
National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

NATIONAL WEATHER SERVICE
OFFICE of HYDROLOGIC DEVELOPMENT

Science Infusion Software Engineering Process Group
(SISEPG)

C++ Programming Standards and Guidelines

Version 1.11

 Version 1.11
11/17/2006

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

1. Introduction.. 1
2. Standards.. 2

2.1 File Names ... 2
2.2 File Organization ... 2
2.3 Include Files... 3
2.4 Comments .. 3
2.5 Naming Schemes ... 4
2.6 Readability and Maintainability... 5

2.6.1 Indentation ... 5
2.6.2 Braces... 5
2.6.3 “return” statements... 6
2.6.4 “if then else” statments .. 6
2.6.5 “switch” statments ... 6
2.6.6 Split lines ... 7

2.7 Class Design... 7
2.7.1 Default Constructor.. 7
2.7.2 Virtual Destructor: ... 7
2.7.3 Copy Constructor:.. 8
2.7.4 Assignment Operator: .. 8
2.7.5 Data Members:... 8
2.7.6 Example ... 8

2.8 Safety and Performance ... 8
2.8.1 Type Conversions .. 8
2.8.2 Use of Pointers... 8
2.8.3 Do Not Hardcode Values ... 9
2.8.4 Create Large Objects on the Heap ... 9
2.8.5 Function Prototype Variables .. 9

2.9 C++ Standard Template Library (STL) ... 9
2.10 Global Variables .. 9

3. Guidelines .. 10
4. Appendix A Class Declaration Layout .. 13
5. Appendix B Class Definition Layout... 18
References.. 23

 Version 1.11
11/17/2006

i

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

1. Introduction
The Office of Hydrologic Development (OHD) develops and maintains software which
the National Weather Service (NWS) Weather Forecast Offices (WFOs) and River
Forecast Centers (RFCs) use to generate hydrologic forecasts and warnings for rivers and
streams across the country. OHD also develops and maintains software which runs
centrally to acquire and distribute critical data to the WFOs and the RFCs. Software
development and maintenance has become a critical component supporting the operations
of NWS forecast offices and it is essential that it be well written and maintained.

Well written software offers many advantages. It will contain fewer bugs and will run
more efficiently than poorly written programs. Since software has a life cycle and much
of which revolves around maintenance, it will be easier for the original developer(s) and
future keepers of the code to maintain and modify the software as needed. This will lead
to increased productivity of the developer(s).

The OHD Science Infusion Software Engineering Process Group (SISEPG) has
developed standards and guidelines to ensure that developers follow good and widely
accepted software development practices when coding. It is believed this will lead to
well written and better structured programs, which must be simple, intuitive, and
uniform. The overall cost of the software is greatly reduced when the code is developed
and maintained according to software standards.

This document will present standards and guidelines for the C++ Programming
Language. The C++ standards are programming techniques which OHD developers are
expected to follow to help to them write high quality software. The C++ standards will
be enforced through peer reviews and code walkthroughs. The C++ guidelines are good
programming practices which developers are encouraged to adopt.

The developer should also read the OHD General Software Development Standards and
Guidelines document to become familiar with the standards and guidelines deemed by the
SISEPG to be applicable to all programming languages.

It is important to note that standards are not fixed, but will evolve over time. Developers
are encouraged to provide feedback to the SISEPG (sisepg@gateway2.nws.noaa.gov).
Also each project area may derive its own standards and guidelines if special
requirements are desired. Finally, the developers are to follow the "OHD General
Software Development Standards and Guidelines" except where specified in this
document.

 Version 1.11
11/17/2006

1

mailto:sisepg@gateway2.nws.noaa.gov

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

2. Standards
2.1 File Names

• Header files and namespace files must use suffixes: .h, .H, .hh, .hpp, or
.hxx

• Source files must use suffixes: .C, .cc, .cpp, or .cxx

• File name suffixes shall be consistent within a project

• If the file is a class or a struct declaration and definition, or namespace, the file
name shall be UpperMixedCase plus one of the suffixes listed above, for
example, the header file and source file for class MyClass shall be MyClass.h and
MyClass.cpp respectively. Otherwise, the lowerMixedCase should be used for
file name plus a suffix. For example, the header file and source file for function
myFunction shall be myFunction.h and myFunction.cpp respectively.

2.2 File Organization
• Each file contains only one class declaration or definition except functors and

static classes (see Section 2.7 for details on functors and static classes).

