estimates in rainfall. 

 
Figure B.2.  Examples of the inter-gauge correlation coefficients and the corresponding estimates 
of the parametric correlogram model at four averaging time-scales. 

 

In Figure B.3, we summarize these modeling results by presenting the estimated parameters 
as functions of the averaging time-scale ranging from 1 minute to 24 hours.  In addition, the 
minimized RMS errors are shown to provide an assessment of the goodness-of-fit of the 
analytical approximation (B.2) over the broad range of time-scales.  The near-zero-distance 
correlations as expressed by the parameter c0 in Eq. (B.2) are presented in the panel (a) of this 
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figure.  It increases smoothly with the averaging interval, however, its rate of growth drops 
quickly suggesting that, even for much longer time-scales, some residual local random errors in 
the raingauge measurements can still persist.  This behavior is consistent with the results obtained 
by Ciach [5] using an experimental setup that was specifically focused on these local effects.  The 
scale parameter, d0, plotted in panel (b) grows very slowly for the short time-scales up to about 
10 minutes, starting from the correlation distance of about 7.7 km.  Then it assumes a regular 
shape close to the logarithmic curve (straight lines in these log-linear plots).  For the averaging 
intervals above 1 hour, d0 increases by about 2.5 km when the averaging interval doubles.  The 
qualitative behavior of the shape parameter, s0, shown in panel (c) is exactly the opposite of the 
correlation distance behavior.  It increases approximately logarithmically for the time-scales 
below about 10 minutes, and then gradually slows down and stabilizes at the level of about 1.57 
that remains almost constant in the region from 2 through 24 hours. 

 
Figure B.3.  Dependence of the estimated correlation function parameters and the fitting errors on 
the averaging time-scale ranging from 1 minute to 1 day. 
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The time-scale dependences exhibited in panels (b) and (c) of Figure B.3 indicate that, for 
the short averaging intervals, mainly the shape of the spatial correlogram is affected by the 
temporal averaging.  On the other hand, for larger time-scales, the shape remains approximately 
constant and only the correlation distance changes.  Furthermore, the value of s0 becomes close to 
1.0 for the shortest averaging interval suggesting that, at least on the average, the spatial 
correlation structure in the instantaneous rainfall intensity fields is close to exponential.  Note, 
however, that this characteristic of spatial rainrates was obtained based on the entire sample 
including all storm cases in the two-season observation period.  As we will see in the next 
section, the properties of individual storms can depart considerably from this average behavior. 

From the dependence of the parameters in Eq. (B.2) on the time-scale, one can compute the 
rainfield decorrelation, 1-ρr(dx), for a fixed separation distance, dx, as a function of the time scale.  
This representation provides another perspective of the spatiotemporal dependences in rainfall 
that are observable based on a network of point rainfall measurements.  The results for the 
distances of 0.5, 1, 2 and 4 km are shown in Figure B.4 in a log-log scale.  The four curves are 
similar in their sigmoid shape and they gradually diverge from each other with the increasing 
averaging interval.  In the region of time-scales between about 5 and 50 minutes, they seem to 
follow the allometric scaling law and gradually depart from it outside of this region.  No simple 
formula to generalize these features into a concise mathematical model is obvious to us at 
present.  However, the regular behavior of the fixed-distance decorrelations as functions of time-
scale is an interesting feature and we will study it further in our future investigations. 

 

 
Figure B.4.  Dependence of the decorrelations on the averaging time-scale at three separation 
distances. 
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4. Storm-by-storm analysis 
The time-scale dependences discussed in the previous section provide only a much 

generalized characterization of small-scale spatial correlation structure in rainfall because they 
are based on the whole data sample.  The spatial characteristics of individual storms can be vastly 
different than this “average behavior.”  In this section, we focus on these differences.  We 
selected 32 events that produced above 10 mm rainfall depth as averaged over all raingauges in 
the PicoNet.  One prominent feature of this set is the huge variability of the basic characteristics 
of these storms.  Their durations range from 40 minutes up to 18 hours, total accumulations from 
11 mm to 77 mm, average rainfall intensities (accumulation divided by duration) from about 1.8 
mm/h to 26 mm/h, and the peak 3-minute rainrates from 6 mm/h up to 223 mm/h.  For each of 
the storms, we estimated the parameters in Eq. (B.2) at 3-minute averaging time-scale.  As 
expected, there are large differences between the estimates of the spatial correlation parameters 
for the individual storms.  Their decorrelation scale, d0, ranges from 2.6 km up to about 35 km, 
whereas the shape parameter, s0, ranges from 0.68 to 1.82.  The scatter of these two estimated 
parameters is presented in Figure B.5. 

