
 NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

NATIONAL WEATHER SERVICE
OFFICE of HYDROLOGIC DEVELOPMENT

Science Infusion Software Engineering Process Group (SISEPG)

General Software Development Standards and Guidelines
Version 3.5

Version 3.5
7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

Revision History

Date Version Description

10/13/2004 1.0 Initial Version

04/18/2006 2.0 Reformat

05/11/2006 3.0 Revision to standards

05/16/2006 3.1

05/23/2006 3.2 Edit and changes

06/09/2006 3.3 Additional edits

06/21/2006 3.4 Apply HSEB Chief recommendations

04/23/2007 3.5 Updated Introduction, Internal Documentation Standards (removing the name of
file and the names of modules), and Appendix A &B (updating the examples).

Version 3.5
i 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

Table of Contents
Revision History .. i
Table of Contents.. ii
1. Introduction... 1
2. Internal Documentation Standards.. 2
3. Coding Standards .. 2

3.1 Indentation .. 3
3.2 Inline Comments... 3
3.3 Structured Programming... 3
3.4 Classes, Subroutines, Functions, and Methods... 4
3.5 Source Files... 4
3.6 Variable Names... 4
3.7 Use of Braces .. 4
3.8 Compiler Warnings... 5

4. Coding Guidelines .. 5
4.1 Line Length... 5
4.2 Spacing.. 6
4.3 Wrapping Lines... 6
4.4 Variable Declarations.. 7
4.5 Program Statements .. 7
4.6 Use of Parentheses .. 8
4.7 Inline Comments... 9
4.8 Coding for Efficiency vs. Coding for Readability .. 9
4.9 Meaningful Error Messages.. 9
4.10 Reasonably Sized Functions and Methods ... 10
4.11 Number of Routines per File... 10

Appendix A - Internal Documentation Templates.. 11
Appendix B - Documentation Example.. 12

Version 3.5
ii 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

1. Introduction
The Office of Hydrologic Development (OHD) develops and maintains software which
the National Weather Service (NWS) Weather Forecast Offices (WFOs) and River
Forecast Centers (RFCs) use to generate hydrologic forecasts and warnings for rivers and
streams across the country. OHD also develops and maintains software which runs
centrally to acquire and distribute critical data to the WFOs and the RFCs. Software
development and maintenance has become a critical component supporting the operations
of NWS forecast offices and it is essential that it be well written and maintained.

Well written software offers many advantages. It will contain fewer bugs and will run
more efficiently than poorly written programs. Since software has a life cycle and much
of which revolves around maintenance, it will be easier for the original developer(s) and
future keepers of the code to maintain and modify the software as needed. This will lead
to increased productivity of the developer(s). The overall cost of the software is greatly
reduced when the code is developed and maintained according to software standards.

The OHD Science Infusion Software Engineering Process Group (SISEPG) has
developed General Standards and Guidelines as well as language specific standards and
guidelines to ensure that developers follow good and widely accepted software
development practices when coding. The General Standards and Guidelines are a set of
rules to apply to all languages, regardless if there is an accompanying language specific
standards and guidelines document. There may be cases where the languages specific
standards will take precedence over the General Standards and it will be noted in the
languages specific standards and guidelines when this is the case. Also each project area
may derive its own standards and guidelines if special requirements are desired.

A distinction has been made between standards and guidelines. Standards are rules which
programmers are expected to follow. Guidelines can be viewed as suggestions which can
help programmers write better software and are optional, but highly recommended. The
use of standards will be enforced through software peer reviews.

It is important to note that standards are not fixed, but will evolve over time. Developers
are encouraged to provide feedback to the SISEPG (sisepg@gateway2.nws.noaa.gov).

This document details the General Software Development Standards and Guidelines.

Version 3.5
1 7/30/2007

mailto:sisepg@gateway2.nws.noaa.gov

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

2. Internal Documentation Standards
If done correctly, internal documentation improves the readability of a software module.
Many of the general software development guidelines are focused on using good internal
documentation practices. The SISPEG has agreed that a file containing one or more
software modules or a shell script file should have a comment block at its beginning
containing the following basic information:

• The name of the author who created the file
• The date the file was created
• The author’s development group (e.g. HSEB, HSMB)
• Description (overview of the purpose of the modules)

Note that a module is a method, function, or subroutine.