• Must contain the comment block specified in the "OHD General Software
Development Standards and Guidelines" at the beginning.

• Include a brief description about the content of the file after the comment block.

• The content of the file shall be in the following order:

1. A header file should include the following preprocessor directives at the
beginning and the end of the file to prevent multiple inclusions. The
convention is an all UPPERCASE construction of the file name and the H suffix
connected by an underscore ’_’. This applies to namespace files too. For
example,

 #ifndef XX_H

 #define XX_H
 ...

 #endif//#ifndef XX_H

2. Comment block described in the "OHD General Software Development
Standards and Guidelines"

3. A brief description about the content of the file
4. Include header files
5. #defines and Macros

6. The “use” directive should not be used in header files. To do so will likely
cause name confliction and include unnecessary files to retrieve the directive

 Version 1.11
11/17/2006

2

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

in the header file(s) and because the header file may be included in another
header file or other header files.

7. Class or function declaration or definition.

2.3 Include Files
• Always use the C++ standard library headers that have no extension, the <xxx.h>

versions are deprecated. For example:
 #include <iostream>
 #include <string>

• Use the new prefix c instead of the old extension .h for C standard header files.
For example:

 #include <cstdlib> //was:<stdlib.h>
 #include <cstring> //was:<string.h>

• Use the < > pair for library and system headers, for example:
 #include <filename.h>

• Use the " " pair for non-system (user defined) headers, for example:
 #include "filename.h"

• Do not use absolute or relative paths to point to your header files. It is mandatory
that you use the –I<dir> directive of the C compiler to instruct the compiler where
your header files are located..

• List the system header files first in alphabetical order. Then list the non system
include files (including COTS includes) also in alphabetical order.

Example
#include <iostream>
#include <string>
#include <vector>

#include “MyClass.h”
#include “MyFunc.h”

2.4 Comments
• Use the JavaDoc convention format for the documentation comment and the

comment blocks[1], such that the comment can be extracted by a documentation
tool, such as ’ccdoc’. For example,

 /**
 * Documentation goes here
 */
 class MyClass
 {
 ...
 }

 Version 1.11
11/17/2006

3

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

• Use the C++ comment "//" style or the C style (/* ... */) for inline comments

2.5 Naming Schemes
In general, names shall be mnemoic and meaningful. All variables should be initialized
before use.

• namespace, class, struct, template argument and parameter names

(variables that are visible in more than one linkage unit)
o Use uppercase letters as word separators, Lowercase for the rest of a

word
o First character in a name is uppercase
o No underscores(’_’)

For example, class MyClass{ ... }

• Macro and #defined constant, enum, union, class static data member, and global
variable names

o Use all uppercase letters with underscore ’_’ as separators
For example, #define MY_DEFINE 1

• Class method and variable names
o Use uppercase letters as word separators, lowercase for the rest of a word
o First character in a name is lowercase
o No underscores(’_’)

For example, MyClass::myMethod(){ ... }

• Class data member names
o Private data member names shall be prepended with the underscore ’_’
o Following the ’_’, use the same rules as for method names (where the first

character is an underscore and the next characters are mixed lowercase),
for example, int _myDataMember

o static const data member shall be all uppercase, for example, public
static const PI=3.14159

• typedef reflect the style appropriate to the underlying type. For example, use
method name scheme for typedef-name for a method or a built-in type and class
name scheme for typedef-name for a class, struct, or union. If the purpose
of the typedef is to transparently switch between underlying types, choose any
appropriate naming style.

• Do not use class, struct, variable, method names that differ by case only.

• Do not use class, struct, variable, method names that conflict with those in the
standard library.

• C function names

 Version 1.11
11/17/2006

4

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

o Avoid creating C functions when programming in C++;
o See the OHD C Programming Standards and Guidelines for C function

name schemes if you have to create C functions.

2.6 Readability and Maintainability
See the OHD Software Development Standards and Guidelines for guidance on how to
make your files more readable and maintainable. These are standards which apply to
programming languages in general not just to the C++ language.

2.6.1 Indentation
The OHD Software Development Standards and Guidelines document states that
consistent indentation shall be used when distinguishing conditional or control blocks
of code.

Use 3 or 4 spaces to indent code and be consistent with whatever you choose. Do not
use tabs.