 
Figure B.5.  The scatter of the scale and shape parameters in the spatial correlation functions 
estimated for 32 individual storm events in the PicoNet sample.  These estimates are based on 3-
minute rainrate values. 

 

Some part of these spatial correlation differences between the 32 events might be due to the 
estimation uncertainties because the sample sizes for each storm are relatively small.  Therefore, 
to obtain more stable estimates, we aggregated these events into two classes of spatial variability 
based on the 1 km correlation estimates, ρr(1km), applying Eq. (B.3) to the 3-minute rainrates in 
each storm.  We selected the threshold of ρr(1km) of about 0.9 to divide the storm sample into the 
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higher variability and lower variability subsamples, each containing 16 events.  The estimated 
correlograms of the 3-minute rainrates for these two spatial variability classes are presented in 
Figure B.6.  As expected, the two spatial correlation functions are considerably different both in 
their shapes and decorrelation scales.  What is more surprising is the relatively high value of the 
shape parameter, s0=1.47, for the lower spatial variability class that corresponds to the strong 
flattening of its correlogram at the shortest distances.  Note that the whole-sample analysis in the 
previous section indicated that, at the shortest time-scales, the spatial decorrelation in rainfall is 
approximately an exponential function that drops linearly at the distances close to zero (or much 
smaller than the correlation scale).  Specifically, the shape parameter s0=1.25, for the whole-
sample estimate at the 3-minute time-scale.  The upper correlogram in Figure B.6 indicates that 
this behavior does not apply to the rainfall intensity fields in all types of storms.  Furthermore, it 
seems that the shape of the whole-sample correlogram for short rainfall averaging intervals can 
be dominated by the storms with the highest spatial variability.  For the higher variability class, 
the estimated shape parameter s0=1.24, which is practically the same as the whole-sample 
estimate.  This domination effect is in qualitative agreement with the simulation study on the 
estimation of multiscaling characteristics by Harris et al. [17]. 

 
Figure B.6.  Inter-gauge correlation coefficients and fitted parametric correlation functions for 
two classes of storms with low and high spatial variability.  The estimated shape and scale 
parameter values of the two parametric correlograms are also shown. 

 

In the class of storms with higher spatial variability defined above, the aggregated rainfall 
depth and duration are about 434 mm and 68 hours, respectively, and the peak 3-minute rainrate 
is about 86 mm/h.  In the spatially smoother class, the total rainfall depth and duration are about 
423 mm and 73 hour, and the peak rainrate is about 223 mm/h.  Therefore, the two storm classes 
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constitute similar data samples in respect to their sizes and average rainfall intensities.  However, 
the peak rainfall intensities in the two subsamples differ about three times in magnitude and, 
contrary to our expectations; they are stronger in the subsample with higher spatial correlations.  
This difference suggests that there might exist an interesting (and, perhaps, counterintuitive) 
relationship between two different characteristics of rainfall events.  Namely, the storms with 
higher extremes in the rainfall intensities seem to be less variable is space.  The results in Figure 
B.7 attempt to address this question in more detail.  The figure shows the 1-km correlations, 
ρr(1km), of the individual storms as functions of the peak 3-minute rainrates (left panel) and the 
storm-average rainrates (right panel).  Although the scatter of points in the left panel is far from a 
strong functional relationship, it shows clearly that the rainfall events that have the highest peak 
rainrates are also the least variable in space.  On the other hand, the right panel indicates that 
there is only a very weak, if any, dependence between spatial variability and average rainrate in 
the storms. 

Comprehensive investigation of possible relationships between various characteristics of 
the individual storms that are measurable in the PicoNet is beyond the scope of this study.  We 
will continue working on this interesting problem in the future.  However, the general question of 
quantifying the dependences between rainfall intensity and its spatial correlation structure fits 
well with the leading topic of this paper and we elaborate on this subject in the next section. 

 
Figure B.7.  Dependences of the correlations at 1 km separation distance on the peak and storm-
averaged rainrates for 32 individual storm events in the PicoNet sample. 

