RUTGERS

Polar Organic Fine Particles from the **New York**, **New Jersey &** Connecticut **Regional Airshed**

U.S EPA STAR PM Source Apportionment Review Meeting Monica Mazurek, Civil & Environmental Engineering Department U.S. EPA Research Triangle Park June 21-22, 2007

Project Goals -- Polar Organic Fine Particles

Identify and measure the ambient abundances of polar organic compounds found as PM2.5 in the NY, NJ and CT regional airshed using Liquid Chromatography/Mass Spectrometry (LCMS) chemical analysis

Measure and identify both known and potential secondary organic aerosol markers found within the fine particle acidic organic fraction

Identify emissions of polar organic compounds from primary sources, including vehicular sources and wood combustion

Speciation of Organics for Apportionment of PM2.5 in the NY City Area (SOAP) **SOAP 2002-2003**

Sources of fine carbonaceous particles

Ambient concentrations TC, EC, OC

Ambient concentrations molecular markers

NY, NJ CT Fine Particulate Matter Study

Fine Particle Collection

Tisch 2 or 4 Channel Sampler

Quartz fiber filter collection substrate, 102mm

24 hr, 113 lpm

Sampling, transport, sample handling, and analytical procedures for ppt (10⁻¹²) level organics

Shipping Module for Filter Holder

Reducing carbon background...

... filter handling, preparation & storage steps critical

Filter Handling, EC/OC Punch and Storage

SOAP fine particle composites

Identical days, 6-10 filters per composite								
Early summer '02	Eliz, Qns, Chs							
Summer '02	Eliz, Qns, Wpt, Chs							
Early fall, '02	Eliz, Qns, Wpt, Chs							
Fall, '02	Eliz, Ons, Wpt, Chs							
Fall, '02 precision	Eliz, Ons, Wpt, Chs(2)							
Early winter, '02-'03	Eliz, Qns, Wpt, Chs							
Winter, '03	Eliz, Ons, Wpt, Chs							
Early spring, '03	Eliz, Qns, Wpt, Chs							
Spring, '03	Eliz, Qns, Wpt, Chs							
Late spring, '03	Eliz, Qns, Wpt, Chs							

Part 1:

LCMS versus GCMS for quantitative analysis of atmospheric polar organic compounds in complex mixtures

Target Compound Classes

- C3-C10 aliphatic dicarboxylic acids
- Aromatic (aryl) acids
- Hydroxy and oxoacids
- Alcohols, polyols
- Carbohydrates (sugars, levoglucosan)
- Humic acids, fulvic acids (HULIS compounds)
- Basic organic compounds (amines, amino acids)

Mass spectrometric instrumentation for molecular marker analysis

Why LCMS for polar compounds?

- Mass spectrometer more sensitive than other LC detectors (2 to 3 orders of magnitude better than UV/Vis detection)
- Can analyze compounds without a chromophore (carbohydrates, wood smoke sugars, diacids, diols)
- Can "resolve" coeluting peaks using mass selective filtering techniques and multi-stage MS
- Highly polar compounds well-suited to LCMS-ESI allowing for aqueous atmospheric solutions with broad pH range (pH 2 to pH 10)
- Suitable for high molecular weight compounds ("HULIS"), thermally unstable compounds (N-containing)

LC methods development

Changes in Sample Preparation and Solution Chemistry

- Analyte concentration sufficient for quantitative analysis (multi-level standard response curves)
- Maximize ionization through careful evaluation of solvents, buffers and modifiers (pK_a of compound must be known; mobile phase pH must be 1.5 units above or below compound pH_a)
- Minimize presence of compounds that compete for ionization or suppress signal through gas-phase reactions
- Analyte MW > 90 amu for ion trap collection; desolvation process loss mechanism for low MW compounds

Agilent 1100 LC Ion Trap Mass Spectrometer with post-column addition, ESI & APPI sources, UV/VIS diode array detector

