Oxidation of Organic Contaminants on Nanoparticulate Zero-Valent Iron

David Sedlak, Christy Keenan, Fiona Doyle University of California, Berkeley

David Waite
University of New South Wales

Zero-Valent Iron (ZVI) Applications

- > Permeable reactive barriers
 - Reduction of halogenated organics
 - Sequestration of metals
- Iron nanoparticles
 - In situ remediation (Zhang, Tratnyek et al.)
 - Oxygen is undesireable

Oxidative ZVI Reactions

Molinate transformation (Joo et al. 2004)

[molinate]=0.2 mg/L[nZVI] = 560 mg/L; pH 4

Oxidative ZVI: Granular Fe

Chlorophenol transformation (Noradoun et al. 2003)

[Chlorophenol]=0.14 g/L[ZVI] = 50 g/L; 0.32 mM EDTA

Questions

- How does oxidative ZVI work?
- How efficient is it?
- What are the potential applications?

> 4 e⁻ pathway

Overall:
$$O_2 + 2 \text{ Fe}^0_{(s)} + 4 \text{ H}^+ \longrightarrow 2 \text{ H}_2\text{O} + 2 \text{ Fe}^{2+}$$

> 2 e⁻ pathway

$$O_{2} \xrightarrow{\text{Pe}^{2}_{(s)}} Pe^{2+} \longrightarrow H_{2}O_{2}$$

$$Pe^{2+} \longrightarrow Fe^{3+} + OH^{-}$$

$$OH \xrightarrow{\text{R}} OH^{-}$$

$$O \times Pe^{3+} + OH^{-}$$

$$OH \xrightarrow{\text{Coverall:}} O_{2} + Fe^{0}_{(s)} + 2 H^{+} + R \xrightarrow{\text{Coverall:}} 2 OH^{-} + Fe^{3+} + R^{-}$$

> Efficiency determined by branching ratio

> Efficiency determined by branching ratio

Benzoic Acid Experiments

Yields 5-25% (Joo et al. 2005)

pH = 3 [BA] = 10 mM

Effect of pH

- > pH slows corrosion processes
- efficiency at high pH unknown

50 mg/L nZVI 1 hr reaction

> As(III) removal (Kanel et al. 2005)

Treatment of runoff (Feitz et al. 2005)

> Treatment of dilute plume (e.g., MTBE, 1,4-dioxane)

Treatment of dilute plume (e.g., MTBE, 1,4-dioxane)

 $\Delta[O_2] = 0.25 \text{ mM}$ 20% yield (2 e⁻ pathway) = 50 µM OH[•]

> Treatment of dilute plume (e.g., MTBE, 1,4-dioxane)

 $\Delta[O_2]$ = 0.25 mM 20% yield (2 e⁻ pathway) = 50 μ M OH[•] OH[•] scavengers: 0.1 mM Fe(II), 1 mM HCO₃⁻, 2 mg/L NOM, 1 μ M R ~8% of OH[•] to R (4 μ M)

Conclusions

- > OH formed by nZVI reactions with O₂
- Efficiency depends on pathway
- Preliminary results suggest applications
 - As(III) removal
 - Runoff/soil treatment
 - Dilute groundwater plumes

References

- Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. *Environ. Sci. Technol.* 38: 2242-2247.
- Joo SH, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. *Environ. Sci. Technol.*, 39, 1263-1268.
- Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, Waite TD (2005), Coll. & Surfaces A, 265, 88-94
- Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. *Environ. Sci. Technol* 39 (5): 1291-1298.
- Noradoun C, Engelmann MD, McLaughlin M, Hutcheson R, Breen K, Paszczynski A, Cheng IF (2003) Destruction of chlorinated phenols by dioxygen activation under aqueous room temperature and pressure conditions. *Ind. Eng. Chem. Res.* 42, 5024-5030.