 

5. Conditioning on rainfall intensities 
An apparently straightforward way to extract more detailed information about the spatial 

rainfall structure based on dense raingauge networks is through estimating the spatial correlation 
functions conditioned on rainfall intensities.  Such conditional correlation functions are, for 
example, the necessary component of the conditional distribution transformation (CDT) method 
described and evaluated by Habib et al. [15].  They showed that the CDT method can effectively 
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filter-out the area-point errors from radar-raingauge verification statistics, provided the spatial 
correlograms of raingauge rainfall conditioned on radar rainfall values are known.  In fact, the 
analysis described below was directly motivated by the practical implementation issues of the 
CDT method. 

In practice, the conditioning has to specify intervals of rainfall intensity values that are 
broad enough to create reasonably large subsamples for the conditional correlation estimates.  In 
this study, we condition the estimates on the gauge-averaged rainfall values and use variable 
conditioning intervals defined based on the following formula: 

 

 kRR
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where Ra is the gauge-averaged rainrate, Rc is the geometric center of a conditioning interval, and 
k is the parameter controlling the interval width.  The interval width increases linearly with the 
rainfall intensity in order to partially compensate for the rapidly decreasing number of data points 
with increasing rainfall values (see Figure B.1).  We applied this conditioning rule to all the 3-
minute rainrates based on the PicoNet data sample used here. 

For any subsample defined by the selected k and Rc values, we can estimate the parameters 
c0, d0, and s0 of the spatial correlation function (B.2), and the resulting 1-km correlation 
coefficients, ρr(1km).  In Figure B.8, we present the conditional 1-km correlations as functions of 
the Rc values, for three choices of the width parameter, k.  One striking feature of these results is 
a strong and systematic dependence of the conditional correlations on the width of the 
conditioning intervals.  All three curves seem to confirm that the rainfall fields are smoother for 
higher rainrates (ρr(1km) increases with Rc), which is in qualitative agreement with the storm-by-
storm results in the previous section.  However, for each fixed rainrate value, Rc, the 1-km 
correlation coefficient conditioned on Rc is a monotonically increasing function of the width of 
the conditioning interval determined by the k parameter in (B.4).  Furthermore, the ρr(1km) 
estimates seem to be more sensitive to the k parameter than to the rainfall intensities.  The results 
in Figure B.8 demonstrate that the correlation functions conditioned on rainfall intensities are 
highly ambiguous characteristics of spatial rainfall structure because they can be completely 
different depending on a particular conditioning scheme used for their estimation.  These 
ambiguities are caused by additional statistical dependences that are imposed on the data in the 
sub-samples by the conditioning.  The conditioning is a constraining factor that binds the 
collective behavior of the data, including the pair-wise correlations.  The simplest illustration of 
such conditioning effect can be obtained by generating a large sample from a bivariate standard 
normal distribution with the correlation coefficient between the two variables equal to 0.9, for 
example.  If we consider a sub-sample of pairs bound by the condition that the average of the two 
values is between, say, 0.3 and 0.7, then we can easily check that the sub-sample correlation 
coefficient is much smaller than the 0.9 value of the parent population. 
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Figure B.8.  Dependences of the correlations at 1 km separation distance on the 3-minute 
rainrates for three values of the window-width parameter.  These estimates are based on the 
whole PicoNet sample. 

 

Of course, for any rigorously defined conditioning rule, the conditional correlation 
functions can still be useful in many applications ([23], [24], [15]).  However, while interpreting 
and applying the results of the spatial correlations conditioned on rainfall values, one has to be 
cautious and fully aware of their strong dependence on the conditioning intervals and of the 
possible consequences of this dependence.  An example of the situation where this effect can lead 
to considerable errors is practical implementation of the abovementioned CDT method ([15]).  
The method requires estimating the conditional spatial correlation functions of raingauge 
measured rainfall conditioned on radar rainfall values.  This can be done, if a dense local cluster 
of gauges is available under the radar umbrella.  However, because radar rainfall uncertainties are 
strongly dependent on the distance from the radar, conditional correlations obtained at one 
distance might not be applicable at a different distance.  Clearly, either a number of raingauge 
clusters located at different distances is necessary for correct application of the CDT procedure in 
its present formulation tested in [15], or one has to find new methods to account for the range 
effects on the conditioning results. 