Electrospray Ionization (ESI)

Electrospray Ion Source

- Positive & negative modes
- Must generate ions in solution or induce ion formation in source; generate charged species (adducts, dimers, ion-pairing)

Source: "Basics of LC/MS" Agilent Technologies, 2002, www.agilent.con/chem

Desorption of ions from solution

Atmospheric Pressure Photoionization (APPI)

Source: "Basics of LC/MS" Agilent Technologies, 2002

APPI Ion Source

- Discharge lamp generates photons in narrow range ionization energies
- lons in solution unnecessary; ions formed in gas phase
- Post-column dopant (toluene, acetone) aid analyte ionization

Single quadrupole mass analyzer

GCMS

- Very stable
- Standard calibration curves comparable over 3-month period
- High sensitivity for ppb & ppt marker concentration

Ion trap mass analyzer

Single stage MS

Multiple stage MS in LC necessary for structural elucidation of target analyte

Source: "Basics of LC/MS" Agilent Technologies, 2002

MSⁿmultiple stage

1) Molecular level instrumentation must accommodate complex mixtures

GCMS quadrupole – nonpolar compounds

2) Instruments must be stable

LCMS ion trap – polar compounds

Analytical protocol GCMS markers

Reproducibility of five-point RRF over 3-month analysis period by GC/MS is LCMS better?

Source: Li et al., 2005, AWMA Conf. Proceedings

	Retention			
Molecular Markers	Time	RRF	RRF	%SD
	(minute)	Nov, 2002	Feb, 2003	
n-Pentacosane (C25)	33.2	1.11	1.13	1.41
n-Hexacosane (C26)	35.1	1.03	0.99	2.83
n-Heptacosane (C27)	37.0	0.93	0.94	0.71
n-Octacosane (C28)	38.8	0.82	0.84	1.41
n-Nonacosane (C29)	40.6	0.81	0.81	0.00
n-Triacontane (C30)	42.3	0.8	0.86	4.24
n-Hentriacontane (C31)	44.0	0.52	0.57	3.54
n-Dotriacontane (C32)	45.9	0.22	0.28	4.24
benzo[b]fluoranthene	43.6	0.62	0.70	5.66
benzo[k]fluoranthene	43.7	0.70	0.65	3.54
benzo[e]pyrene	45.1	0.71	0.73	1.41
17α,21β,hopane	43.6	1.29	1.20	6.36
Dodecanoic acid (C12)	11.9	1.10	0.77	*23.33
Palmitic acid (C16)	22.2	1.21	0.76	*31.82
Tetracosanoic acid (C24)	37.6	0.61	0.32	*20.51

