Prototyping the Data Access Layer of the Integrated Hydrologic
Forecast System

For presentation at the Fourth International Conference on Hydroinformatics, July
23-27, lowa City, lowa

G. Bonnin
National Weather Service, Office of Hydrology, Slver Soring, Maryland, USA

J. Gofus
National Weather Service, Office of Hydrology, Slver Soring, Maryland, USA

Y. Qu
COMSO Inc., Greenbelt, Maryland, USA

D. Urban
Urban Architectures, Inc., McLean, Virginia, USA

ABSTRACT: The Hydrologic Research Laboratory of the National Weather Service Office of
Hydrology is developing its next generation of software for the conduct of the National Wesather
Service Hydrologic Services Program. The Integrated Hydrologic Forecast System (IHFS) project
is currently focused on developing and prototyping software and data architecture components of
the system. The prototype involves an element of operational functionality that exercises the data
access layer as well as an object oriented approach to analysis and design. The prototype is
designed for testing as an integrated component of the current operational forecast system. The
IHFS software architecture is highly modular and considers a gradual and planned transition from
current operational software to the new system. This paper presents progress in developing a
prototype of the data access layer and the logical data model. The rationale for this effort is
described and details of the data access architecture and the data access prototype are presented.

1 INTRODUCTION and technologies and has become increasingly

costly to maintain and enhance. Furthermore,

The Hydrologic Research Laboratory (HRL)
of the National Weather Service (NWS) Office
of Hydrology (OH) is developing the
Integrated Hydrologic Forecast System
(IHFS), its next generation of software for the
conduct of the NWS Hydrologic Services
Program. Current software consists of code
that was initially developed almost 20 years
ago, which as been continualy augmented
including recent major additions. The older
code is based on old mainframe architectures

there are gaps in the functionality of the
nationally supported software that require
individual NWS field offices to create their
own locally developed applications in order to
provide end-to-end support for production of
hydrologic services.

The IHFS will overcome these prablems by
recasting the current functionality using
modern software technologies. The effort will
reduce maintenance costs and make it easier to

introduce new science and techniques to the
operational system.

An important consideration is the size,
complexity and operational nature of the
current system. There are over 2 million lines
of code in the current system. It is an
integrated system providing a broad range of
functionality ranging from data decoding,
ingest and management through hydrologic,
hydrometeorologic and hydraulic calibration,
modeling and display, to forecast preparation
and dissemination. The current system
represents hard won lessons learned over many
years in both the science and user operations
concept areas as well as in the areas of
software design. The system is used every day
at 13 River Forecast Centers and over 120
Wesather Forecast Offices by professional
hydrologists and meteorologists who through
formal training and on-the-job experience are
intimately familiar with its use. It is an
operational system that is relied upon for the
safety and well being of the public and is
subject to extensive configuration
management. In summary, there are
significant issues to be considered in making
changes to the system.

2 THEIHFSARCHITECTURE

The planned IHFS will not replace the current
system. Rather, modern software technologies

and software engineering practices will be
applied to recast and extend the current
functionality. Current software will be reused
to the greatest extent practical with new code
being developed where reuse is not practical.
IHFS software architecture is based on object
oriented concepts. It will be highly modular
and considers a gradual and planned transition
from current operational software to the new
system. Figure 1 shows the major architectural
components of IHFS. The diagram shows that
individual independent applications exist
within the system. However they rely on
services provided by other architectural layers
of IHFS. This paper focuses on the Data
Access Services layer.

3 THEDATA ACCESS PROTOTY PE

A key component of IHFS is the data access
services layer. It is one of the aspects of
legacy software that is rooted in the
architectures of old mainframe technology and
which consumes a requires significant
maintenance. Experience gained during the
merging of the WFO and RFC databases to
produce the initial IHFS database (Roe et al.,
1998) shows that application programmers
were required to spend a considerable amount
of time modifying applications software to
accommodate change to the IHFS DB. It
became apparent that we could not afford to

Interactive Interface

Services

IHFS Applications

Services

IHFS Data
Access Services

Services

Application

Control Services

Services

Application
Communication Services

Services

Services

AWIPS-Supplied Hardware, Communications,
File System, DBMS, Operating System

Services

Figure 1: IHFS High Level Architecture

NWSRFS
(Fortran, C, C™")

New MAPX
C++

C*1INI Wrapper

ODMG 2.0

COTS Middleware (JAVA)

JDBC Drivers for
COTSDBMS

H

Custom JDBC Drivers
(JAVA/INI)

C*" Wrapper

Legacy Fortran 1/0O

Legacy DataFiles

Figure 2: Prototype Data Access Services

expose applications software to continua
changes in database design. In order to avoid
this exposure, address one of the major
components of IHFS, and promote the
fundamental software design principle of
modularity, we have chosen to develop a
prototype of the IHFS data access layer.