The statistical effects of the conditioning described above, if not recognized, can often lead 
to confusing conclusions about the actual properties of rainfall fields.  For example, the estimates 
of conditional spatial correlation functions in rainfall can be found in Habib and Krajewski [14], 
and in Habib et al. [15].  In both cases, the conditional correlations indicate that the heavy rainfall 
(above 10 mm/h) is more variable in space than the weaker rainfall (below 10 mm/h).  This is 
contrary to the results in the previous section of this study showing that storms with higher peak 
rainrates are also spatially smoother.  The most likely explanation of this contradiction is the 
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strong statistical effect of the conditioning on such correlation estimates.  To illustrate this effect 
more clearly, we divided our PicoNet sample into stronger and weaker rainfall using different 
thresholds applied to the area-averaged rainrates.  The time-scale here was 15 minutes, the same 
as in [14], and in [15].  In Figure B.9, we present the estimated conditional correlograms for two 
threshold values of 3 and 10 mm/h.  The plots show that the conclusion about which class in 
rainfall intensity is spatially smoother can be different depending on the strong/weak division 
threshold. 

Note that our results in this section do not imply that the general question about possible 
relationships between rainfall intensity and its spatial variability is ill-posed.  They only show 
that spatial correlation functions conditioned on rainfall values cannot unambiguously 
characterize such relationships. 

 
Figure B.9.  Spatial correlograms in weaker and stronger rainfall for two values of 15-minute 
rainrate used as the classification thresholds.  The conclusion about which class is spatially 
smoother depends on the threshold. 

 

6. Conclusions 
We presented empirical estimates of spatial correlations in small-scale rainfall based on a 

large sample from a super-dense raingauge network in Central Oklahoma.  The dependency of 
the correlation function parameters on rainfall averaging interval shows that, at the time-scales 
below 10 minutes mainly the shape of the correlograms is affected by the temporal averaging, 
whereas at the time-scales above 1 hour the shape remains approximately constant and only the 
decorrelation distance changes.  The individual rainfall events have vastly different values of 
their correlogram estimates and the storms with higher peak rainrates are spatially smoother.  
Conditioning spatial correlation estimates on rainfall intensity yields ambiguous results and can 
lead to misleading conclusions. 

We realize that spatial correlograms, albeit useful in many practical applications, do not 
provide the most comprehensive quantitative description of the spatial dependences in rainfall.  
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From the perspective of the modern allometric multiscaling theories, the traditional geostatistical 
tools might even be viewed by some researchers as outdated.  However, we limited this study to 
the classical spatial correlation functions for the obvious technical reason: they can be estimated 
based on the point rainfall measurements.  The PicoNet cluster of 25 stations enables considering 
many inter-gauge distances, but is not enough to consider any relevant range of spatial averaging 
scales that is necessary in more sophisticated multiscaling analyses.  Nevertheless, the spatial 
statistics that actually are observable with accurate raingauge measurements can also be quite 
informative and should be treated as valuable “reality checks” for different multiscaling spatial 
rainfall models. 

The redundancy of the double-gauge design applied in the EVAC PicoNet is an extremely 
valuable feature of the network.  It allows efficient quality control of the rainfall records and 
substantial improvement in the measurement accuracy (Ciach and Krajewski [6]; Ciach [5], 
Krajewski et al. [20], Steiner et al. [28]).  A number of errors in the PicoNet measurements would 
be impossible to detect in the traditional system based on single raingauges.  Broader application 
of the simple and relatively inexpensive multiple-gauge setups could result in a dramatic 
improvement of the quality of surface rainfall measurement. 
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Figure C.1.  Rain gauge averages, conditional on radar-rainfall values, after removing the overall 
bias for the three seasons and entire dataset for the 5 zones.  The minimum weighted sample size 
is 100. 
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Figure C.2.  Standard deviations of the random component in the additive form (mm) for the 
three seasons and entire dataset for the 5 zones.  The minimum weighted sample size is 100. 
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Figure C.3.  Standard deviations of the random component in the multiplicative form for the 
three seasons and entire dataset for the 5 zones (1-h resolution).  The minimum weighted sample 
size is 100. 
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Cold Season 
 

 
 

Figure C.4.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (cold season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Warm Season 
 

 
 

Figure C.5.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (warm season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Hot Season 
 

 
 

Figure C.6.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (hot season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Entire Dataset 
 

 
 

Figure C.7.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (all seasons).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Zone I 

 
 

 
 

Figure C.8.  Power law model approximation of the rain gauge conditional averages for the three 
seasons and the entire dataset for Zone I.  
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Zone II 

 
 

 
 