2.6.2 Braces

• Place braces under and inline with keywords, like this:

 if (condition) while (condition)
 { {

 } }

 Or use the old c style like this

 if (condition){ while (condition){

 } }

• "for loop", "if then else" and "try catch" statements, always uses
braces form, even if there is only a single statement within the braces, for
example, use

 for (initialization; condition; update)
 {
 statement;
 }

 Instead of

 for (initialization; condition; update)
 statement;

 Or use the following style (Kernighan and Ritchie) as an alternative.

 for (initialization; condition; update) {
 statement;

 Version 1.11
11/17/2006

5

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 }

• If a loop statement is empty, use the following form

 for (initialization; condition; update)
 ;

 or

for (initialization; condition; update)
 {}

 Do not do this

 for (initialization; condition; update);

 It is hard to read or add more codes to the loop.

2.6.3 “return” statements
Do not use parenthesis in return statements when it’s not necessary.

2.6.4 “if then else” statments

• Use the following style for if then else statement

 if (condition)
 {
 }
 else if (condition)
 {
 }
 else
 {
 }

 Or use the following style (Kernighan and Ritchie) as an alternative.

 if (condition){
 }
 else if (condition){
 }
 else{
 }

2.6.5 “switch” statments

• switch formatting

 Falling through a case statement into the next case statement shall be
permitted as long as a comment is included.

 Version 1.11
11/17/2006

6

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 The default case shall always be present and trigger an error if it shall not
be reached, yet is reached.

 If you need to create variables put all the code in a block.
 For example

 switch (...)
 {
 case 1:
 ...
 // FALL THROUGH
 case 2:
 {
 int v;
 ...
 }
 break;
 default:
 }

2.6.6 Split lines
The incompleteness of split lines must be made obvious (see the "OHD General
Software Development Standards and Guidelines" for details)

2.7 Class Design
Class members are declared in the following order:

1. public members
2. protected members
3. private members

Classes must have a default constructor, a virtual destructor, a copy constructor, and an
overloaded assignment operator, except functors, and static classes. Functors (function
objects) normally have only one overloaded () operator as member. Static classes
contain only static member functions and are therefore never instantiated. Instead, they
must be declared as a private default constructor (without any implementation) to prevent
instantiation.

2.7.1 Default Constructor
Always provide a default constructor for your class. If the default constructor is
sufficient, a comment should be added indicating that the compiler-generated version
will be used. If your constructor has one or more optional arguments, a comment
should be added indicating that it will function as a default constructor.

2.7.2 Virtual Destructor:
If your class is intended to be derived from by other classes then make the destructor
virtual. You shall always make a destructor virtual for the sake of future extensibility.
Only make it non-virtual if you have a real good reason to do so.

 Version 1.11
11/17/2006

7

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

2.7.3 Copy Constructor:
If your class is copyable, either define a copy constructor and assignment operator or
add a comment indicating that the compiler-generated versions will be used. If your
class objects should not be copied make the copy constructor and assignment
operator private and do not define bodies for them. If you do not know whether the
class objects should be copyable, then assume not until the copy operations are
needed. The copy constructor shall have “const” in the parameter.

2.7.4 Assignment Operator:
If your class is assignable, either define an assignment operator or add a comment
indicating that the compiler-generated versions will be used. If your object shall not
be assigned, make the assignment operator private and do not define a body for it. If
you don’t know whether the class objects shall be assignable, then assume not. The
overloaded assignment operator= shall return *this as a XXX& (allows chaining of
assignments). The assignment operator shall have “const” in the parameter.

2.7.5 Data Members:
Data Members shall be private; doing this will promote information hiding and
restricted access, which are very important in objected oriented programming.

2.7.6 Example:
See Appendix A for a class declaration layout

2.8 Safety and Performance

2.8.1 Type Conversions
Type conversions must always be done explicitly. Never rely on implicit type
conversion. Use the C++ set of casting operators: static_cast,
reinterpret_cast, const_cast and dynamic_cast instead of C-style casting.

2.8.2 Use of Pointers
A pointer which is declared but not initialized is known as a dangling pointer. Un-
initialized pointers are dangerous because subsequent operations on the pointer will
not know if the pointer references a valid memory address. When a pointer variable
is declared always initialize it either with the address of an existing object or the
value NULL. This usually sets the pointer’s value to zero. The operating system is
very strict about memory operations in the reserved zero page address space. So
initializing pointers to NULL will quickly find code problems where they are used
before being set to point to valid memory addresses. Any place the pointer is
subsequently used the C++ code shall first check the pointer to see if it is NULL
before trying to dereference it.