Each module contained within the source file should be preceded by a block of comments
showing the following:

• The name of the module
• The name of the original author (if the module author is different than the author

of the file.)
• The date the module was created
• A description of what the module does
• A list of the calling arguments, their types, and brief explanations of what they do
• A list of required files and/or database tables needed by the routine, indicating if

the routine expects the database or files to be already opened
• All of the non system routines called by this module (optional)
• Return values
• Error codes/exceptions
• Operating System (OS) specific assumptions, e.g. this routine expects binary files

to be Little Endian or this routine uses OS specific language extensions.
(optional)

• A list of locally defined variables, their types, and how they are used. (optional)
• Modification history indicating who made modifications, when the mods were

made, and what was done. (optional, if the modification history is being logged
using CM software).

Appendix A of this document contains internal documentation templates. Appendix B
contains an example of software modules which use these internal documentation
standards.

3. Coding Standards
General coding standards pertain to how the developer writes code. The SISEPG has
come up with a small set of items it feels should be followed regardless of the
programming language being used.

Version 3.5
2 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

3.1 Indentation
Proper and consistent indentation is important in producing easy to read and maintainable
programs. Indentation should be used to:

• Emphasize the body of a control statement such as a loop or a select statement
• Emphasize the body of a conditional statement
• Emphasize a new scope block

A minimum of 3 spaces shall be used to indent. Generally, indenting by three or four
spaces is considered to be adequate. Once the programmer chooses the number of spaces
to indent by, then it is important that this indentation amount be consistently applied
throughout the program. Tabs shall not be used for indentation purposes.

Examples:

/* Indentation used in a loop construct. Four spaces are used for
indentation. */
for (int i = 0 ; i < number_of_employees ; ++i)
{
 total_wages += employee [i] . wages ;
}

// Indentation used in the body of a method.
package void get_vehicle_info ()
{
 System.out.println (“VIN: “ + vin) ;
 System.out.println (“Make: “ + make) ;
 System.out.println (“Model: “ + model) ;
 System.out.println (“Year: “ + year) ;
}

/* Indentation used in a conditional statement. */
 IF (IOS .NE. 0)
 WRITE (* , 10) IOS
 ENDIF

10 FORMAT (“Error opening log file: “, I4)

3.2 Inline Comments
Inline comments explaining the functioning of the subroutine or key aspects of the
algorithm shall be frequently used. See section 4.0 for guidance on the usage of inline
comments.

3.3 Structured Programming
Structured (or modular) programming techniques shall be used. GO TO statements shall
not be used as they lead to “spaghetti” code, which is hard to read and maintain, except as
outlined in the FORTRAN Standards and Guidelines.

Version 3.5
3 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

3.4 Classes, Subroutines, Functions, and Methods
Keep subroutines, functions, and methods reasonably sized. This depends upon the
language being used. For guidance on how large to make software modules and methods,
see section 4.0. A good rule of thumb for module length is to constrain each module to
one function or action (i.e. each module should only do one “thing”). If a module grows
too large, it is usually because the programmer is trying to accomplish too many actions
at one time.

The names of the classes, subroutines, functions, and methods shall have verbs in them.
That is the names shall specify an action, e.g. “get_name”, “compute_temperature”.

3.5 Source Files
The name of the source file or script shall represent its function. All of the routines in a
file shall have a common purpose.

3.6 Variable Names
Variable shall have mnemonic or meaningful names that convey to a casual observer, the
intent of its use. Variables shall be initialized prior to its first use.

3.7 Use of Braces
In some languages, braces are used to delimit the bodies of conditional statements,
control constructs, and blocks of scope. Programmers shall use either of the following
bracing styles:

for (int j = 0 ; j < max_iterations ; ++j)
{
 /* Some work is done here. */
}

or the Kernighan and Ritchie style:

for (int j = 0 ; j < max_iterations ; ++j) {

 /* Some work is done here. */

}

It is felt that the former brace style is more readable and leads to neater-looking code than
the latter style, but either use is acceptable. Whichever style is used, be sure to be
consistent throughout the code. When editing code written by another author, adopt the
style of bracing used.

Braces shall be used even when there is only one statement in the control block. For
example:

Bad:

Version 3.5
4 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

if (j == 0)
 printf (“j is zero.\n”);

Better:

if (j == 0)
{
 printf (“j is zero.\n”);
}

3.8 Compiler Warnings
Compilers often issue two types of messages: warnings and errors. Compiler warnings
normally do not stop the compilation process. However, compiler errors do stop the
compilation process, forcing the developer to fix the problem and recompile.