Figure C.9.  Power law model approximation of the rain gauge conditional averages for the three 
seasons and the entire dataset for Zone II. 
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Zone III 

 
 

 
 

Figure C.10.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone III. 
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Zone IV 

 
 

 
 

Figure C.11.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone IV. 
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Zone V 

 
 

 
 

Figure C.12.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone V. 
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Zone I 

 
 

 
 

Figure C.13.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone I. 
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Zone II 

 
 

 
 

Figure C.14.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone II. 
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Zone III 

 

 
 

Figure C.15.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone III. 
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Zone IV 

 

 
 

Figure C.16.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone IV. 
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Zone V 

 

 
 

Figure C.17.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone V. 
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Spatial and Temporal Correlation 
Structure 
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Winter Season 
 

 
 
Figure C.18.  Intergauge spatial Pearson correlation of the random component for the winter 
season. 
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Warm Season 
 

 
 
Figure C.19.  Intergauge spatial Pearson correlation of the random component for the warm 
season. 
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Hot Season 
 

 
 
Figure C.20.  Intergauge spatial Pearson correlation of the random component for the hot season. 
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All Seasons 
 

 
 
Figure C.21.  Intergauge spatial Pearson correlation of the random component for all seasons. 
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Zone I 
 

 
 
Figure C.22.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone I. 
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Zone II 
 

 
 
Figure C.23.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone II. 
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Zone III 
 

 
 
Figure C.24.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone III. 
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Zone IV 
 

 
 
Figure C.25.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone IV. 
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Zone V 
 

 
 
Figure C.26.  Empirical intergauge spatial correlation over a limited range with a three-
parameter exponential model approximation for Zone V. 
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Zone I 
 

 
 
Figure C.27.  Empirical and model approximated temporal correlation of the random 
component for Zone I. 
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Zone II 
 

 
 
Figure C.28.  Empirical and model approximated temporal correlation of the random 
component for Zone II. 
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Zone III 
 

 
 
Figure C.29.  Empirical and model approximated temporal correlation of the random 
component for Zone III. 
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Zone IV 
 

 
 
Figure C.30.  Empirical and model approximated temporal correlation of the random 
component for Zone IV. 
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Zone V 
 

 
 
Figure C.31.  Empirical and model approximated temporal correlation of the random component 
for Zone V. 
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Figure D.1.  Rain gauge averages, conditional on radar-rainfall values, after removing the overall 
bias for the three seasons and entire dataset for the 5 zones.  The minimum weighted sample size 
is 100. 
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Figure D.2.  Standard deviations of the random component in the additive form (mm) for the 
three seasons and entire dataset for the 5 zones.  The minimum weighted sample size is 100. 
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Figure D.3.  Standard deviations of the random component in the multiplicative form for the 
three seasons and entire dataset for the 5 zones.  The minimum weighted sample size is 100. 
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Cold Season 
 

 
 

Figure D.4.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (cold season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Warm Season 
 

 
 

Figure D.5.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (warm season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Hot Season 
 

 
 

Figure D.6.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (hot season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Entire Dataset 
 

 
 

Figure D.7.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (all seasons).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Figure D.8.  Power law model approximation of the rain gauge conditional averages for the three 
seasons and the entire dataset for Zone I.  
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Zone II 

 
 

 
 

Figure D.9.  Power law model approximation of the rain gauge conditional averages for the three 
seasons and the entire dataset for Zone II. 
 
 



 152

 
Zone III 

 
 

 
 

Figure D.10.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone III. 
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Zone IV 

 
 

 
 

Figure D.11.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone IV. 
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Figure D.12.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone V. 
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Zone I 

 
 

 
 

Figure D.13.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone I. 
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Zone II 

 
 

 
 

Figure D.14.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone II. 
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Zone III 

 

 
 

Figure D.15.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone III. 
 