 $SD=100 \times (standard deviation/arithmetic mean)$

Experiments comparing and establishing optimum source conditions

		APPI (dopant)		A	PPI (no	dopa	nt)	ESI						
	Smart Parameter Settings / Mode	Sc	an	lso/	Frag	Sc	an	lso/	Frag	Sc	an	lso/	Frag	Total runs
	High energy/ Larger	2/21/07 2/22/07	24 runs 24 runs	Ν	ΙΔ	2/21/07 2/22/07	24 runs 24 runs	N	Δ	2/27/07	24 runs	N	Δ	
	Molecules	48 F	RUNS			48 F	RUNS		Ā	24 R	UNS		Ā	120
System Blanks	Low energy/	2/22/07	24 runs			2/22/07	24 runs			2/27/07	24 runs			
	Smaller	2/21/07 ru	24 + 24 Ins	N	IA	2/21/07 ru	24 + 24 Ins	N	A			N	A	
	Molecules	72 F	RUNS	-		72 F	RUNS			24 RUNS		j		168
	High energy/	2/21/07	90 runs	2/2/2007	360 runs	2/21/07	90 runs	1/31/2007	360 runs	2/27/07	90 runs	2/16/2007	360 runs	
	Larger Molecules													
Diacids		90 F	RUNS	360	RUNS	90 F	RUNS	360 RUNS		90 RUNS		360 F	RUNS	1350
	Low energy/	2/21/07	90 + 6 runs	2/22/07	48 runs	2/21/07	90 + 6 runs	2/22/07	48 runs	2/27/07	90 runs	2/27/07	48 runs	
	Molecules													
		96 F	RUNS	48 F	RUNS	96 F	RUNS	48 R	UNS	90 R	UNS	48 R	UNS	426
	High energy/	2/22/2007	12 runs	2/21/07	24 runs	2/22/2007	12 runs	2/21/07	24 runs	2/27/2007	12 runs	- NI	^	
	Larger	40.5				10.5				40.5		IN	A	0.4
Ovoacida	Wolcoulds	12 F	(UNS)	24 F	KUNS	12 1	KUNS 12 + 12	24 RUNS		12 R	UNS			84
Oxoacius	Low energy/	2/22/2007 ru	12 + 12 ins	2/22/07	48 runs	2/22/2007 ru	12 + 12 ins	2/22/07	48 runs	2/27/2007	12 runs	2/27/07	48 runs	
	Molecules													00.4
		24 F	RUNS	48 F	RUNS	24 F	RUNS	48 R	UNS	12 R	UNS	48 R	UNS	204
	Total runs	3	42	4	80	3	42	48	30	25	52	4	56	2352

Atmospheric Pressure Photoionization Mechanisms

For many compounds, APPI directly ionizes the target molecule, resulting in M^{•+}. The ionized molecule may undergo further reactions, such as abstracting a hydrogen atom from the solvent, resulting in [M+H]⁺. For PAHs, adding dopant resulted in the best sensitivity.

Direct APPI	
$M + h\nu \rightarrow M^{\bullet+} + e$	Analyte molecule M is ionized to molecular ion M*+
and under certain conditions $M^{\bullet +} + [S+H]^{+} \rightarrow [M+H]^{+}$	Molecular ion M•+ abstracts a hydrogen from ionized solvent
	1 5
$\frac{\text{Dopant APPI}}{\text{D} + \text{hv} \rightarrow \text{D}^{+} + \text{e}^{-}}$	Photoionizable dopant D is in excess & vields many D+ ions
$D^+ + M \rightarrow \rightarrow [M + H]^+ + D[\cdot H]$	D+ ionizes analyte M by proton transfer
$D^+ + M \rightarrow M^{\bullet+} + D$	D+ ionizes analyte M by electron transfer

http://www.chem.agilent.com/temp/radD52D3/00026439.pdf

Analysis of Polyaromatic Hydrocarbons by Atmospheric Pressure Photoionization LC/MS Patricia H. Cormia, Steven M. Fischer and Christine A. Miller, Agilent Technologies, Inc., Palo Alto, CA

The reactions in negative ion APPI

Source: Kauppila et al. J. Am Soc Spectrometry 2004, 15, 203-211

2-Nitrophenol LC/MS Ion Trap: Atmospheric Pressure Photolonization Negative Mode with 10% Acetone Dopant

3-Nitrobenzoic Acid LC/MS Ion Trap: Atmospheric Pressure Photolonization Negative Mode with 10% Acetone Dopant

Caffeine LC/MS Ion Trap: Atmospheric Pressure Photolonization Positive Mode with 10% Acetone Dopant

Isoquinoline LC/MS Ion Trap: Atmospheric Pressure Photolonization Positive Mode with 10% Acetone Dopant

Example of LCMS sources for detecting molecular markers

Ion spectra for azelaic acid

MW 188

Not all acids conform to a clear molecular ion or M-1 spectra

Strong or reactive acids form dimers in the APPI source as adduct ions with mobile phase and/or dopant molecules

Found commonly with aliphatic acids where carbon chains <C3

Methyl Malonic Acid MW 118

THE STATE UNIVERSIT

Do ESI and APPI produce the same spectra for compounds of atmospheric significance?