Always test pointers for NULL values before trying to dereference them.

 Version 1.11
11/17/2006

8

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

2.8.3 Do Not Hardcode Values
Do not hardcode numerical constants. Instead, declare a constant using either a
const directive or a enum directive. In both cases, the constant name should be all
uppercase.

2.8.4 Create Large Objects on the Heap
Use dynamically allocated memory for large arrays, as opposed to declaring local
variables. Allocating objects dynamically will create them on the heap. The heap has
more space than the stack.

2.8.5 Function Prototype Variables
The arguments specified in a function prototype shall be associated with variable
names. These variable names must match the variable names in the function
definition. Doing this makes function prototypes more meaningful. A programmer
can tell more about the arguments which need to be supplied to a function if the
arguments in the prototype have meaningful names associated with them.

2.9 C++ Standard Template Library (STL)
Try to use the C++ STL. The C++ STL contains a set of containers, iterators, function
objects, algorithms and utility classes. They are better than the C++ native arrays and
pointers. By using the STL, you don’t need to reinvent the wheel. Also, codes created by
STL are more readable and maintainable than classic C++ codes.

2.10 Global Variables
Use of global variables shall be minimized. Global variable values are very hard to trace
while debugging a program.

 Version 1.11
11/17/2006

9

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

3. Guidelines
General coding guidelines provide the programmer with a set of best practices which can
be used to make programs easier to read and maintain. Unlike the coding standards, the
use of these guidelines is not mandatory. However, the programmer is encouraged to
review them and attempt to incorporate them into his/her programming style where
appropriate.

• Use static const members instead of #defined constants

• Use enum to define a collection of integral constants

• Use inline functions instead of Macros

• Do not use templates directly. Instead use proper typedefs

• Practice const correctness. All "variables’ and parameters that should not be
changed have to be declared const. Furthermore all methods that do not alter the
object have to be const. Especially getXxx methods should be const in all
cases.

• Initialize all variables

• Avoid pointer arithmetic. Use the STL containers and iterators instead. The
operators == and != are defined for all pointers of the same type, while the use
of the operators <, >, <=, >= are portable only if they are used between
pointers which point into the same array.

• Parts-of relation inheritance should be avoided. Recognize inheritance for
implementation; use a private base class or (preferable) a member object [as an
alternative]. [4]

• Local variables should be declared near their first use.

• Do not use assignment operator= when constructing an object, use the copy
constructor instead

• For increment and decrement, the prefix form (++i or --i) is preferred, because it
is more efficient (especially for the STL iterators).

• Do not put parenthesis next to keywords or function names. Put a space between
the parenthesis and the keyword. For example,

 while (condition)

Do not use the following form (without space)

 while(condition)

 Do put parenthesis next to function names. For example,

 myFunction (arg1, ...)

 Version 1.11
11/17/2006

10

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 Do not use the following form (without space)

 myFunction(arg1, ...)

• To increase readability, put spaces between variables, key words and operators,
for example,

 average = (x + y + z) / total

 do not do this

 average=(x+y+z)/total

• Portability means that a source code file can be compiled and executed on
different machines with the only changes being the possible inclusion of different
header files and the use of different compiler flags. The header files contain
#define and typedef constructs that may vary from machine to machine (a
different machine may mean different hardware, a different operating system, a
different compiler, or any combination of these).

• The C++ programmer needs to have a good grasp of the namespace of a class
definition, and lifetime and scope of a variable

• Pointers should be named in some fashion that distinguishes them from other
“ordinary” variables. One possibility is that pointer variable names start with a
lowercase “p” followed by the rest of the name with the first character capitalized,
e.g. pValue. This makes recognition of pointer variables in source code easier.

Another possible naming convention for pointers is to append “ptr” to the end of
pointer variable names. The name of the pointer should either imply the type of
the data object it is referencing or the name of the pointer should describe the data
it represents.

The programmer should be consistent in naming pointers. Do not mix different
naming conventions.

• Loop index variable names may be short and do not need to be descriptive.