 158

 
Zone IV 

 

 
 

Figure D.16.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone IV. 
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Zone V 

 

 
 

Figure D.17.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone V. 
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Winter Season 
 

 
 
Figure D.18.  Intergauge spatial Pearson correlation of the random component for the winter 
season. 
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Warm Season 
 

 
 
Figure D.19.  Intergauge spatial Pearson correlation of the random component for the warm 
season. 
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Hot Season 
 

 
 
Figure D.20.  Intergauge spatial Pearson correlation of the random component for the hot season. 
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All Seasons 
 

 
 
Figure D.21.  Intergauge spatial Pearson correlation of the random component for all seasons. 
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Zone I 
 

 
 
Figure D.22.  Empirical intergauge spatial correlation over a limited range with a three-
parameter exponential model approximation for Zone I. 
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Zone II 
 

 
 
Figure D.23.  Empirical intergauge spatial correlation over a limited range with a three-
parameter exponential model approximation for Zone II. 
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Zone III 
 

 
 
Figure D.24.  Empirical intergauge spatial correlation over a limited range with a three-
parameter exponential model approximation for Zone III. 
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Zone IV 
 

 
 
Figure D.25.  Empirical intergauge spatial correlation over a limited range with a three-
parameter exponential model approximation for Zone IV. 
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Zone V 
 

 
 
Figure D.26.  Empirical intergauge spatial correlation over a limited range with a three-
parameter exponential model approximation for Zone V. 
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Zone I 
 

 
 
Figure D.27.  Empirical and model approximated temporal correlation of the random 
component for Zone I. 
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Zone II 
 

 
 
Figure D.28.  Empirical and model approximated temporal correlation of the random 
component for Zone II. 
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Zone III 
 

 
 
Figure D.29.  Empirical and model approximated temporal correlation of the random 
component for Zone III. 
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Zone IV 
 

 
 
Figure D.30.  Empirical and model approximated temporal correlation of the random 
component for Zone IV. 
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Zone V 
 

 
 
Figure D.31.  Empirical and model approximated temporal correlation of the random component 
for Zone V. 
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Figure E.1.  Rain gauge averages, conditional on radar-rainfall values, after removing the overall 
bias for the three seasons and entire dataset for the 5 zones.  The minimum weighted sample size 
is 100. 
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Figure E.2.  Standard deviations of the random component in the additive form (mm) for the 
three seasons and entire dataset for the 5 zones.  The minimum weighted sample size is 100. 
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Figure E.3.  Standard deviations of the random component in the multiplicative form for the 
three seasons and entire dataset for the 5 zones (1-h resolution).  The minimum weighted sample 
size is 100. 
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Cold Season 
 

 
 

Figure E.4.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (cold season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Warm Season 
 

 
 

Figure E.5.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (warm season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  



 181

Hot Season 
 

 
 

Figure E.6.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (hot season).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Entire Dataset 
 

 
 

Figure E.7.  Comparison of the empirical and Gaussian quantiles (p=0.1, 0.25, 0.5, 0.75, 0.9) for 
the five zones (all seasons).  The mean of the theoretical distribution is equal to 1 and the 
standard deviation is the standard deviation of the random component in the multiplicative form. 
The minimum weighted sample size is 100.  
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Zone I 

 
 

 
 

Figure E.8.  Power law model approximation of the rain gauge conditional averages for the three 
seasons and the entire dataset for Zone I.  
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Figure E.9.  Power law model approximation of the rain gauge conditional averages for the three 
seasons and the entire dataset for Zone II. 
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Zone III 

 
 

 
 

Figure E.10.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone III. 
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Figure E.11.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone IV. 
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Figure E.12.  Power law model approximation of the rain gauge conditional averages for the 
three seasons and the entire dataset for Zone V. 
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Figure E.13.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone I. 
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Figure E.14.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone II. 
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Zone III 

 

 
 

Figure E.15.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone III. 
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Figure E.16.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone IV. 
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Zone V 

 

 
 

Figure E.17.  Model approximation of the conditional multiplicative standard deviation for the 
three seasons and the entire dataset for Zone V. 
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Winter Season 
 

 
 
Figure E.18.  Intergauge spatial Pearson correlation of the random component for the winter 
season. 



 195

Warm Season 
 

 
 
Figure E.19.  Intergauge spatial Pearson correlation of the random component for the warm 
season. 



 196

Hot Season 
 

 
 
Figure E.20.  Intergauge spatial Pearson correlation of the random component for the hot season. 



 197

All Seasons 
 

 
 
Figure E.21.  Intergauge spatial Pearson correlation of the random component for all seasons. 
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Zone I 
 

 
 
Figure E.22.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone I. 
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Zone II 
 

 
 
Figure E.23.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone II. 
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Figure E.24.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone III. 
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Zone IV 
 

 
 
Figure E.25.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone IV. 
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Zone V 
 

 
 
Figure E.26.  Empirical intergauge spatial correlation over a limited range with a three-parameter 
exponential model approximation for Zone V. 
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