61 standard compounds evaluated by LCMS ESI and APPI analysis

Neutral Co	ompou	Inds	Organio	c Acids	5	Organio	Bases	5
Name	MW	Formula	Name	MW	Formula	Name	мw	Formula
Salicyaldehyde	122	C7H6O2	Oxalic acid	90	C2H2O4	Pyridine	79	C5H5N
Naphthalene	128	C10H8	Fumaric Acid	116	C4H4O4	1,6-Diaminohexane	116	C6H16N2
Naphthalene (d8)	136	C10D8	Maleic Acid	116	C4H4O5	Isoquinoline	129	C9H7N
4-hydroxy-1- naphthaldeh yde	172	C11H8O2	Methyl Malonic acid	118	C4H6O4	Quinoline	129	C9H7N
Phenanthrene	178	C14H10	Succinic Acid	118	C4H6O4	3-Methylindole	131	C9H9N
Fructose	180	C6H12O6	Benzoic Acid	122	C7H6O2	4-Nitrophenol	139	C6H5NO3
Glucose	180	C6H12O6	Glutaric Acid	132	C5H8O4	3-methylisoquinoline	143	C10H9N
Phenanthrene-D10	188	C14D10	Salicylic Acid	138	C7H6O3	2-Methylthia- naphthalene	148	C9H8S
Formaldehyde, DNPH	210	C7H6N4O4	Adipic Acid	146	C6H10O4	Carbazole	167	C12H9N
Acetaldehyde, DNPH	224	C8H8N4O4	Terephthalaldehydic Acid	150	C8H6O3	9-methylcarbazole	181	C14H13N
Acrolein-DNPH	236	C9H8N4O4	4-Hydroxysalicylic acid	154	C7H6O4	Dibenzothiophene	184	C12H8S
Acetone, DNPH	238	C9H10N4O4	1,3-naphthalenediol	160	C10H8O2	Caffeine	194	C8H10N4O2
Propionaldehyde, DNPH	238	C9H10N4O4	1,4-naphthalenediol	160	C10H8O2	9-ethylcarbazole	195	C13H11N
Crotonaldehyde, DNPH	250	C10H10N4O4	2,3-naphthalenediol	160	C10H8O2	4-methyldibenzo- thiophene	198	C13H10S
Methacrolein-DNPH	250	C10H10N4O4	Sodium Salicylate	160	NaC7H5O3	Reserpine	609	C33H40N2O9
2-Butanone-DNPH	252	C10H12N4O4	Isophthalic Acid	166	C8H6O4			
Benzo[b]fluoranthene	252	C20H12	Phthalic Acid	166	C8H6O4			
Butyraldehyde, DNPH	252	C10H12N4O4	Terephthalic Acid	166	C8H6O4			
lsovaleraldehyde, DNPH	266	C11H14N4O4	3-Nitrobenzoic Acid	167	C7H5NO4			
Valeraldehyde-DNPH	266	C11H14N4O4	2-naphthoic acid	172	C11H8O2			
Hexaldehyde-DNPH	280	C12H16N4O4	Suberic Acid	174	C8H14O4			
Benzaldehyde, DNPH	286	C13H10N4O4	Azelaic Acid	188	C9H16O4			
m-Tolualdehyde- DNPH	300	C14H12N4O4	Phenol-D5	100	C6D6O			