Compiler and linker warnings shall be treated as errors and fixed. Even though the
program will continue to compile in the presence of warnings, they often indicate
problems which may affect the behavior, reliability and portability of the code.

Some compilers have options to suppress or enhance compile-time warning messages.
Developers shall study the documentation and/or man pages associated with a compiler
and choose the options which fully enable the compiler’s code-checking features.

For example the –Wall option fully enables the gcc code checking features and should
always be used:

gcc -Wall

4. Coding Guidelines
General coding guidelines provide the programmer with a set of best practices which can
be used to make programs easier to read and maintain. Unlike the coding standards, the
use of these guidelines is not mandatory. However, the programmer is encouraged to
review them and attempt to incorporate them into his/her programming style where
appropriate.

Most of the examples use the C language syntax but the guidelines can be applied to all
languages.

4.1 Line Length
It is considered good practice to keep the lengths of source code lines at or below 80
characters. Lines longer than this may not be displayed properly on some terminals and
tools. Some printers will truncate lines longer than 80 columns. FORTRAN is an
exception to this standard. Its line lengths cannot exceed 72 columns.

Version 3.5
5 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

4.2 Spacing
The proper use of spaces within a line of code can enhance readability. Good rules of
thumb are as follows:

• A keyword followed by a parenthesis should be separated by a space.
• A blank space should appear after each comma in an argument list.
• All binary operators except “.” should be separated from their operands by spaces.

Blank spaces should never separate unary operators such as unary minus,
increment (“++”), and decrement(“—“) from their operands.

• Casts should be made followed by a blank space.

Example:

Bad:
cost=price+(price*sales_tax);

fprintf(stdout ,“The total cost is %5.2f\n”,cost);

Better:
cost = price + (price * sales_tax);

fprintf (stdout, “The total cost is %5.2f\n”, cost) ;

4.3 Wrapping Lines
When an expression will not fit on a single line, break it according to these following
principles:

• Break after a comma

Example:

fprintf (stdout , “\nThere are %d reasons to use standards\n” ,
 num_reasons) ;

• Break after an operator

Example:

long int total_apples = num_my_apples + num_his_apples +
 num_her_apples ;

• Prefer higher-level breaks to lower-level breaks

Example:

Bad:

Version 3.5
6 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

longName1 = longName2 * (longName3 + LongName4 –
 longName5) + 4 * longName6 ;

Better:

longName1 = longName2 * (longName3 + LongName4 – LongName5)

 + 4 * longName6 ;

• Align the new line with the beginning of the expression at the same level on the
previous line.

Example:

total_windows = number_attic_windows + number_second_floor_windows +
 number_first_floor_windows ;

4.4 Variable Declarations
Variable declarations that span multiple lines should always be preceded by a type.

Example:

Acceptable:

int price , score ;

Acceptable:

int price ;
int score ;

Not Acceptable:

int price ,
 score ;

4.5 Program Statements
Program statements should be limited to one per line. Also, nested statements should be
avoided when possible.

Example:

Bad:

number_of_names = names.length ; b = new JButton [number_of_names] ;

Better:

number_of_names = names.length ;
b = new JButton [number_of_names] ;

Version 3.5
7 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

Example:

Bad:

strncpy (city_name , string , strlen (string)) ;

Better:

length = strlen (string) ;
strncpy (city_name , string , length) ;

Example:

Bad:

if (! strcmp (string1 , string2))
{
 fprintf (stdout , “The strings are equal!\n”) ;
}

Better:

status = strcmp (string1 , string2) ;

if (status == 0)
{
 fprintf (stdout , “The strings are equal!\n”) ;
}

4.6 Use of Parentheses
It is better to use parentheses liberally. Even in cases where operator precedence
unambiguously dictates the order of evaluation of an expression, often it is beneficial
from a readability point of view to include parentheses anyway.

Example:

Acceptable:

 total = 3 – 4 * 3 ;

Better:

 total = 3 – (4 * 3) ;

Even better:

 total = (-4 * 3) + 3 ;

Example:

Acceptable:

Version 3.5
8 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

 if (a == b && c == d)

Better:

 if ((a == b) && (c == d))

4.7 Inline Comments
Inline comments promote program readability. They allow a person not familiar with the
code to more quickly understand it. It also helps the programmer who wrote the code to
remember details forgotten over time. This reduces the amount of time required to
perform software maintenance tasks.

