Skip to main content

Water Science for Schools

Water Basics Earth's Water Water Cycle Special Topics Water Use Activity Center Water Q&A Galleries Search this site Help Water glossary Site map Contact us Back Home

Hydroelectric power water use

What percent of the nation's power do you think came from hydroelectric-power plants in 2006?

Hydro power must be one of the oldest methods of producing power. No doubt, Jack the Caveman stuck some sturdy leaves on a pole and put it in a moving stream. The water would spin the pole that crushed grain to make their delicious, low-fat prehistoric bran muffins. People have used moving water to help them in their work throughout history, and modern people make great use of moving water to produce electricity.

Hydroelectric power for the Nation

Pie chart showing sources of electricity in the U.S. in 2006Although most energy in the United States is produced by fossil-fuel and nuclear power plants, hydroelectricity is still important to the Nation, as about 7 percent of total power is produced by hydroelectric plants. Nowadays, huge power generators are placed inside dams. Water flowing through the dams spin turbine blades (made out of metal instead of leaves) which are connected to generators. Power is produced and is sent to homes and businesses.

World distribution of hydropower

Producing electricity using hydroelectric power has some advantages over other power-producing methods. Let's do a quick comparison:

Advantages to hydroelectric power:
Fuel is not burned so there is minimal pollution
Water to run the power plant is provided free by nature
Hydropower plays a major role in reducing greenhouse gas emissions
Relatively low operations and maintenance costs
The technology is reliable and proven over time
It's renewable - rainfall renews the water in the reservoir, so the fuel is almost always there

Read an expanded list of advantages of hydroelectric power from the Top World Conference on Sustainable Development conference, Johannesburg, South Africa (2002)

Disadvantages to power plants that use coal, oil, and gas fuel:
They use up valuable and limited natural resources
They can produce a lot of pollution
Companies have to dig up the Earth or drill wells to get the coal, oil, and gas
For nuclear power plants there are waste-disposal problems

Hydroelectric power is not perfect, though, and does have some disadvantages:
High investment costs
Hydrology dependent (precipitation)
In some cases, inundation of land and wildlife habitat
In some cases, loss or modification of fish habitat
Fish entrainment or passage restriction
In some cases, changes in reservoir and stream water quality
In some cases, displacement of local populations

Reservoir construction is "drying up" in the United States

Gosh, hydroelectric power sounds great -- so why don't we use it to produce all of our power? Mainly because you need lots of water and a lot of land where you can build a dam and reservoir, which all takes a LOT of money, time, and construction. In fact, most of the good spots to locate hydro plants have already been taken. In the early part of the century hydroelectric plants supplied a bit less than one-half of the nation's power, but the number is down to about 10 percent today. The trend for the future will probably be to build small-scale hydro plants that can generate electricity for a single community.

As this chart shows, the construction of surface reservoirs has slowed considerably in recent years. In the middle of the 20th Century, when urbanization was occuring at a rapid rate, many reservoirs were constructed to serve peoples' rising demand for water and power. Since about 1980, the rate of reservoir construction has slowed considerably.

Typical hydroelectric powerplant

Hydroelectric energy is produced by the force of falling water. The capacity to produce this energy is dependent on both the available flow and the height from which it falls. Building up behind a high dam, water accumulates potential energy. This is transformed into mechanical energy when the water rushes down the sluice and strikes the rotary blades of turbine. The turbine's rotation spins electromagnets which generate current in stationary coils of wire. Finally, the current is put through a transformer where the voltage is increased for long distance transmission over power lines. (Source: Environment Canada)

Hydroelectric-power production in the United States and the world

Chart showing hydroelectric power generation by State in the United States, and the top countries in the world using hydro power. As this chart shows, in the United States, most states make some use of hydroelectric power, although, as you can expect, states with low topographical relief, such as Florida and Kansas, produce very little hydroelectric power. But some states, such as Idaho, Washington, and Oregon use hydroelectricity as their main power source. in 1995, all of Idaho's power came from hydroelectric plants.

The second chart shows hydroelectric power generation in 2006 for the leading hydroelectric-generating countries in the world. China has developed large hydroelectric facilities in the last decade and now lead the world in hydroelectricity usage. But, from north to south and from east to west, countries all over the world make use of hydroelectricity—the main ingredients are a large river and a drop in elevation (along with money, of course).

Sources and more information

 • Sustainability of Ground-Water Resources, USGS Circular 1186
 • The Foundation for Water Education and Energy (FWEE)
 • World Water Assessment Programme (UNESCO)
 • The Nature of Water: Environment Canada

Water Use Water Science home page

Accessibility FOIA Privacy Policies and Notices

Take Pride in America home page. USA.gov U.S. Department of the Interior | U.S. Geological Survey
URL: http://ga.water.usgs.gov/edu/wuhy.html
Page Contact Information: Howard Perlman
Page Last Modified: Friday, 20-Feb-2009 15:00:04 EST