Oxalic acid standard mass spectra

ESI ions

Acid	MW	Amp	File		1	2	3	4	5
Oxalic Acid	90.03	0.4	SOAP000001	m/z	88.9	61.3	89.9	403.6	583.1
				Ι	31757	905	831	528	383
Oxalic Acid	90.03	0.4	SOAP000002	m/z	88.9	234	89.9	665.6	407
				Ι	28221	1095	830	828	819
Oxalic Acid	90.03	0.4	SOAP000003	m/z	88.9	651.1	511.1	89.9	161.2
				Ι	31603	2548	1476	758	731
Oxalic Acid	90.03	0.4	SOAP000004	m/z	89.0	90.0	473.5	61.2	124.9
				Ι	34866	1172	1160	945	892
Oxalic Acid	90.03	0.4	SOAP000005	m/z	88.9	453.6	90	244.7	369.7
				Ι	27982	4310	864	857	748
Oxalic Acid	90.03	0.4	SOAP000006	m/z	88.9	513.7	89.9	61.2	604.3
				Ι	29680	3432	1423	853	636

Solvent-ion, oligomers formed in ESI source

Inconsistent ions formed

APPI ions

Acid	MW	Amp	File		1	2	3	4	5
Oxalic Acid	90.03	0.4	SOAP000001	m/z	88.7	89.6	90.6	86.8	61
				Ι	123730	4874	3196	2988	1048
Oxalic Acid	90.03	0.4	SOAP000002	m/z	88.7	89.6	90.6	86.8	92.7
					120600	5230	2795	2704	1212
Oxalic Acid	90.03	0.4	SOAP000003	m/z	88.7	89.6	90.7	86.8	61
					170510	6841	2844	1390	1244
Oxalic Acid	90.03	0.4	SOAP000004	m/z	88.7	89.6	90.6	86.7	92.6
				-	127166	5449	2390	2189	776
Oxalic Acid	90.03	0.4	SOAP000005	m/z	88.7	89.6	90.6	86.8	61
				-	121238	4807	2651	2019	1332
Oxalic Acid	90.03	0.4	SOAP000006	m/z	88.7	89.6	90.6	86.8	61
					121238	4807	2651	2019	1332

NO solvention, oligomers formed Consistent order & ions formed Higher response

Nitrophenol-d5 external standard results

Loss of response seen after 200 runs of nitrophenol-d5 despite adding a positive switch at end of run

Mean	7532360	Lowest Area	4318908
STD	2272851	Highest Area	12699881
%RSD	30.17449	% Difference	65.99

- Significant negative slope
- % RSD shows high variability in standard response over 200 injections (~2 days run)
- High/low area difference 66%

Nitrophenol (10 ppm check standard)

Loss of response is seen after 200+ runs of the sequence despite adding a positive switch at end of run

Mean	1146033	Lowest Area	475277.5
STD	406396.2	Area	1998150
%RSD	35.46111	% Difference	76.21

- % difference and RSD's of experiments from 2006 and 2007 show same loss of area over a sample/standard sequence
- differences in the high/low areas range from 24-58%
- differences in RSD also range from 11-36%.

Carbonyl and internal standards analysis

Response factors for ISTD & Acrolein in CARB STD

Mean Rf	26.74739	Lowest Rf	14.74879
STD Rf	4.339096	Highest Rf	37.44239
%RSD Rf	16.2225	% Difference	60.61

Response factors determined by the calculation:

RRF = (Area sample/Area ISTD) x (Mass ISTD/Mass sample)

Internal STD areas over sequence

ISID Mean	4589146.05	Lowest ISID Area	3133962.87
ISIDSID	768455.85	Highest ISID Area	6470433.03
%RSD	16.75	% Difference	51.56

- Significant negative slope
- Large %RSD of 17%

What we have learned...

- Every polar organic molecular marker of interest in CMB and source apportionment studies is more rapidly detected and reliably quantified by GCMS
- Compounds must be introduced as ions into the source (ESI) or be ionized within the source (ESI & APPI); sugars are difficult
- Ions interfere with target analytes; reduction of unnecessary compounds and ions necessary
- Every analyte must have an authentic standard, be run on a column, evaluated for characteristic spectrum
- Adducts & complexes readily formed in source with just the standard compound injected with ESI

Part 2:

Seasonal Abundance of Wood Smoke Markers and Cholesterol in Fine Particles from the New York Metropolitan Area

Harmonie Hawley¹, Min Li¹, Monica Mazurek¹, Steve McDow² and Claire Belisle¹

¹Civil & Environmental Engineering Department, School of Engineering, Rutgers, The State University of New Jersey

²Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency

Thanks To.....