As the name suggests, inline comments appear in the body of the source code itself.
They explain the logic or parts of the algorithm which are not readily apparent from the
code itself. Inline comments can also be used to describe the task being performed by a
block of code.

Inline comments should be used to make the code clearer to a programmer trying to read
and understand it. Writing a well structured program lends much to its readability even
without inline comments. The bottom line is to use inline comments where they are
needed to explain complicated program behavior or requirements. Use inline comments
to generalize what a block of code, conditional structure, or control structure is doing.
Do not use overuse inline comments to explain program details which are readily obvious
to an intermediately skilled programmer.

A rule of thumb is that inline comments should make up 20% of the total lines of code in
a program, excluding the header documentation blocks.

4.8 Coding for Efficiency vs. Coding for Readability
There are many aspects to programming. These include writing software that runs
efficiently and writing software that is easy to maintain. These two goals often collide
with each other. Creating code that runs as efficiently as possible often means writing
code that uses tricky logic and complex algorithms, code that can be hard to follow and
maintain even with ample inline comments.

The programmer needs to carefully weigh efficiency gains versus program complexity
and readability. If a more complicated algorithm offers only small gains in the speed of
a program, the programmer should consider using a simpler algorithm. Although slower,
the simpler algorithm will be easier for other programmers to understand.

4.9 Meaningful Error Messages
Error handling is an important aspect of computer programming. This not only includes
adding the necessary logic to test for and handle errors but also involves making error
messages meaningful.

Version 3.5
9 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

The required time should be spent writing code to detect errors. C and FORTRAN place
the burden of the error handling on the programmer. Object oriented languages such as
C++ and Java offer exception handling utilities for handling errors.

Error messages should be meaningful. When possible, they should indicate what the
problem is, where the problem occurred, and when the problem occurred. A useful Java
exception handling feature is the option to show a stack trace, which shows the sequence
of method calls which led up to the exception.

Code which attempts to acquire system resources such as dynamic memory or files
should always be tested for failure.

Error messages should be stored in way that makes them easy to review. For non
interactive applications, such as a program which runs as part of a cron job, error
messages should be logged into a log file. Interactive applications can either send error
messages to a log file, standard output, or standard error. Interactive applications can
also use popup windows to display error messages.

4.10 Reasonably Sized Functions and Methods
Software modules and methods should not contain an excessively large number of lines
of code. They should be written to perform one specific task. If they become too long,
then chances are the task being performed can be broken down into subtasks which can
be handled by new routines or methods.

A reasonable number of lines of code for routine or a method is 200. This does not
include documentation, either in the function/method header or inline comments.

4.11 Number of Routines per File
It is much easier to sort through code you did not write and you have never seen before if
there are a minimal number of routines per file. This is only applicable to procedural
languages such as C and FORTRAN. It does not apply to C++ and Java where there
tends to be one public class definition per file.

Version 3.5
10 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

Appendix A - Internal Documentation Templates
Template internal documentation blocks. The examples use a C comment style which is
also applicable to C++ and Java. When documenting other languages, use the comment
style applicable to that language.

*Required items are denoted in bold text. Optional items are in italics.

File Documentation Block
Definition: This documentation block is located at the beginning of the file.
/**
*
* Original Author:
* File Creation Date:
* Development Group:
* Description:
*
**/

Module Documentation Block
Definition: This documentation block precedes each module in the source file.

(Optional items are denoted through the use of parentheses.)

/**
*
* Module Name:
* Original Author:
* Module Creation Date:
* Description:
* Calling Arguments:
* Name Input/Output Type Description
* Required Files/Databases:
* Non System Routines Called:
* Name Description
* Return Value:
* Type Description
* Error Codes/Exceptions:
* OS Specific Assumptions if any:
* Local Variables:
* Type Name Description
* Global Variables Used:
* Type Name Origin Description
* Constant and Macro Substitutions:
* Name Header File Description
* Modification History:
* Date Developer Action
***/

Version 3.5
11 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

Appendix B - Documentation Example
/***
* Filename: convert_temperature.c
*
* Original Author: Jane Doe
*
* File Creation Date: August 20, 2004
*
* Development Group: OHD / HSEB
*
* Description: Contains routines for converting temperatures from
* Celsius to Fahrenheit.
*
***/