The data access prototype is to demonstrate
that such an access layer can be built, with the
emphasis on proof-of-concept. This prototype
is not likely to be the complete data access
layer. However, the lessons learned from the
prototype will be used subsequently to build
the IHFS data access layer.

The data access services are responsible for
retrieval, storage, and management of all data
used by the IHFS. The data access services
isolate application programs from the physical
location and structure of data, provide alogical
data structure for both the storage and retrieval
of data, provide both temporary and persistent
data storage, filter requested data based on the
run environment (e.g., owner), annotate new
and updated data with information from the
run environment, manage buffering of data

needed for /O efficiency, ensure data values
are synchronized across all programsin arun,
manage data archival (and retrieval of archived
data), delete expired data, enforce data access
security permissions by user and run, ensure
referential integrity of data, and verify the
consistency of data across facilities (Computer
Sciences Corporation, 1999).

The data access services are structured as
logical storage definitions, APIs, and utility
programs. Logical data storage definitions
define the logical data storage structure that is
used by application. The logical data structure
will be based on hydrologic concepts and
needs, not on the physical storage of data
(Bonnin et al., 2000).

4 PROTOTYPE FUNCTIONALITY

We chose the MAPX function from the
current National Weather Service River
Forecast System (NWSRFS) to redlistically
evaluate the affect of the software changes.
MAPX computes mean areal precipitation
using gridded NEXRAD radar precipitation

estimates. The original version is written in
Fortran. The new version is written in C™
using an object oriented design.

The new version of MAPX is integrated
into the legacy NWSRFS as a new modular
function that has the same interface and
parameter set as the origina but a different
name. This alows operational sites to
implement the prototype with virtually no
changes to the system parameters.

5 PROTOTYPE DESIGN

The design of the prototype is shown in
Figure 2. One of the functions of the data
access services layer is to isolate application
programs from the physical location and
structure of data. The ODMG 2.0 interface
(Cattell et al., 1997) fulfills this requirement
and we chose a middleware commercial off-
the-shelf (COTS) product to provide the API
and the bulk of the functionality. The
middleware uses JDBC and assumes a
relational model for connectivity to the data.

Most COTS database management systems
provide JDBC drivers allowing us to complete
the thread to the data however the legacy data
files are custom designed indexed files that
were developed in the batch mainframe era. In
order to complete the thread to the legacy data
files we have designed our own JDBC drivers
based on the SimpleText model (Patel et a.,
1997) Our custom JDBC drivers preserve the
legacy /O software, illustrating the software
reuse goal of IHFS.

Once the prototype has been implemented,
we will be able to eliminate the physical data
storage of the legacy files and replace them
with COTS database products, further reducing
the amount of custom code that must be
maintained. The insulating features of the data
access services layer will alow us to make the
change without affecting any of the
applications code that uses the layer.

Bonnin et al., 2000 have described the
approach for developing the logical data model
for IHFS. The new MAPX component uses
the objects from the logical data model and the
COTS middleware instantiates and manages
them based on service requests through the
ODMG 2.0 interface.

A CASE tool is being used for object
oriented analysis and design (Rumbaugh et al.,
1991) and for code generation. The CASE
tool implements the Unified Modeling
Language (UML) (Rationa Software, 1997,
Alhir, 1998)

6 LANGUAGE ISSUES

The prototype involves a variety of languages;
Fortran, C, C™*, JAVA and NI aswell as
interface standards such as JDBC and ODMG
2.0. The use of these languages is shown on
Figure 2. The mixture of languages allows
preservation and reuse of legacy code at the
same time as introduction of state-of-the-art
software technologies. The language mixture
has been achieved using software wrappers
and carefully designed procedures for binding
executables. The module wrappers involve
careful treatment of language differences
particularly in the area of memory structures
and pointers to preserve data integrity across
the language interfaces.