U.S. EPA STAR Program "Polar Organic Fine Particles from the New York, New Jersey and Connecticut Regional Airshed" Grant #R832165

Research associates: Patricia Atkins, Min Li, Claire Belisle Graduate research assistants: Harmonie Hawley Matt Ahearn Rebecca Roy Majad Ullah Andre

Andrew Bausch

End of Presentation

Thank you

Contact Information

Monica Mazurek, Assistant Professor Department of Civil and Environmental Engineering and Center for Advanced Infrastructure & Transportation (CAIT) School of Engineering 100 Brett Road Rutgers, The State University of New Jersey Piscataway, NJ 08854-8058 tel: 732-445-0579 ext. 128 fax: 732-445-3325 email: mmazurek@rci.rutgers.edu

Quality Control at the Molecular Level -- Blanks

Comparison of area ratios of molecular marker quantitation ions to m/z to *n*-C24D50 internal standard m/z 92 for tracers present above the instrument detection levels for the Varian Saturn 3800 GCMS

Molecular Marker	All SOAP Blanks	All SOAP	All SOAP	All SOAP Ambient	Average Area
	Average Area	Blanks STD ^a	Blanks RSD ^a	Average Ratios	Ratio All SOAP
	Ratios			(n=40)	Ambient/Average
	(n=17)				Area Ratio
					All Blanks
<i>n</i> -Alkanes ^b					
nC25	0.00132	0.00096	73	0.05915	45
nC26	0.00106	0.00094	89	0.04065	38
nC27	0.00138	0.00096	69	0.05508	40
nC28	0.00136	0.00083	61	0.02696	20
nC29	0.00162	0.00052	32	0.08041	50
nC30	0.00159	0.00077	49	0.03071	19
nC31	0.00137	0.00054	40	0.05120	37
nC32	0.00092	0.00057	62	0.01108	12
Mono and Di Acids as					
FAME ^b					
C12 FAME	0.01004	0.00762	76	25.30060	6
Phthalic	0.07454	0.11694	157	52.35560	3
C14 FAME	0.01318	0.00700	53	17.70418	7
C16 FAME	0.06717	0.03072	46	15.28006	7
C18 FAME	0.06410	0.03290	51	17.14010	4

^aRelative Standard Deviation (RSD) calculated as coefficient of variation *100 =

(STD/Mean)*100)

^bLOD expressed as area ratios to the internal standard *n*-C24D50 were: hopanes, 0.00073; *n*-

alkanes, 0.00025; PAH, 0.00210; diacids and *n*-alkanoic acids, 0.00720

^cNot determined (ND)

Initial suite SOAP molecular markers

Alkanes

n-pentacosane n-hexacosane n-heptacosane n-octacosane n-nonacosane n-triacontane n-hentriacontane n-dotriacontane anteiso-triacontane iso-hentriacontane anteisohentriacontane iso-dotriacontane anteisodotriacontane iso-tritriacontane phytane pristane

PAHs

benzo[b]fluoranthene benzo[k]fluoranthene benzo[e]pyrene indeno[1,2,3-cd]pyrene indeno[1,2,3cd]fluoranthene retene coronene

Acids

21 n-alkanoic acids (with C_{10} to C_{30}) 10 aliphatic dicarboxylic acids (C_3 to C_{10}) 1 aromatic polycarboxylic acid cis-9-n-octadecenoic acid

Other

9 hopanes nonanal levoglucosan galactosan mannosan cholesterol 7H-benz[de]anthracen-7-one benz[a]anthracene-7,12-dione

Authentic standards for 63 marker cmpds measured in ambient composites