/* Include files, definitions, globals go here. */
#include <convert_temperature.h>

#define ABSOLUTE_ZERO_IN_C -273.15

/***
* Module Name: convert_C_to_F
*
* Original Author: Jane Doe
*
* Module Creation Date: August 20, 2004
*
* Description:This function converts a Celsius temperature to Fahrenheit
*
* Calling Arguments:
* Name Input/Output Type Description
* temperatureC Input float The Celsius temperature to be
* converted.
* temperatureF Output float* The Celsius temperature
* converted to Fahrenheit.
*
* Required Files/Databases:
* None
*
* Non System Routines Called:
* None
*
* Return Value:
* Type Description
* int The status of the conversion. Did the conversion
* succeed or fail?
*
* Error Codes/Exceptions:
* CONVERSION_OK The conversion succeeded.
* BELOW_ABSOLUTE_ZERO The supplied Celsius temperature is below
* absolute zero. (These are defined in
* convert_temperature.h)
*
* OS Specific Assumptions:

Version 3.5
12 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

* None
*
* Local Variables:
* Name Type Description
* status int Contains the return status of this routine.
*
* Modification History:
* Date Developer Action
* 8/20/2004 Jane Doe Changed the equation used to convert
* Celsius to Fahrenheit.
*
***/
int convert_C_to_F (float temperatureC , float *temperatureF)
{

 int status = CONVERSION_OK ;

 /* Check to make sure the supplied temperature is at or above
 absolute zero. */
 if (temperatureC < ABSOLUTE_ZERO_IN_C)
 {
 /* The user-supplied temperature in Celsius is below absolute
 zero.*/
 status = BELOW_ABSOLUTE_ZERO ;
 }
 else
 {
 /* Convert user-supplied temperature in Celsius to Fahrenheit. */
 *temperatureF = (9 * temperatureC / 5) + 32 ;
 }

 return status ;
}

/***
* Module Name: convert_F_to_C
*
* Original Author: Jane Doe
*
* Module Creation Date: September 15, 2004
*
* Description: This function converts a Fahrenheit temperature to a
* Celsius temperature.
*
* Calling Arguments:
* Name Input/Output Type Description
* temperatureF Input float The Fahrenheit temperature
* to convert to Celsius.
* temperatureC Output float* The Celsius temperature
* resulting from the
* conversion.
*
* Required Files/Databases:
* None
*
* Non System Routines Called:
* None

Version 3.5
13 7/30/2007

NOAA National Weather Service NWS/OHD
General Software Coding Standards and Guidelines

*
* Return Value:
* Type Description
* int Indicates whether the conversion was successful or
* failed.
*
* Error Codes/Exceptions:
* CONVERSION_OK - The conversion from Fahrenheit to Celsius
* was successful.
*
* BELOW_ABSOLUTE_ZERO – The conversion from Fahrenheit to Celsius
* resulted in a temperature below absolute
* zero. (These values are defined in
* in convert_temperature.h)
*
* OS Specific Assumptions:
* This routine can run on HP-UX or Linux.
*
* Local Variables:
* Name Type Description
* status int Contains the return status of this conversion
* function.
*
* Modification History:
* Date Developer Action
*
***/
int convert_F_to_C (float temperatureF , float *temperatureC)
{
 int status = CONVERSION_OK;

 *temperatureC = (temperatureF – 32) * 5 / 9;

 if (*temperatureC < ABSOLUTE_ZERO_IN_C)
 {
 status = BELOW_ABSOLUTE_ZERO ;
 }

 return status;
}

Version 3.5
14 7/30/2007

	Revision History
	 Table of Contents
	1. Introduction
	2. Internal Documentation Standards
	3. Coding Standards
	3.1 Indentation
	3.2 Inline Comments
	3.3 Structured Programming
	3.4 Classes, Subroutines, Functions, and Methods
	3.5 Source Files
	3.6 Variable Names
	3.7 Use of Braces
	3.8 Compiler Warnings

	4. Coding Guidelines
	4.1 Line Length
	4.2 Spacing
	4.3 Wrapping Lines
	4.4 Variable Declarations
	4.5 Program Statements
	4.6 Use of Parentheses
	4.7 Inline Comments
	4.8 Coding for Efficiency vs. Coding for Readability
	4.9 Meaningful Error Messages
	4.10 Reasonably Sized Functions and Methods
	4.11 Number of Routines per File

	 Appendix B - Documentation Example