• When using macros, it is essential to use parentheses to ensure correct evaluation
of the macro.
Example:

/* The following macro definition could result in an error. */
#define PI 3.14159
#define CIRCLE_AREA(x) (PI * x * x)

area = CIRCLE_AREA (c + 2) ;

/* The preprocessor will expand this macro to: */

 Version 1.11
11/17/2006

11

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

area = PI * c + 2 * c + 2 ;

/* Given operator precedence in C, this will be incorrectly
 evaluated as: */

area = (PI * c) + (2 * c) + 2 ;

/* The following macro definition uses parentheses to ensure that
 it is evaluated as the programmer intended it to be. */

#define CIRCLE_AREA(x) (PI * (x) * (x))
area = CIRCLE_AREA (c + 2) ;

/* The preprocessor will expand this macro to: */

area = PI * (c + 2) * (c + 2) ;

This will evaluate in the correct order.

• Limit use of library functions, especially in loops. For example, consider using
the form x*x rather than the math library function pow (x, 2).

• Use the goto statement very sparingly. Structured programming techniques have
practically eliminated the need for the goto statement. In the opinion of many
programmers, the goto statement should never be used.

• The goto has few uses in general high-level programming, but it can be very
useful when C++ code in generated by a program rather than written directly by a
person; for example, gotos can be used in a parser generated from a grammar by
a parser generator. The goto can also be important in the rare case in which
optimal efficiency is essential, for example, in the inner loop of some real-time
application.

• Reduce repetitive computations by only doing them once and saving the result in
a temporary variable for future access.

• Reference Scott Meyer’s books, Effective C++: 50 Specific Ways to Improve
Your Programs and Design and More Effective C++: 35 New Ways to Improve
Your Programs and Designs, on improving C++ program.

 Version 1.11
11/17/2006

12

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

4. Appendix A Class Declaration Layout

/**
 * Filename: Temperature.h
 * Original Author: somebody
 * Date created: Aug. 1st, 2400
 * Development Org: OHD HSMB
 *
 * Library required: C++ standard library
 *
 * Compiler requirements:
 *
 * This class maintains a temperature value.
 * Reference: convert_temperature.cpp from Jane Doe
 *
 */

#ifndef TEMPERATURE_H
#define TEMPERATURE_H

// SYSTEM INCLUDES
//

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//

// FORWARD REFERENCES
//

class Temperature
{//class Temperature

 public:

 /**--
 * Default constructor.
 *---
 */
 Temperature(void);

 /**--
 * The standard constructor. The argument is a value
 * of temperature in C
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 Temperature(float const& temperatureC);

 /**--

 Version 1.11
11/17/2006

13

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 * Copy constructor.
 *
 * Make a copy of the Temperature object
 *---
 */
 Temperature(Temperature const& from);

 /**--
 * Destructor.
 *---
 */
 ~Temperature(void);

// OPERATIONS

 /**--
 * Add a Celsius temperature
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void addC(float const& temperatureC);

 /**--
 * Subtract a Celsius temperature
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void subtractC(float const& temperatureC);

 /**--
 * Add a Fahrenheit temperature
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void addF(float const& temperatureF);

 /**--
 * Subtract a Fahrenheit temperature
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void subtractF(float const& temperatureF);

 /**--
 * Test if the temperature is valid, that is if the
 * temperature is below absolute zero
 *
 * return false if the temperature is below absolute zero

 Version 1.11
11/17/2006

14

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 *---
 */
 bool isValid(float const& tempK);

// ACCESS

 /**--
 * Set the temperature in Celsius
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void setC(float const& temperatureC);

 /**--
 * Set the temperature in Fahrenheit
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void setF(float const& temperatureF);

 /**--
 * Set the temperature in Kelvin
 *
 * throw an out_of_range exception if the result is below
 * absolute zero
 *---
 */
 void setK(float const& temperatureK);

 // INQUIRY

 /**--
 * Get the temperature in Fahrenheit
 *
 *---
 */
 float getF() const;

 /**--
 * Get the temperature in Celsius
 *

 *--
 */

 float getC() const;

 /**--
 * Get the temperature in Kelvin
 *
 */
 float getK() const;

 Version 1.11
11/17/2006

15

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 // OPERATORS

 /* Assignment operator.
 *
 * Assign another temperature object to this object
 *
 * returns a reference to this object.
 *---
 */
 Temperature& operator=(Temperature const& from);

 /**--

 * Overloaded '+' operator.
 *
 * add two Temperature objects
 *
 * returns a Temperature object
 *---
 */
 Temperature operator+(Temperature const& from);