7 MAPX DESIGN

Figure 3 presents the collaboration diagram for
the object oriented version of MAPX. The
collaboration diagram is one of the design
artifacts of the UML approach to object
oriented analysis and design. The diagram
shows the sequence of interactions between the
various objects that are combined to produce
the MAPX function. The diagram aso shows
the explicit use of the object signatures.

The object hierarchy has been specifically
designed to allow new computational methods
to be added by expansion of the object model.
This feature will make it relatively easy to add
new functionality in the future.

8 CURRENT STATUS

At the time of writing the prototype exists in
several processing threads:
The new version of MAPX has been
integrated with NWSRFS and has been
tested successfully with a test harness for
data access. The computations performed

2.1 Arealiat
accessdrealatal)

Caomputation Setup

1.1%: accessTime Datal) T
- setup Computation)

2
1: getHunE@trol()

I

BunControl MNewFund15

3: compurte AR R

4.1 .1 access Gridded'Walues{)

DrataEstimation

4.2.2.2: estimate)

Datadscess

4221 check{)
‘_

| EFCarea | ‘ DataCheck H Mean.i\reaCUrmutation‘
4.2.2: value=hasintAF

I
4.1: get Collection OfwWaluesy 4 |
4*ji=startTime . encTime compute MAF]) T
—

4 .2*: i=firstBasin. last Basin computeBasinMAR()
—

Cormputation Bun

T

5*: <1 EndRunzi=firstBasin. lastBasin fill FutureDatag)

5.1:¢ | Future: value=estimate()
‘_

E*: i=firstBasin. lastBasin saveTime Series()

Compute AP Compute Basit AP

4.2.1: getGridReference Systemd)
=~

Biasi
22 4.2.3: tsiappend(value)

G zawed)

« T

ERREER i val
si appendvalue)

compute FMAP

DrataEstiration

5.2: <Future:ts=get FMAFTIMeSeries])

5.2.2: ts time Distribution)
—

Tirne Series
5.3 tsi.concatenatets)
i

7 persistent()

5.2.1 accessFMARD)
—

Basin

Datatocess
Figure 3: MAPX Collaboration Diagram
Processing Systems for Meteorology,

by the new object oriented version have
been confirmed against the legacy version.
A test application can successfully
manipulate objects from the IHFS data
model with a processing thread running
from the applications layer through the
middleware to a COTS relational database
management system.
A test harness can use the middleware and
the custom JDBC driver to access data in
the legacy datafiles.
The custom JDBC driver must be expanded to
accommodate data in the full range of legacy
data files. When this is complete, a complete
integration test can be performed and
performance testing and tuning can be done.

REFERENCES

Alhir, S, “UML in a Nutshell”’, O'Reilly &
Associates, Inc., 273 pp., 1998.

Bonnin, G., and D. Urban, “Development Of
A Data Architecture For The NWS
Hydrologic Services Program,” 16th
Conference on Interactive Information and

Oceanography, and Hydrology, 2000.
Cattell, R, and D. Barry, editors, “The Object

Database Sandard: ODMG 2.0”, Morgan

Kaufmann Publishers, Inc., 270 pp., 1997.
Computer Sciences Corporation, “Integrated

Hydrologic Forecast System (IHFS
Software Architecture”, contract
deliverable prepared for the Nationd

Wesather Service, Office of Hydrology,
Hydrologic Research Laboratory, 1999.
Rational Software Corp. and Partners, “Unified
Modeling Language Version 1.1, The

Object Management Group., 1997.

Roe, J., G. Bonnin, M. Glaudemans, C. Gabs,
and P. Tilless "Recent Database
Developments At The National Weather
Service Office Of Hydrology”, 14th
Conference on Interactive Information and
Processing Systems for Meteorology,
Oceanography, and Hydrology, 1998.

.Rumbaugh, J, M. Blaha, W. Premerlani, F.
Eddy, and W. Lorensen “Object-Oriented
Modeling and Design”, Prentice Hall, Inc.,
490 pp., 1991.

Patel, P and K. Moss, “Java Database
Programming with JDBC”, 2™ Edition,
Coriolis Group Books, 491 pp., 1997