 /**---
 * Overloaded '-' operator.
 *
 * Subtract the a Temperature object from this Temperature
 * object
 * returns a Temperature object
 *--
 */
 Temperature operator+(Temperature const& from);

//static public members

 /**--
 * The Celsius temperature zero in Kelvin
 *---
 */
 static const float ABSOLUTE_ZERO_IN_C;

 protected:

 private:

 float _temperatureK; //the temperature value in Kelvin

 /**--
 * throw an out_of_range exception if invalid
 *---
 */
 void testValidity(float const& temp)
 throw(std::out_of_range);

 /**--
 * Converts a Celsius temperature to Fahrenheit
 *

 Version 1.11
11/17/2006

16

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 * Throw an out_of_range exception if the conversion fails
 * provided for convenience
 *---
 */
 static float convertCtoF(float const& temperatureC)
 throw(std::out_of_range);

 /**--
 * Converts a Fahrenheit temperature to Celsius
 *
 * Throw an out_of_range exception if the conversion fails
 * provided for convenience
 *---
 */
 static float convertFtoC(float const& temperatureF)
 throw(std::out_of_range);

};//class Temperature

#endif // TEMPERATURE_H

 Version 1.11
11/17/2006

17

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

5. Appendix B Class Definition Layout

/**--
 * Filename: Temperature.cpp
 * Original Author: somebody
 * Date created: Aug. 1st, 2400
 * Development Org: OHD HSMB
 *
 * Library required: C++ standard library
 *
 * Compiler requirements:
 *
 * This class maintains a temperature value.
 * Reference: convert_temperature.h, onvert_temperature.cpp
 * from Jane Doe
 *
 * The Temperature class is implemented here
 * Filename: Temperature.cpp
 *---
 */

// SYSTEM INCLUDES
//
#include <exception>
#include <string>

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//
#include "Temperature.h"

// FORWARD REFERENCES
//

// LIFECYCLE

//---
Temperature::Temperature(void):_temperatureK(0.f) {};

//---
Temperature::Temperature(float const& temperatureC)
{ //Temperature
 float tempK = temperatureC - ABSOLUTE_ZERO_IN_C;

 testValidty(temp);
 _temperatureK = temp;

} //Temperature

//---
Temperature::Temperature(Temperature const& from)
{ //Temperature

 Version 1.11
11/17/2006

18

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 testValidty(from._temperatureK);
 _temperatureK = from._temperatureK;

} //Temperature

//---

Temperature::~Temperature(void) {};

//---

void Temperature::addC(float const& temperatureC)
{ //addC
 _temperatureK += temperatureC;
} //addC

//---

void Temperature::subtractC(float const& temperatureC)
{ //subtractC
 float tempK = _temperatureK - temperatureC;
 testValidty(tempK);
 _temperatureK -= temperatureC;
} //subtractC

//---

void Temperature::addF(float const& temperatureF)
{ //addF
 _temperatureK += convertFtoC(temperatureF);
} //addF

//---

void Temperature::subtractF(float const& temperatureF);
{ //subtractF
 float tempK = _temperatureK

 - convertFtoC(temperatureF);

 testValidity(tempK);
 _temperatureK = tempK;
} //subtractF

//---

bool Temperature::isValid(float const& temperatureK)
{ //isValid
 return !(temperatureK < 0.0);
} //isValid

// ACCESS

//---

void Temperature::setC(float temperatureC)
{ //setC
 float tempK = temperatureC - ABSOLUTE_ZERO_IN_C;
 testValidity(tempK);

 Version 1.11
11/17/2006

19

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 _temperatureK = tempK;
} //setC

//---

void Temperature::setF(float const& temperatureF)
{ //setF
 float tempK = convertFtoC(temperatureF)
 - ABSOLUTE_ZERO_IN_C;
 testValidity(tempK);
 _temperatureK = tempK;
} //setF

//---

void Temperature::setK(float const& temperatureK)
{ //setK
 testValidity(temperatureK);
 _temperatureK = temperatureK;
} //setK

// INQUIRY

//---

float Temperature::getF() const
{ //getF
 return convertCtoF(_temperatureK + ABSOLUTE_ZERO_IN_C
);
} //getF

//---

float Temperature::getC() const
{ //getC
 return _temperatureK + ABSOLUTE_ZERO_IN_C;
} //getC

//---

float Temperature::getK() const
{ //getK
 return _temperatureK;
} //getK

// OPERATORS

//---

Temperature& Temperature::operator=(Temperature const&
 from)
{ //operator=

 if (this != &from) //prevent self assignment
 { // if

 testValidity(from._temperatureK);

 Version 1.11
11/17/2006

20

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 _temperatureK = from._temperatureK;
 } // if
 return *this;

} //operator=

//---

Temperature Temperature::operator+(Temperature const&
 right)
{ //operator+
 Temperature t;
 t._temperatureK = _temperatureK + right._temperatureK;
 return t;
} //operator+

//---

Temperature Temperature::operator-(Temperature const&
 right)
{ //operator-
 float tempK = _temperatureK - right._temperatureK;

 testValidity(tempK);
 Temperature t;
 t._temperatureK = tempK;
 return t;

} //operator-

//---

//static public members

const float Temperature::ABSOLUTE_ZERO_IN_C = -273.16;

//private methods

//---
void Temperature::testValidity(float const& tempK)
 throw(std::out_of_range)
{ //testValidity
 if (!isValid(tempK))
 { //if

 throw std::out_of_range(
 "Temperature is below absolute zero!");
 } //if

} //testValidity

//---

float Temperature::convertCtoF(float const& temperatureC)
 throw(std::out_of_range)
{ //convertCtoF
 if (temperatureC < ABSOLUTE_ZERO_IN_C)
 { //if

 throw std::out_of_range(
 "Temperature is below absolute zero!");

 Version 1.11
11/17/2006

21

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

 } //if
 return (9.0 * temperatureC / 5.0) + 32.0;
} //convertCtoF

//---

float Temperature::convertFtoC(float const& temperatureF)
 throw(std::out_of_range)
{ //convertFtoC
 float tC = (temperatureC - 32.0) * 5.0 / 9.0;
 if(tC < ABSOLUTE_ZERO_IN_C)
 { //if
 throw std::out_of_range(

 "Temperature is below absolute zero!");
 } //if
 return tC;
} //convertFtoC

 Version 1.11
11/17/2006

22

National Weather Service/OHD
Science Infusion and Software Engineering Process Group (SISEPG) – C++ Programming Standards and
Guidelines

References
[1] OHD General Software Development Standards and Guidelines
[2] Bjarne Stroustrup, The C++ Programming Language, Special Edition, ISBN 0-201-

70073-5, Addison-Wesley
[3] Java Code Conventions
[4] MDL C++ Coding Standards
[5] C++ Coding Convention, http://courses.iicm.edu/programmierpraktikum/

skriptum/cplusplus_coding_convention_20040406.pdf
[6] UWYN C++ Coding Standard,

http://www.uwyn.com/resources/uwyn_cpp_coding_standard/
[7] C++ Coding Standard, http://www.possibility.com/Cpp/CppCodingStandard.html
[8] C++ Programming Style Guidelines, http://geosoft.no/development/cppstyle.html
[9] FX-ALPHA C and C++ Coding Conventions, http://www-

sdd.fsl.noaa.gov/ fxa/manuals/codingGuidelines.html
[10] C++ FAQ LITE Frequently Asked Questions, http://www.parashift.com/c++-faq-

lite/
[11] The C Programming Language, Second Edition, Brian Kernighan and Dennis

Ritchie

 Version 1.11
11/17/2006

23

	
	
	1. Introduction
	2. Standards
	2.1 File Names
	2.2 File Organization
	2.3 Include Files
	2.4 Comments
	2.5 Naming Schemes
	2.6 Readability and Maintainability
	2.6.1 Indentation
	2.6.2 Braces
	2.6.3 “return” statements
	2.6.4 “if then else” statments
	2.6.5 “switch” statments
	2.6.6 Split lines

	2.7 Class Design
	2.7.1 Default Constructor
	2.7.2 Virtual Destructor:
	2.7.3 Copy Constructor:
	2.7.4 Assignment Operator:
	2.7.5 Data Members:

	2.8 Safety and Performance
	2.8.1 Type Conversions
	2.8.2 Use of Pointers
	2.8.3 Do Not Hardcode Values
	2.8.4 Create Large Objects on the Heap
	2.8.5 Function Prototype Variables

	2.9 C++ Standard Template Library (STL)
	2.10 Global Variables

	3. Guidelines
	4. Appendix A Class Declaration Layout
	5. Appendix B Class Definition Layout
	 References

